

A psychophysiology-based driver model for the design of driving assistance systems

Franck MARS

PsyCoTec team

Philippe CHEVREL

Control team

Institut de Recherche en Communications et Cybernétique de Nantes

The problem

Lane departure crashes may be due to several causes:

- steering errors
- driver distraction

Countermeasures: advanced driving assistance systems (ADAS)

- lane departure warning systems
- lane keeping systems
- driver state monitoring

For all types of ADAS:

- a key problem: to predict the driver behaviour
- our approach: to incorporate a driver model in the design process

Step 1: Building a visuomotor model of steering control

What we need

A model of steering control

- A model that processes information from the visual scene
- A motor system that converts steering intention into actions

Two-levels visual control of steering

Lane centre θ near θ

Donges (1978), Human Factors

Salvucci & Gray (2004), Perception

Anticipatory control

- anticipation of changes in road curvature
- fed by far visual information: θ far (tangent point)

Compensatory control

- on-line correction of lateral position errors
- fed by near visual information: θ near (lane center)

Adding a motor system

Hoult & Cole (2008), Vehicle Systems Dynamics

Our driver model

Saleh et al. (2011) IFAC World; Mars et al (2011), HFES

A cybernetic model:

- designed as a function of current knowledge on perceptual and motor processes
- that can be identified in various driving situations

Step 2: Application to haptic shared control

Shared control without a driver model

Haptic shared control:

continuous and simultaneous action of the driver and an automaton on the steering wheel

Without a driver model:

- the controller optimizes
 performance and safety criteria
- no prediction of the driver behavior

Shared control with a driver model

With a driver model, the control law also optimizes cooperation criteria

- shared control is smoother
- improved agreement between the driver and the automation

Step 3: Application to distraction state estimation

A steering model for distraction

Different types of distraction influence steering in differents ways

- cognitive distraction
- visual distraction
- motor distraction
- visuomotor distraction

Can a visuomotor model help detect and discriminate distraction episodes?

Discriminating distraction types by means of on-line parameter identification

- > the visual anticipation gain decreases only for high visual distraction
- motor distraction influences neuromuscular dynamics only
- visual distraction propagates to the motor system parameters

Want more details?

When the driver model drives

Contact information

franck.mars@irccyn.ec-nantes.fr

Presentation of the model

- Mars, F., Saleh, L., Chevrel, P., Claveau, F., & Lafay, J.F. (2011). Modeling the visual and motor control of steering with an eye to shared-control automation. *Proceedings of the Human Factors and Ergonomics* Society 55th Annual Meeting, pp. 1422-1426
- Saleh, L., Chevrel, P., Mars, F., Lafay, J.F., & Claveau, F. (2011). Humanlike cybernetic driver model for lane keeping. *Proceedings of the 18th IFAC World Congress*, pp. 4368-4373

Application to haptic shared control

• Saleh, L., Chevrel, P., Claveau, F., Lafay, J.F. & Mars, F. (2013). Shared steering control between a driver and an automation: Stability in presence of driver model uncertainty. *IEEE Transactions on Intelligent Transportation Systems*, 14(2), 974-983

Application to driver distraction

- Ameyoe, A., Chevrel, P., Le Carpentier, E., Mars, F. & Illy, H. (2015).
 Identification of a Linear Parameter Varying Driver Model for the
 Detection of Distraction. *IFAC-PapersOnLine*, 48(26), pp. 37-42
- Ameyoe, A., Mars, F., Chevrel, P., Le Carpentier, E. & Illy, H. (2015).
 Estimation of driver distraction using the prediction error of a cybernetic driver model. *Proceedings of the Driving Simulation Conference Europe 2015*, pp. 13-18