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Abstract

We obtain an explicit upper bound on the torsion of the Picard group of the
forms of A1

k and their regular completions. We also obtain a sufficient condition for
the Picard group of the forms of A1

k to be non trivial and we give examples of non
trivial forms of A1

k with trivial Picard groups.
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Introduction and statement of the main results

With the recent progress in the structure of linear algebraic groups over an imperfect
field [CGP15] [Tot13], it seems to be possible to study their Picard group if the
Picard groups of unipotent algebraic groups are known well enough. As every
unipotent smooth connected algebraic group is an iterated extension of forms of
Ga,k [SGAIII2, XVII 4.1.1], this motivates the study of the Picard group of forms
of Ga,k.

In this article, we consider more generally forms of the affine line, since our
geometric approach applies to this setting without additional difficulties.

Let k be a field, let X, Y be schemes (resp. group schemes) over k. Recall
that X is a form of Y if there is a field K ⊃ k such that the scheme (resp. group
scheme) XK is isomorphic to YK . We also recall that the affine line A1

k is the k-
scheme Spec(k[t]); and the additive group Ga,k is the algebraic group of underlying
scheme A1

k = Spec(k[t]), which represent the group functor:

Sch/k◦ → Groups
T 7→ (O(T ),+) .

If k is a perfect field, all forms of A1
k and Ga,k are trivial. But non trivial forms

of A1
k and Ga,k exist over every imperfect field k; there structure has been studied

by P. Russell [Rus70], G. Greither [Gre86], T. Kambayashi, M. Miyanishi, and
M. Takeuchi [KMT74] and [KM77]. In [Gre86] and [KMT74] the Picard group of
some special forms of A1

k and Ga,k is described [KMT74, Lem. 6.12.2] and [Gre86,
Lem. 5.6]. In [KM77] T. Kambayashi and M. Miyanishi have continued the study
of the forms of the affine line, they have proved numerous results on the forms of
the affine line and on their Picard group [KM77, Th. 4.2], [KM77, Pro. 4.3.2] and
[KM77, Cor. 4.6.1].

More recently B. Totaro has obtained an explicit description of the class of
extensions of a smooth connected unipotent group U by the multiplicative group as
a subgroup of Pic(U) [Tot13, Lem. 9.2]. He has then applied this description to the
structure of commutative pseudo-reductive groups [Tot13, Lem. 9.4] and [Tot13,
Cor. 9.5]. Moreover he has constructed an example of a non trivial form of G2

a,k,
such that Pic(Uks) is trivial [Tot13, Exa. 9.7].

In this article, we go back over and improve some of the results of [KM77] and
[Gre86] with different methods.

Given a form X of A1
k, it is known that there exists a finite purely inseparable ex-

tension K of k such that XK
∼= A1

K ; then Pic(X) is pm-torsion, where pm := [K : k]
(see e.g. [Bri15, Lem. 2.4]). Our main theorem yields a sharper result:

Theorem (2.4). Let X be a non trivial form of A1
k, and let n(X) be the smallest

non-negative integer such that X
kp−n

∼= A1
kp−n .

(i) Pic(X) is pn(X)-torsion.

(ii) If X has a k-rational point (e.g. X is a form of Ga,k or k is separably closed),
then Pic(X) 6= {0}.

Assertion (i) is stated by T. Kambayashi and M. Miyanishi in [KM77, Pro. 4.2.2],
but their proof is only valid when k is separably closed. The arguments of our proof
of assertion (i) are quite general: we use them to obtain a bound on the torsion of
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the Picard groups of some higher dimensional k-varieties (Proposition 2.6). T. Kam-
bayashi and M. Miyanishi have also shown that the exponent of the Picard group
of a form of the affine line having a k-rational point is at least pn(X) (see [KM77,
Pro. 4.2.3]); this implies assertion (ii). We provide a short alternative proof of that
assertion.

A form of A1
k does not necessary have a k-rational point. In Subsection 2.3 we

present an explicit example of such a form with trivial Picard group (Lemma 2.8),
and a more general construction (Proposition 2.10). We will also show that the non
trivial forms of Ga,k are not special algebraic groups. This result has already been
shown by D. T. Nguyễn [Ngu16], we are going to use a different method: we see it
as a corollary of our main Theorem 2.4 and Proposition 2.10.

Next, we consider the regular completion C of the curve X. The Picard groups
of C and X are linked by a standard exact sequence (2.1.1). We obtain the following
result on the Picard functor Pic0C/k:

Theorem (4.4). Let X be a form of A1
k and C be the regular completion of X. Let

n′(X) be the smallest non-negative integer n such that the function field of X
kp−n

is isomorphic to kp
−n

(t). Let k′ be the unique minimal field extension of k such
that Xk′

∼= A1
k′.

Then Pic0C/k is a smooth connected unipotent algebraic group of pn
′(X)-torsion

which is k-wound and splits over k′.
In addition if X is a non trivial form of Ga,k and p 6= 2, then k′ is the minimal

field extension of k such that Pic0C/k splits over k′.

The full statement of Theorem 4.4 also contain an upper bound on the dimension
of Pic0C/k for a class of forms of A1

k, but its formulation requires additional notations.
This upper bound is obtain by computing the arithmetic genus of some curve in
some weighted projective plane (Corollary 1.25).

The fact that Pic0C/k is smooth and k-wound is a direct consequence of results
obtained in [BLR90, Chap.8 and Chap.9]. The fact that Pic0C/k is unipotent is
obtained in [KMT74, Th. 6.6.10]. We have the inequality n(X) > n′(X), so Theo-
rem 4.4 yields a better bound on the torsion of Pic0(C) than Theorem 2.4 (see the
exact sequence (2.1.3)). T. Kambayashi and M. Miyanishi obtained that the expo-
nent of Pic0C/k is pn

′(X) [KM77, Cor. 4.6.1]; this implies our result on the torsion of
Pic0C/k. We will provide an alternative proof of this result.

Before the proof of Theorem 4.4, we will first gather in Section 3 some results
about the Picard functor, which are of independent interest. These results will be
used in Section 4 to prove Theorem 4.4.

Conventions: Let k be a field, unless explicitly stated, k is of characteristic
p > 0. We choose an algebraic closure k, and denote by ks ⊂ k the separable
closure. For any non-negative integer n we denote kp

−n
= {x ∈ k|xp

n
∈ k}.

Let X be a scheme; we note OX the structural sheaf of X. We will denote
O(X) the ring of regular functions on X, and O(X)∗ the multiplicative group of
invertible regular functions on X. Let x ∈ X, the stalk of OX at x is denoted OX,x,
the residue field at x is denoted κ(x).

The morphisms considered between two k-schemes are morphisms over k. An
algebraic variety is a scheme of finite type on Spec(k). Let K be a field extension
of k, the base change X ×Spec(k) Spec(K) is denoted XK . Let X be an integral
variety, the function field of X is denoted κ(X). A group scheme of finite type over
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k will be called an algebraic group. A group scheme locally of finite type over k will
be called a locally algebraic group.

A smooth connected unipotent algebraic group U over k is said to be k-split if U
has a central composition series with successive quotients forms of Ga,k. A smooth
connected unipotent algebraic group U over k is said to be k-wound if every k-
morphism A1

k → U is constant with image a point of U(k) (an equivalent definition
is: U does not have a central subgroup isomorphic to Ga,k [CGP15, Pro. B.3.2]).

1 Forms of A1

k and of Ga,k

1.1 Regular completion and invariants

In this first Subsection we introduce some notations and gather some results from
P. Russell’s article [Rus70] that we will use in the rest of the article.

Let X be a form of A1
k, we will note C its regular completion, i.e., the unique

projective regular curve such that there is an open dominant immersion j : X → C
satisfying the following universal property: for every morphism f : X → Y to a
proper scheme Y there exists a unique morphism f̂ : C → Y such that f̂ ◦ j = f
[GW10, Th. 15.21].

Lemma 1.1. [Rus70, 1.1]
Let X be a form of A1

k, let C be the regular completion of X.

(i) C \X is a point denoted P∞ which is purely inseparable over k.

(ii) There is a unique minimal field extension k′ such that Xk′
∼= A1

k, and k′ is
purely inseparable of finite degree over k.

Let ϕk be the Frobenius morphism of k, i.e. the morphism

ϕk : x ∈ k 7→ xp ∈ k.

In the following we will denote ϕ for ϕk.
Let X be a form of A1

k, by definition X = Spec(R) with R a k-algebra such that
R⊗k k

′ ∼= k′[t]. Let n be a non-negative integer, we consider

Fn
R : R⊗k k → R

r ⊗ x 7→ xrp
n

with k seen as a k-algebra via ϕn, the nth power of ϕ.
The morphism Fn

R corresponds at the scheme level to the nth relative Frobenus
morphism Fn

X . Let X(pn) be the base change X ×Spec(k) Spec(k) with k seen as a
k-algebra via ϕn, in other world X(pn) is isomorphic to the base change of X by
kp

−n
. We can then write

Fn
X : X → X(pn).

Lemma 1.2. [Rus70, 1.3]
There is an integer n > 0 such that X(pn) ∼= A1

kp−n .

Definition 1.3. Let X be a form of A1
k.

(i) The smallest non-negative integer n such that X(pn) ∼= A1
kp−n is denoted n(X).
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(ii) The smallest non-negative integer n such that κ
(
X(pn)

)
∼= kp

−n
(t) is denoted

n′(X).

(iii) The point P∞ is purely inseparable (Lemma 1.1), let r(X) be the integer such
that deg(P∞) = pr(X).

Remark 1.4. (i) We have n(X) > n′(X), we will show in Example 1.19 that this
inequality can be strict (but equality holds if X is a form of Ga,k and if p 6= 2
according to Lemma 1.18).

(ii) Let n be n(X), the morphism Fn
X extend to a finite dominant morphism

Fn
X : C → P1

kp−n of degree pn [Rus70, Lem 1.3]. Then pr(X) is the residue
class degree of the valuation associated to P∞ in κ(C), so

pr(X) = [κ(P∞) : k] 6
[
κ(C) : κ

(
P1
kp−n

)]
= pn.

Hence r(X) 6 n(X).

Definition 1.5. Let m(X) be the positive integer such that the image of the group
morphism deg : Pic(C) → Z is m(X)Z.

Remark 1.6. m(X) is the greatest common divisor of the degrees of the residue
fields of the closed points of C, in particular m(X) divides [κ(P∞) : k] = pr(X). So
m(X) is a power of p and m(X) 6 pr(X).

We have shown the following relations between the above invariants:

Lemma 1.7.

n(X) > max
(
n′(X), r(X)

)

m(X) | pr(X).

1.2 Structures of the forms of Ga,k

In this Subsection we will gather some results mainly from P. Russell’s article
[Rus70] on the structure of the forms of Ga,k and on the reasons why a form of A1

k

can fail to have a group structure.
Let A = Endk(Ga,k) (endomorphisms of k-group scheme) and F = F 1

Ga,k
∈ A

the relative Frobenius endomorphism. Then A = k〈F 〉 is a non commutative ring
of polynomials with the relations Fa = apF for all a ∈ k. Following [Rus70], we
denote by A∗ the subset of polynomials in A with non zero constant coefficients.

Theorem 1.8. [Rus70, 2.1]
Let G be a form of Ga,k. Then G is isomorphic to the subgroup Spec (k[x, y]/I)

of G2
a,k, where I is the ideal of k[x, y] generated by the separable polynomial

yp
n
−
(
x+ a1x

p + · · ·+ amxp
m)

for some a1, . . . , am ∈ k. Equivalently, G is the
kernel of the homomorphism

G2
a,k → Ga,k

(x, y) 7→ yp
n
−
(
x+ a1x

p + · · ·+ amxp
m)

.
(1.2.1)

Thus, we can see G as a fibre product

G //

��

Ga,k

τ

��

Ga,k Fn
// Ga,k
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where τ = 1+ a1F + · · ·+ amFm ∈ A∗. Similarly, any G defined by such a product
is a form of Ga,k. We note G = (Fn, τ).

Remark 1.9. Let G be a form of Ga,k, the proof of [Rus70, Th. 2.1] shows that in
the equation (1.2.1) we can choose n to be n(G).

Recall that any smooth connected unipotent algebraic group splits after base
change by a finite purely inseparable extension [DG70, Cor. IV § 2 3.9]. In the
particular case of the forms of Ga,k, we have the following more precise result:

Corollary 1.10. [Rus70, 2.3.1]
Let G be the form of Ga,k defined by the equation yp

n
= x+ a1x

p + · · ·+ amxp
m

.

Then k′ := k
(
ap

−n

1 , . . . , ap
−n

m

)
if the smallest extension of k such that Gk′

∼= Ga,k′.

Let X be a form of A1
k, P. Russell showed in his article [Rus70] that there are

two reasons for X to fail to have a group structure. Firstly X may not have a
k-rational point. Secondly Xks may have only finitely many automorphisms.

Proposition 1.11. [KMT74, 6.9.1]
Let X be a form of A1

k, such that X has a k-rational point P0. Let C be the
regular completion of X. Then the following are equivalent:

(i) X has a group structure with neutral point P0.

(ii) X is isomorphic as a scheme to a form of Ga,k.

(iii) Aut(Cks) is infinite.

Proposition 1.12. [Rus70, 4.1]
Let X be a form of A1

k and suppose that Xks admits a group structure. Then
X is a principal homogeneous space for a form G of Ga,k determined uniquely by
X. Moreover X = Spec(k[x, y]/I), G = Spec(k[x, y]/J) where the ideals I and
J are generated respectively by yp

n
− b − f(x) and yp

n
− f(x) with b ∈ k and

f(x) := x+ a1x
p + · · ·+ amxp

m
. Conversely, if X and G are defined as above, then

X is a principal homogeneous space for G.

Remark 1.13. P. Russell in [Rus70] and T. Kambayashi, M. Miyanishi, and
M. Takeuchi in [KMT74] have classified all forms of A1

k over a separably closed
field such that the regular completion has arithmetic genus 6 1.

M. Rosenlicht [KMT74, 6.9.3] has found an example of a form of A1
k with only

finitely many automorphisms, of genus (p− 1)/2 for all p > 2.
More recently, T. Asanuma [Asa05, Th. 8.1] has found an explicit algebraic

presentation of the forms of A1
k, for every field k of characteristic p > 2.

1.3 Examples

Let X be a form of A1
k, first we will compare the minimal field k′ such that Xk′

∼= A1
k′

and the residue field κ(P∞) of P∞. There is an inclusion κ(P∞) ⊂ k′, which may
be strict, as shown by the example below.

Example 1.14. Let k = Fp(t1, t2) and G be the form of Ga,k defined by the equation

yp
2
= x+ t1x

p + t2x
p2 ,
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then C is defined as a curve of P2k by the equation

yp
2
= xzp

2−1 + t1x
pzp

2−p + t2x
p2 .

In this case κ(P∞) = k(tp
−2

2 )  k′ = k(tp
−2

1 , tp
−2

2 ).

The inequality pr(X) = [κ(P∞) : k] 6 pn(X) (Lemma 1.7) may also be strict, as
shown by:

Example 1.15. Let k = Fp(t) and G be the form of Ga,k defined by the equation

yp
3
= x+ txp + tp

2
xp

2
,

then n(G) = 3 and after the change of variable w = tx − yp we remark that G is
also defined by the equation

−t1−pyp
2
− t−1yp = t−1w + t1−pwp +wp2 .

So C is defined in P2k by

−t1−pyp
2
− t−1ypzp

2−p = t−1wzp
2−1 + t1−pwpzp

2−p + wp2 ,

the residue field of the point at infinity is κ(P∞) = k(tp
−2
).

We will now present some results on the forms of A1
k with regular completion

equal to P1k.

Lemma 1.16. Let X be a form of A1
k such that X(k) 6= ∅. The following are

equivalent:

(i) C ∼= P1k.

(ii) X is the complement of a purely inseparable point of P1k.

(iii) C is smooth.

Proof. We begin with (i) ⇔ (ii), the implication (i) ⇒ (ii) is a consequence of
[Rus70, Lem. 1.1]. The converse is clear.

Now we show (i) ⇔ (iii), the implication (i) ⇒ (iii) is clear. Suppose C is
smooth, let k′ the smallest field such that Xk′

∼= A1
k′ . Then Ck′ is smooth; so

Ck′
∼= P1k′ and C(k) 6= ∅. According to [Liu06, Pro. 7.4.1 (b)] it follows that

C ∼= P1k.

Remark 1.17. If X is a non trivial form of A1
k, then P∞ is not k-rational. Indeed if

P∞ is k-rational then C is smooth at P∞ [Liu06, Pro. 4.3.30] so it is smooth every-
where. According to Lemma 1.16 C is isomorphic to P1k and X is the complement
of a k-rational point of P1k, thus X ∼= A1

k.

Lemma 1.18. [Ros55] [Rus70] [KMT74, 6.9.2]
Let G be a form of Ga,k. If C ∼= P1k then either G ∼= Ga,k or p = 2 and n(G) = 1.

Example 1.19. Let p = 2, and G be the form of Ga,k defined by the equation

y2 = x+ ax2

with a ∈ k \ k2 where k2 = {x2 | x ∈ k}. Then G is a non trivial form of Ga,k, the
regular completion C is defined as a curve of P2k by the equation

y2 = xz + ax2.

We remark that C is smooth (because it is smooth at P∞), so according to
Lemma 1.16 C ∼= P1k (this follows more directly from the fact that C is a conic
with a k-rational point).
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Remark 1.20. We can combine examples 1.15 and 1.19: let p = 2 and G be the
form of Ga,k defined by

yp
3
= x+ txp + tp

2
xp

2
,

then r(G) = 2 and n(G) = 3. Moreover G
kp−2 is isomorphic to the form of Ga,k de-

fined by the equation y2 = x + tp
−2
x2, so n′(G) = 2. So we have constructed

an example of a form of Ga,k where the inequality n(X) > max(n′(X), r(X))
(Lemma 1.7) is strict.
Example 1.21. Let Q be an inseparable point of P1k, then X = P1k \{Q} is a form of
A1
k with regular completion P1k. If Q is not k-rational then X is a non trivial form

of A1
k and if deg(Q) > 2 then according to Lemma 1.18, Xks does not have a group

structure. In this case n′(X) = 0 and n(X) = r(X) can be arbitrary big.
Example 1.22. Let X be a form of A1

k, if C ∼= P1k then k′ = κ(P∞). The converse is
false: let G be the form of Ga,k defined by the equation yp = x+axp where a ∈ k\kp.
Then C is defined by the equation yp = xzp−1+axp in P2k, so κ(P∞) = k[ap

−1
] = k′.

If p > 3, then C isn’t smooth (because Ck′ is not regular at P∞) so C is not
isomorphic to P1k.

1.4 Arithmetic genus of the regular completion

First let us consider a field k of arbitrary characteristic. Let a, b and c be three
positive integers, recall that the weighted projective space Pk(a, b, c) is defined as
Proj(k[x, y, z]) where k[x, y, z] is the graded polynomial k-algebra with weight a
for x, b for y and c for z. If w is an homogeneous element of k[x, y, z], we will
denote D+(w) the open subset of Pk(a, b, c) consisting of the homogeneous ideals

of Proj(k[x, y, z]) not containing the ideal (w). Then
(
D+(w),OPk(a,b,c)|D+(w)

)
is

an affine scheme.
Let C be a geometrically integral curve of degree d in P2k, we denote pa(C) the

arithmetic genus of the curve C. It is well known that pa(C) = (d− 1)(d − 2)/2.
In this Subsection we will generalize this result for some curves in some weighted
projective planes (Proposition 1.24). I. Dolgachev has computed the geometric
genus of a smooth curve in a weighted projective plane [Dol82, 3.5.2] under the
assumption that the characteristic of the field does not divide the weights of the
projective plane. But we need to compute the arithmetic genus of a curve in a
weighted projective plane where one of the weights is a power of the characteristic
(Corollary 1.25). Even though the result of Proposition 1.24 is certainly already
known, we did not find a reference with an appropriate setting so we include the
proof here for the sake of completeness.

Lemma 1.23. Let k be a field of arbitrary characteristic, let a be a positive integer
and let n be an integer. Let S =

⊕
d∈N

Sd be the graded polynomial k-algebra k[x, y, z]

with weight 1 for x, 1 for y and a for z. We denote P the weighted projective space
Pk(1, 1, a) = Proj(S).

Then OP(na) is an invertible sheaf on P and H0 (P,OP(na)) = Sna.

Proof. First we will show that Sna = H0 (P,OP(na)) (in the case where a = 1 and
P = P2k it is a well known fact). Let g ∈ OP(na)(P), then by definition of OP(na):

g|D+(x) = P/xmx with P ∈ Smx+na,

g|D+(y) = Q/ymy with Q ∈ Smy+na.
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We can suppose that mx = my = m (if this not the case, for example mx > my,
consider Q′ = Qymx−my , then g|D+(y) = Q′/ymx). The two local sections g|D+(x)

and g|D+(y) coincide on D+(xy), so

g|D+(xy) = P/xm = Q/ym ∈ S

[
1

xy

]
.

Then, in S we have the equality xmQ = ymP . So ym divide Q, and g = Q/ym

is a homogeneous polynomial of degree m + na − m = na. Thus g ∈ Sna, so
H0 (P,OP(na)) ⊂ Sna. Conversely, it is clear that Sna ⊂ H0 (P,OP(na)).

Next, to show that OP(na) is an invertible sheaf on P, it is enough to show that
for U = D+(x), D+(y) and D+(z), the OP(U)-module OP(na)(U) is isomorphic to
OP(U).

Let w be x or y, the multiplication by wna:

multwna : OP(D+(w)) → OP(na)(D+(w))

P/wdeg(P ) 7→ wnaP/wdeg(P ),

has for inverse the multiplication by 1/wna. So multwna is an isomorphism.
For D+(z), the isomorphism is the multiplication by zn:

multzn : OP(D+(z)) → OP(na)(D+(z))
P/zm 7→ znP/zm,

where P ∈ Sma.

Proposition 1.24. Let k be a field of arbitrary characteristic, let a be a positive
integer. We denote P the weighted projective space Pk(1, 1, a).

Let C be a geometrically integral curve of degree d in P, such that d is a multiple
of a. Let h be the integer d/a. Then the arithmetic genus of C is:

pa(C) =
(h− 1)(d− 2)

2
.

Proof. Let n be a positive integer, according to Riemann-Roch Theorem [Liu06,
Th. 7.3.17],

dimk H0 (C,OC(na))− dimk H1(C,OC (na)) = deg(OC(na)) + 1− pa(C). (1.4.1)

According to [Liu06, Th. 5.3.2], if n is large enough, then H1(C,OC (na)) = 0.
We make this assumption throughout this proof.

We denote f : C → P the inclusion, and IC the sheaf of ideal of OP that defines
the closed subvariety C; then

0 → IC → OP → f∗OC → 0

is an exact sequence of sheaves on P. Moreover IC ∼= OP(−d) = OP(−ha), and the
sheaf OP(na) is invertible (Lemma 1.23), so in particular flat. Then

0 → OP(na− ha) → OP(na) → f∗OC(na) → 0 (1.4.2)

is an exact sequence of sheaves on P.
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As above, we can take n large enough, so that H1 (P,OP(na− ha)) = 0. Then
the cohomological exact sequence induced by the sequence (1.4.2) is

0 → H0 (P,OP(na− ha)) → H0 (P,OP(na)) → H0 (C,OC (na)) → 0.

Thus

dimk H0 (C,OC(na)) = dimk H0 (P,OP(na))− dimk H0 (P,OP(na− ah)) . (1.4.3)

Next, we compute dimk H0 (P,OP(δa)). As in Lemma 1.23, let S =
⊕
d∈N

Sd be

the graded k-algebra k[x, y, z] with weight 1 for x, 1 for y and a for z. According to
[Bou07, Chap. 5 §5.1 Pro. 1], dimk Sδa is the δa-th coefficient of the formal series

1

(1− t)2(1− ta)
=


∑

l>0

(l + 1)tl



(
∑

i>0

tia

)
.

Then

dimk H0 (P,OP(δa)) = dimk Sδa =
∑

l+ai=δa

l + 1

=
δ∑

i=0

δa− ia+ 1

=(δa + 1)(δ + 1)− a
δ(δ + 1)

2

=
(δ + 1)(δa + 2)

2
.

By combining the equations (1.4.1), (1.4.3) and the equation above we obtain:

deg (OC(na)) + 1− pa(C) =
(n+ 1)(na+ 2)

2
−

(n− h+ 1)(na− ha+ 2)

2

=nah+
2h+ ah− ah2

2
.

Finally:

pa(C) = 1 +
ah2 − 2h− ah

2
=

(h− 1)(ah − 2)

2
.

We are going to apply Proposition 1.24 to the study of the arithmetic genus
of the regular completion of the forms of Ga,k. This genus has been studied by
C. Greither for a form X of A1

k in the particular case when the minimal field k′

such that Xk′
∼= A1

k′ is of degree p [Gre86, Th. 3.4] and [Gre86, Th. 4.6].

Corollary 1.25. Let k be a field of characteristic p > 0, and G be a form of
Ga,k. We note n = n(G) and m the smallest integer such that G is defined by
yp

n
= x+ a1x

p + · · · + amxp
m

. Let C be the regular completion of G, then

pa(C) 6
(pmin(n,m) − 1)(pmax(n,m) − 2)

2
. (1.4.4)

Moreover, am /∈ kp if and only if (1.4.4) is an equality.
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In order to show this Corollary we are going to introduce a "naive completion"
Ĉ of G. The "naive completion" will give us a geometrical interpretation of the
condition am /∈ kp: this is equivalent to Ĉ being regular.

First we suppose that n 6 m. Let Ĉ be the closure of G in Pk(1, pm−n, 1), then
Ĉ is defined by the homogeneous polynomial

yp
n
−
(
xzp

n−1 + a1x
pzp

n−p + · · ·+ amxp
m)

, (1.4.5)

where x has weight 1, y has weight pm−n, and z has weight 1.
Let A be the graded k-algebra defined as the quotient of the graded algebra

k[x, y, z] (with weights as above) by the ideal generated by the homogeneous poly-
nomial (1.4.5), then Ĉ = Proj(A).

Let us consider the affine open D+(x) of Pk(1, pm−n, 1), the affine variety
Ĉ ∩D+(x) is the spectrum of A(x), the sub-algebra of A[ 1x ] of elements of degree
0. Then A(x) is generated by y/xp

m−n
and z/x.

Let Y = y/xp
m−n

and Z = z/x, then

A(x) = k[Y,Z]/
(
Y pn −

(
Zpn−1 + a1Z

pn−p + · · · + am
))

.

Also Ĉ\G is a unique point that we will note ∞. A straightforward computation
shows that

OĈ,∞

(z)
∼=

k[y]

(ypn − am)
.

If am /∈ kp then k[y]
(ypn−am)

is a field, so Ĉ is regular, thus Ĉ is the regular completion
C.

Let us consider the morphism Ĉ → P1k induced by the projection px : G → Ga,k.

The scheme theoretic fibre of this morphism at [1 : 0] is Spec
(
OĈ,∞/(z)

)
so z is a

uniformizing parameter of Ĉ at ∞ if and only if Ĉ is regular if and only if am /∈ kp.
If n > m, the construction of the naive completion Ĉ is almost the same,

except that Ĉ is the closure of G in Pk(pn−m, 1, 1). The curve Ĉ is defined by the
homogeneous equation

yp
n
= xzp

n−1 + a1x
pzp

m−p + · · ·+ amxp
m
,

where x has weight pn−m, y has weight 1, and z has weight 1.
And Ĉ \G is a unique point still denoted ∞, then

O
Ĉ,∞

(z)
∼=

k[x]

(xpm − a−1
m )

.

By the same argument as above am /∈ kp if and only if Ĉ is regular.

Proof. Assume am /∈ kp. Then we have shown that Ĉ is regular, so (by unic-
ity of the regular completion) Ĉ is the regular completion C. And according to
Proposition 1.24, we have

pa(C) =
1

2
(pmin(n,m) − 1)(pmax(n,m) − 2).

On the other hand, if am ∈ kp, then Ĉ is not normal. Let π : C → Ĉ be the
normalisation. There is an exact sequence of sheaves on Ĉ:

0 → OĈ → π∗OC → F → 0
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where F is a non trivial sheaf with support ∞. So pa(C) = pa(Ĉ)−dimkH
0(Ĉ,F),

then
pa(C) < pa(Ĉ) =

1

2
(pmin(n,m) − 1)(pmax(n,m) − 2).

2 Picard group of the forms of A1

k

2.1 An exact sequence of Picard groups

Let X be a form of A1
k, in this Subsection we will link the Picard group of X to the

Picard group of C by adapting the argument of [KMT74, Th. 6.10.1]. The curves
C and X are regular, so we can identify the Picard group with the divisor class
group, thus we note [P∞] the class of the point P∞ in the Picard group of C. The
following sequences are exact [Har13, Pro. II.6.5]:

0 → Z[P∞] → Pic(C) → Pic(X) → 0, (2.1.1)

and
0 → Pic0(C) → Pic(C) → m(X)Z→ 0 (2.1.2)

where m(X) is the invariant of X defined in 1.5.
By combining the two exact sequences (2.1.1) and (2.1.2) we obtain the following

exact sequence:

0 → Pic0(C) → Pic(X) → m(X)Z/pr(X)Z→ 0. (2.1.3)

Example 2.1. As in Example 1.19, let p = 2 and let G be the form of Ga,k defined by
the equation y2 = x+ ax2 where a /∈ k2. Since C ∼= P1k, we obtain Pic(G) ∼= Z/2Z.

More generally, let Q be a purely inseparable point of P1k, then X = P1k \ {Q} is
a non trivial form of A1

k and Pic(X) ∼= Z/deg(Q)Z.

Example 2.2. Let k be a field of characteristic p 6= 2, let G be the form of Ga,k

defined by the equation yp = x+ axp where a /∈ kp.
Let P0 be the neutral element of G, the morphism

P ∈ G(k) 7→ [P ]− [P0] ∈ Pic0(C)

is injective [KMT74, Th. 6.7.9], so if G(k) is infinite (e.g. if k is separably closed),
then Pic(G) is an infinite group (Recall that over a perfect field, the Picard group
of an affine connected smooth algebraic group is finite [San81, Lem. 6.9]).

Remark 2.3. For every extension K of k, there is a regular completion CK of XK

which is not necessary the base change CK (if K is not a separable extension of k,
then CK can be no longer regular). So there is an exact sequence

0 → Pic0
(
CK
)
→ Pic(XK) → m(XK)Z/pr(XK )Z→ 0.

This motivates the study of Pic0C/k which is going to be done in Section 4.
Before that in Section 3 we are going to gather some results on the Picard functor
that will be used in Section 4.
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2.2 Proof of the main theorem

Theorem 2.4. Let X be a non trivial form of A1
k.

(i) Pic(X) is pn(X)-torsion.

(ii) If X has a k-rational point (e.g. X is a form of Ga,k or k = ks), then
Pic(X) 6= {0}.

Proof. (i) Let n be n(X). The nth relative Frobenius morphism Fn
X : X → X(pn)

is a finite surjective map of degree pn, we will denote it f . Let Z be a cycle
of codimension 1 on X, then f∗Z is a cycle of codimension 1 on X(pn) [Liu06,
Cor. 8.2.6]. A direct consequence of the definition of f is that f is injective on
topological spaces, so f∗f∗Z = deg(f)Z = pnZ [Liu06, Pro. 7.1.38]. Moreover
X(pn) ∼= A1

kp−n , so f∗Z = 0 in Pic
(
X(pn)

)
. Thus f∗f∗Z = pn(X)Z = 0 in Pic(X),

and the group Pic(X) is of pn(X)-torsion.
(ii) If there is a k-rational point on X then m(X) = 1. By hypothesis X is a non

trivial form of A1
k, so P∞ is a non k-rational purely inseparable point (Remark 1.17),

and Z[P∞] is a strict subgroup of Pic(C). So Pic(X) is non trivial.

We will now use the arguments of the proof of Theorem 2.4 (i) to obtain an
upper bound on the torsion of other Picard groups.

Let Y be an affine geometrically integral algebraic variety of dimension d.
First, remark that the definition of the nth relative Frobenius morphism stated
in Subsection 1.1 extends to the setting of every affine k-scheme. So in particular,
Fn
Y : Y → Y (pn) is well defined and is a finite morphism of degree pdn. Next, let

n(Y ) be the smallest non-negative integer n such that Y (pn) ∼= Ad
kp−n (if it exists).

This notation coincides with that of Subsection 1.1 if Y is a form of A1
k.

Lemma 2.5. The integer n(Y ) is well defined in the following cases:

(i) Y is a smooth connected unipotent algebraic group.

(ii) Y is a form of A2
k.

Proof. For (i) see [DG70, Cor. IV § 2 3.9] and [DG70, Th. IV §4 4.1]. For (ii) see
[Kam75, Th. 3].

The following proposition is obtained by arguing as in the proof of Theo-
rem 2.4 (i).

Proposition 2.6. (i) Let U be a smooth connected unipotent algebraic group, let
d be the dimension of U . Then Pic(U) is of pdn(U)-torsion.

(ii) Let Y be a form of A2
k. Then Pic(Y ) is of p2n(Y )-torsion.

(iii) Let k be separably closed, let d ∈ N∗, and let Y be a form of Ad
k. Then Pic(Y )

is of pdn(Y )-torsion.

Remark 2.7. Let d > 3, and let Y be a form of Ad
k. It is not known if there is a

purely inseparable extension k′/k such that Yk′
∼= Ad

k′ .
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2.3 Examples of forms of the affine line with trivial

Picard group

First, we give an explicit example of a form of A1
k with trivial Picard group.

Lemma 2.8. Let k = F2(t, u) and let X be the form of A1
k defined by the equation

y2 = u+ x+ tx2, then X(k) = ∅ and Pic(X) is trivial.

Proof. In order to show that X(k) = ∅, it is enough to show that the only solution
of P 2 = uQ2 + QR + tR2, where P,Q,R ∈ F2[t, u] is trivial. We denote deg the
total degree of a polynomial. If deg(Q) 6= deg(R), for example deg(Q) < deg(R),
then

deg(P 2) = deg(uQ2 +QR+ tR2) = 1 + 2deg(R).

So deg(P 2) is odd, contradiction. So deg(Q) = deg(R) and the monomials of
highest degree of uQ2 and tR2 must cancel (if they don’t cancel we have the same
contradiction). But this is impossible because the monomial of highest degree of
uQ2 has an odd partial degree in u whereas the monomial of highest degree of tR2

has an even partial degree in u.
After a field extension to ks, by Proposition 1.12 Xks is isomorphic, as a scheme,

to the non trivial form of Ga,ks of equation y2 = x+ tx2. We have seen in Exam-
ple 1.19 that the regular completion of this form of Ga,ks is P1ks, so by uniqueness
of the regular completion Cks

∼= P1ks . Then Pic0Cks/ks
is trivial, and Pic0C/k too. By

[BLR90, Th. 9.3.1], Pic0(C) is a subgroup of Pic0C/k(k), hence trivial.
Moreover X has no k-rational point so according to a theorem by T. A. Springer

[EKM08, Cor. 18.5] X has no rational point on any extension of odd degree. Thus
deg : Z[P∞]

∼
→ Pic(C), and by exactness of the sequence (2.1.1), Pic(X) is trivial.

Remark 2.9. The regular completion of the form consider in Lemma 2.8 is a non
trivial form of P1k.

We will now construct a family of forms of the affine line with trivial Picard
group. Let G be a non trivial form of Ga,k, by Theorem 1.8 there is an exact
sequence:

0 → G → G2
a,k → Ga,k → 0.

Let η be the generic point of Ga,k, then η = Spec(k(t)) and comes with a map
η → Ga,k. We denote X the fibre product G2

a,k ×Ga,k
η.

Proposition 2.10. With the above notation X is a non trivial form of A1
k(t) and

Pic (X) is trivial.

Proof. The morphism G2
a,k → Ga,k is a G-torsor. So X → η is a Gk(t)-torsor, and

in particular a form of A1
k(t). Let K be a separable closure of k(t), then GK is

still K-wound (K/k(t) and k(t)/k are separable extensions, and being wound is not
changed by separable extension [CGP15, B.3.2]). By definition of k-wound, GK is
a non trivial form of A1

K . Moreover XK is an homogeneous space under GK , so
XK is a non trivial form of A1

K and in particular X is a non trivial form of A1
k(t).

Finally, at the algebraic level the morphism X → G2
a,k is the localisation mor-

phism
k[x, y] → k[x, y]⊗k[T ] k(T ),
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where T = yp
n
−
(
x+ a1x

p + · · ·+ amxp
m)

is a polynomial that defines G. Then
Pic(G2

a,k) ։ Pic(X) [Bou06, Chap. 7 §1 n°10 Pro. 17], thus Pic (X) is trivial.

Remark 2.11. Let k be an imperfect field, with the construction of Proposition 2.10
we have an example of a non trivial form of A1

k(t) with trivial Picard group.

Let G be a smooth affine algebraic group, we recall that G is said to be special
if for any field extension K of k, any GK -torsor X → Spec(K) is trivial.

J.-P. Serre initiated the study of special groups over an algebraically closed field
in [Ser58] and A. Grothendieck classified these groups [Gro58]. More recently J.-L.
Colliot-Thélène and J.-J. Sansuc characterised special tori over an arbitrary field
[CS87, Pro. 7.4], and M. Huruguen characterised the special reductive groups over
an arbitrary field [Hur16, Th. 4.1]. It is known that Ga,k is special, by the arguments
of [Ser58, 4.4.a], and more generally that every smooth connected k-split unipotent
algebraic group is special. D. T. Nguyễn showed, under a mild assumption on the
base field, that a smooth unipotent algebraic group is special if and only if it is
k-split [Ngu13, Cor. 6.10]. In an unpublished note he generalised the result to an
arbitrary base field [Ngu16]. We are going to show this result, in the particular
case of the forms of Ga,k, by using a different method; we see it as a corollary of
our main Theorem 2.4 and Proposition 2.10:

Corollary 2.12. Let G be a non trivial form of Ga,k, then the Gk(t)-torsor
X → Spec(k(t)) of Proposition 2.10 is non trivial, thus G is not special.

Proof. Assume that X → Spec(k(t)) is a trivial Gk(t)-torsor, then in particular
Pic(X) ∼= Pic(G). But this is impossible since Pic(G) is not trivial (Theorem 2.4),
while Pic(X) is trivial (Proposition 2.10).

3 Cocartesian diagram and Picard functor

The main result of this Section is Theorem 3.8, it is stated and proved in Sub-
section 3.3. In Subsection 3.1 we gather some auxiliary results on the unit group
scheme, in Subsection 3.2 we show Proposition 3.7 that is the main tool for the
proof of Theorem 3.8.

Throughout this Section S is a base scheme, we consider schemes and morphisms
over S. And if X and T are two S-schemes we will note XT for the product X×S T .

We will use this level of generality, in a future work, to study the G-torsors for
G a form of Ga,k.

3.1 Unit group scheme

Let f : X → S be a proper morphism, flat and of finite presentation. The functor

Sch/S◦ → Rings
T 7→ O(XT )

is represented by a S-scheme VX which is smooth if and only if f is cohomologically
flat in dimension 0 [BLR90, Cor. 8.1.8] (i.e. the formation of f∗(OX) commutes
with base change). Moreover the functor

Sch/S◦ → Groups
T 7→ O(XT )

∗
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is represented by an open sub-scheme µX of VX , so it is an S-group scheme [BLR90,
Lem. 8.1.10] .

An important particular case is the following, let k be a field of arbitrary char-
acteristic, let A be a k-algebra of finite dimension (as a k-vector space), then the
group functor

k − algebras → Groups
R 7→ (A⊗k R)∗

is represented by an affine smooth commutative connected algebraic group denoted
µA whose Lie algebra is A with the trivial bracket [DG70, II §1 2.3].

Remark 3.1. Let k be a field of arbitrary characteristic, then µk is the multiplicative
group Gm,k.

More generally if A is a k-algebra of finite dimension, then µA = RA/k(Gm,A),
where RA/k is the Weil restriction.

Remark 3.2. Let A ⊂ A′ be two k-algebras of finite dimension. The inclusion
f : A →֒ A′ induces a morphism of algebraic groups f∗ : µA → µA′

which is
injective on k-rational points and induces an injection on the Lie algebras. So
the scheme theoretic kernel of f∗ is trivial, and f∗ is a closed immersion [DG70,
II §5 5.1].

The co-kernel of f∗ is a smooth commutative connected affine algebraic group
denoted µA′/A.

Lemma 3.3. Let k be a field of arbitrary characteristic.
(i) Let A be a local k-algebra, of finite dimension. Let M be the maximal ideal

of A and K the residue field of A. We have an exact sequence of algebraic groups

0 → 1 +M → µA → µK → 0

where 1 +M is a k-split smooth connected unipotent algebraic group.
Moreover if the residue field K is k, this sequence has a unique splitting and we

have a canonical isomorphism µA ∼= (1 +M)×k µ
k.

(ii) Let A ⊂ A′ be two local k-algebras, of finite dimension and having the same
residue field K, then µA′/A is a k-split smooth connected unipotent group.

Proof. (i) First we look at the composition series associated to the k-sub-algebras
k ⊕ Mn, the successive quotients are vector groups associated with the k-vector
spaces Mn/Mn+1. So 1 +M is a k-split unipotent algebraic group.

The quotient map p : A ։ A/M ∼= K induces a morphism of algebraic groups
µA → µK , then µA(k) ։ µK(k), so µA → µK → 0 is exact and the kernel of
µA → µK is 1 +M .

Moreover if K = k, then A = k ⊕ M and the inclusion k ⊂ A is the unique
morphism k → A. So there is a unique section of the morphism µA → µk, and
µA ∼= (1 +M)×k µ

K canonically.
(ii) According to (i), the rows of the commutative diagram below are exact.

0 // 1 +M //

��

µA //

��

µK //

��

0

0 // 1 +M ′ // µA′
// µK // 0.

So there is an isomorphism µA′/A = µA′

/µA ∼= (1 + M ′)/(1 + M). In particular
µA′/A is a k-split unipotent group (as a quotient of a split unipotent group [Bor12,
Th. V.15.4]).
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Remark 3.4. Let k be a field of positive characteristic.
Let A ⊂ A′ be two local k-algebras of finite dimension, with residue fields K and

K ′, then µA′/A is not necessary k-split. For example, if A = K = k and A′ = K ′

is a purely inseparable extension of finite degree of k, then according to [Oes84,
Lem. VI.5.1] µK/k is k-wound.

3.2 Rigidified Picard functors

The main result of this Subsection is the exact sequence (3.2.1) which relates the
Picard functor and the rigidified Picard functor.

Let X → S be a proper, flat morphism of finite presentation.

Definition 3.5. Following [BLR90] we will define the rigidified Picard functor.
First we define a sub-scheme Y ⊂ X which is finite, flat, and of finite presentation
over S, to be a rigidificator (also called rigidifier) of PicX/S if for all S-schemes T the
map O(XT ) → O(YT ) induced by the inclusion of schemes YT → XT is injective.

Let Y be a rigidificator of PicX/S , a rigidified line bundle on X along Y is by
definition a pair (L, α) where L is a line bundle on X and α is a isomorphism
OY

∼
→ L|Y .
Let (L, α) and (L′, α′) be two rigidified line bundle on X along Y . A morphism

of rigidified line bundle f : (L, α) → (L′, α′) is a morphism of line bundle f : L → L′

such that f|Y ◦ α = α′.
We can now define the rigidified Picard functor as the functor

(PicX/S , Y ) : (Sch/S)0 → (Set)

which associates to the S-scheme T the set of isomorphisms of rigidified line bundles
on XT along YT .

There is a map

δ : µY → (PicX/S , Y )

a ∈ O(Y ×S T )∗ 7→ (OX×ST ,multa)

where the map multa : OX×ST
∼
→ OX×ST is the multiplication by a ∈ O(Y ×S T )∗.

There is also a map (PicX/S , Y ) → PicX/S which forgets the rigidification and
whose kernel is the image of δ.

According to [Ray70, Pro. 2.1.2] and [Ray70, Pro. 2.4.1], the sequence

0 → µX → µY → (PicX/S , Y ) → PicX/S → 0

is an exact sequence of sheaves for the étale topology.
Under the above hypotheses we can apply [Ray70, Th. 2.3.1], so the rigidified

Picard functor (PicX/S , Y ) is represented by an algebraic space of finite presentation
on S.

In Remark 3.6 and in Proposition 3.7 we will present particular cases where
(PicX/S , Y ) is represented by an S-group scheme.

Remark 3.6. Let X → S be cohomologically flat in dimension 0, then PicX/S is
represented by an S group scheme locally of finite type. Moreover if S is a field,
then (PicX/S , Y ) is represented by a S-group scheme locally of finite type [Art69,
Lem. 4.2].

17



Proposition 3.7. Let X → S be a projective flat morphism of finite presentation,
with geometrically integral fibres and let Y ⊂ X be a rigidificator. Then,

(i) The quotient µY /µX is represented by an affine, flat S-group scheme of finite
presentation.

(ii) The functor (PicX/S , Y ) is represented by an S-group scheme, locally of finite
presentation.

(iii) The sequence

0 → µY /µX → (PicX/S , Y ) → PicX/S → 0 (3.2.1)

is an exact sequence of S-group schemes, locally of finite presentation.

Proof. The Picard functor PicX/S is represented by a separated S-scheme lo-
cally of finite presentation [BLR90, Th. 8.2.1]. Moreover µX = Gm,S and
µY = RY/S(Gm,Y ), so the S-group scheme µY is affine [DG70, Pro. I §16.6]. Accord-
ing to [SGAIII2, Th. VIII.5.1], the quotient µY /µX is an affine S-scheme (µX → µY

is an immersion [BLR90, Pro. 8.1.9], so Gm,S acts freely on µY ). In addition µY is
smooth and of finite presentation over S [BLR90, Pro. 7.6.5], so µY /µX is accord-
ing to [SGAIII2, Pro. 8.5.8] of finite presentation on S and according to [EGAIV2,
Cor. 2.2.11 (ii)] µY /µX → S is faithfully flat.

We are going to show that µY /µX is an S-group scheme. Let m′ : µY ×µY → µY

be the multiplication and p : µY → µY /µX be the quotient. Then we have a
morphism p ◦m′ : µY × µY → µY /µX which is µX ×µX-invariant. So according to
[SGAIII2, Th. VIII.5.1], the quotient (µY ×µY )/(µX ×µX) exists. By the universal
property of the categorical quotient (the torsors are categorical quotients [MFK94,
Pro. 0.1]), there is a unique morphism m such that the diagram

µY × µY p×p
//

p◦m′

))R
RR

RR
RR

RR
RR

RR
R

(µY × µY )/(µX × µX)

m
��

µY /µX

is commutative. Moreover (µY × µY )/(µX × µX) = µY /µX × µY /µX , so we have
shown that there is a morphism m : µY /µX × µY /µX → µY /µX . Likewise, there
are two morphisms e : S → µY /µX and i : µY /µX → µY /µX . We only have to
remark that by the universal property of quotients, the diagrams

µY /µX × µY /µX × µY /µX m×id
//

id×m
��

µY /µX × µY /µX

m
��

µY /µX × µY /µX m // µY /µX ,

µY /µX e×id
//

id ''P
PP

PP
PP

PP
PP

P
µY /µX × µY /µX

m
��

µY /µXid×e
oo

idwwnn
nn
nn
nn
nn
nn

µY /µX
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and

µY /µX id×i
//

e◦f ''P
PP

PP
PP

PP
PP

P
µY /µX × µY /µX

m
��

µY /µXi×id
oo

e◦fwwnn
nn
nn
nn
nn
nn

µY /µX

(where f is the structural morphism of µY /µX) are commutative. Thus we have
shown (i).

Let us show (ii). The morphism (PicX/S , Y ) → PicX/S is a µY /µX-torsor
[DG70, Cor. III §4 1.8]. The S-group µY /µX is affine, so by [DG70, Pro. III §4 1.9
a)] (PicX/S , Y ) is represented by a S-scheme. Moreover recall that (PicX/S , Y ) is
an algebraic space [Ray70, Th. 2.3.1]. A consequence of [BLR90, Pro. 8.3.5] is that
the morphisms of algebraic spaces between two schemes are exactly the morphisms
of schemes.

There is only (iii) left, according to [DG70, Cor. III §4 1.7] and [DG70, Cor. III
§1 2.11] if the morphism (PicX/S , Y ) ×PicX/S

(PicX/S , Y ) → (PicX/S , Y ) is faith-
fully flat of finite presentation, then (PicX/S , Y ) → PicX/S has the same property.
According to [DG70, III §1 2.4],

(PicX/S , Y )×PicX/S
(PicX/S , Y ) ∼= (PicX/S , Y )×S µY /µX .

Moreover we have already shown that µY /µX → S is faithfully flat of finite pre-
sentation, so

(PicX/S , Y ) → PicX/S

is also faithfully flat of finite presentation.
To conclude we remark that

(PicX/S , Y )×PicX/S
(PicX/S , Y ) ∼= (PicX/S , Y )×S µY /µX

so µY /µX is the kernel of (PicX/S , Y ) → PicX/S , hence (iii).

3.3 An exact sequence of Picard schemes

Theorem 3.8. Let
Y ′ v //

g

��

X ′

f
��

Y
u // X

be a commutative square of S-schemes, cocartesian in the category of ringed spaces.
We make the following hypotheses:

(i) The morphisms u and v are closed immersions, the morphisms g and f are
affine.

(ii) The structural morphisms X → S and X ′ → S are projective, flat of finite
presentation with geometrically integral fibres .

(iii) Y is a rigidificator of PicX/S, and likewise Y ′ is a rigidificator of PicX′/S.

Then the sequence

0 → µY → µY ′

→ PicX/S → PicX′/S → 0 (3.3.1)

is an exact sequence of S-group schemes locally of finite presentation.
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Proof. According to Proposition 3.7, the commutative diagram

0 // µX

��

// µY

��

// (PicX/S , Y )

f∗

��

// PicX/S
//

��

0

0 // µX′
// µY ′

// (PicX′/S , Y
′) // PicX′/S

// 0

is a diagram of S-group schemes with exact lines. By [Bri14, Lem. 2.2] f∗ is an
isomorphism, and µX ∼= µX′ ∼= Gm,S. So by diagram chasing the sequence (3.3.1)
is exact.

4 Picard functor of the regular completion

4.1 Torsion of the Picard functor

Let X be a form of A1
k, let C be the regular completion of X. Let K be a field

such that the regular completion of XK is P1K (e.g. K = k′ or K = kp
−n′(X)

, n′(X)
being the integer defined in 1.3). The base change CK is not necessary normal,
but the normalisation of CK is P1K because it is the regular completion of XK , and
the regular completion is unique up to unique isomorphism. Let π : P1K → CK

be the normalisation. Following [Fer03] we show how CK is obtained from P1K via
"pinching".

Let C be the conductor of OCK
in OP1K , i.e. the sheaf of ideals of π∗OP1K given

by:
C(U) =

{
a ∈ OP1K

(π−1(U)) | a.OP1K
(π−1(U)) ⊂ OCK

(U)
}

for any open sub-scheme U of CK .
Then C is also a sheaf of ideals of OCK

. Let Y K be the closed sub-scheme of CK

associated to the sheaf of ideals C. Then CK is regular outside of P∞, so π induces
an isomorphism between CK \ P∞ and P1K \ ∞ (where P∞ is the unique point of
CK \XK , and ∞ is the unique point of P1K above P∞). So as a set, Y K is the point
P∞ and by construction there is a closed immersion Y K → CK . Finally let ZK be
the fibre product Y K ×CK

P1K .
We have obtained a commutative diagram of K-varieties:

ZK //

��

P1K

π

��

Y K // CK .

(4.1.1)

By construction the diagram (4.1.1) is cartesian, in fact according to the scholium
[Fer03, 4.3] the diagram is also cocartesian.

First we will explicit Y K and ZK . The morphism π induces a morphism of local
rings π#

P∞

: OCK ,P∞
→ OP1K ,∞ which is the normalisation. Let C be the conductor

of OCK ,P∞
in OP1K ,∞, i.e.

C =
{
x ∈ OP1K ,∞ | x.OP1K ,∞ ⊂ OCK ,P∞

}
= CP∞

.

we then have explicitly ZK = Spec(OP1K ,∞/C) and Y K = Spec(OCK ,P∞
/C).
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By construction the cocartesian diagram (4.1.1) satisfies the hypotheses of The-
orem 3.8. Thus we have an exact sequence of locally algebraic groups over K:

0 → µZK/Y K
→ PicCK/K → PicP1K/K → 0.

The neutral component of PicP1K/K is trivial and µZK/Y K
is connected. So we have

an isomorphism of algebraic groups over K:

Pic0CK/K
∼= µZK/Y K

.

In particular Pic0CK/K is smooth.

Remark 4.1. If K = k′, then according to Lemma 3.3, the algebraic group µZK/Y K

is k′-split unipotent, so Pic0Ck′/k
′ is k′-split unipotent.

And if we look at points over k we have the following isomorphisms:

Pic0CK/K(k) ∼= µZK/Y K
(k) =

µZK
(k)

µY K (k)
=

(
k ⊗k

O
P1
K

,∞

C

)∗

(
k ⊗k

OCK,P∞

C

)∗ . (4.1.2)

Lemma 4.2. If K = kp
−n′(X)

, then the algebraic group µZK/Y K
is of pn

′(X)-torsion.

Proof. µZK/Y K
is a smooth algebraic group, so it is enough to show that the group

of k-points µZK/Y K
(k) is of pn

′(X)-torsion.
Let n be a non-negative integer, then κ

(
X(pn)

)
= k⊗k κ(X) (where k is seen as

a k-algebra via the Frobenius morphism ϕn
k). By definition of C we have κ(X) =

κ(C), take n = n′(X); then κ
(
X(pn)

)
= κ(P1K). Thus, κ

(
P1K
)
= k ⊗k κ(C). With

this identification, the image of ϕn
κ(P1K)

: x ∈ κ
(
P1K
)
7→ xp

n
∈ κ

(
P1K
)

is contained

in κ(C).
The discrete valuation ring OP1K ,∞ is defined by the valuation mult∞ on κ

(
P1K
)
,

and mult∞ is an extension of the valuation multP∞
on κ(C). If x ∈ OP1K ,∞, then

of course xp
n
∈ OP1K ,∞; and we have shown that xp

n
∈ κ(C), so xp

n
∈ OC,P∞

⊂
OCK ,P∞

.
So according to the equation (4.1.2) µZK/Y K

(k) is of pn
′(X)-torsion.

To conclude we have shown the following result:

Proposition 4.3. The algebraic group Pic0C/k is unipotent of pn
′(X)-torsion, and

Pic0Ck′/k
′ is k′-split.

4.2 Application to the Picard functor of the regular

completion

Theorem 4.4. Let X be a form of A1
k and C be the regular completion of X.

Then Pic0C/k is a smooth connected unipotent algebraic group of pn
′(X)-torsion

which is k-wound and splits over k′ (the smallest field such that Xk′
∼= A1

k′).
Moreover if X is a principal homogeneous space for a form G of Ga,k, then

dim Pic0C/k 6
(pmin(n,m) − 1)(pmax(n,m) − 2)

2

21



where n = n(G) and m is the smallest integer such that G is defined by an equation
of the form yp

n
= x+ a1x

p + · · ·+ amxp
m

.
In addition if X is a non trivial form of Ga,k and p 6= 2, then k′ is the minimal

field extension of k such that Pic0C/k splits over k′.

Proof. The assertion on the torsion and the fact that Pic0C/k is unipotent and splits
over k′ are direct consequences of Proposition 4.3. According to [BLR90, Pro. 8.4.2]
Pic0C/k is smooth and by [BLR90, Th. 8.4.1], dim PicC/k = dimk H1(C,OC ) =

pa(C). The variety C is normal and geometrically integral, so according to [BLR90,
Pro. 9.2.4] and [CGP15, Pro. B.3.2] the unipotent algebraic group Pic0C/k is k-
wound.

In the case where X is a principal homogeneous space for a form G of Ga,k,
the assertion on the dimension of Pic0C/k is a direct consequence of Corollary 1.25,
in view of the fact that Cks is still regular [EGAIV2, Cor. 6.14.2] and that the
arithmetic genus is invariant by field extensions.

We will now show the last assertion. Let K be a field such that k ⊂ K  k′,
we will show that the unipotent group Pic0C/k does not split on K, or equivalently
that Pic0CK/K is not split. First of all if CK is normal, then the unipotent group
Pic0CK/K is wound, so in particular it is not split. Else let g : CK → CK be the
normalisation of CK . We are going to make the same conductor base construction
as in Subsection 4.1. Let C be the conductor of OCK

in OCK i.e. the sheaf defined
by:

C(U) =
{
a ∈ OCK

(
g−1(U)

)
| a.OCK

(
g−1(U)

)
⊂ OCK

(U)
}
.

Then C is a sheaf of ideals of OCK
, and of OCK . Let Y be the closed sub scheme

of CK defined by the sheaf C, let Z be the fibre product Y ×CK
CK. Then we have

a cocartesian square of K-varieties:

Z //

��

CK

g

��

Y // CK

which satisfies the hypotheses of Theorem 3.8. So we have an exact sequence of
algebraic groups over K

0 → µZ/Y → Pic0CK/K → Pic0CK/K → 0.

By hypothesis K  k′ and p > 2, so CK is not isomorphic to P1K (else according
to Lemma 1.18, we would have XK

∼= Ga,K). Thus Pic0CK/K is a non trivial K-
wound algebraic group. Every morphism from a connected smooth unipotent split
algebraic group to a connected smooth unipotent wound algebraic group is trivial
[CGP15, B.3.4], thus Pic0CK/K is not K-split.

4.3 Rigidified Picard functor

Let X be a form of A1
k, let C be the regular completion of X and let P∞ be the

unique point of X \ C (Lemma 1.1).
A geometric invariant of X is the rigidified Picard functor (PicC/k, Y ) where

Y ⊂ C is a rigidificator of PicC/k. In fact the rigidified Picard functor has the
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remarkable property of being "invariant by cocartesian square", i.e. if

Y ′ v //

g

��

X ′

f
��

Y
u // C

is a commutative diagram of rigidificators, cocartesian in the category of ringed
spaces, then according to [Bri14, Lem. 2.2], f∗ : (PicC/k, Y ) → (PicX′/k, Y

′) is an
isomorphism.

According to Proposition 3.7 the sequence

0 → µY /µC → (PicC/k, Y )0 → Pic0C/k → 0

is an exact sequence of algebraic groups.

Proposition 4.5. If Y = Spec(κ(P∞)), then Y is a rigidificator of C and
(PicC/k, Y )0 is a unipotent k-wound algebraic group which splits over k′.

Proof. The algebraic group µC is isomorphic to Gm, so µY /µC ∼= µκ(P∞)/k is a
unipotent algebraic group which is k-wound according to Remark 3.4, and which
splits over κ(P∞) ⊂ k′. The group Pic0C/k is k-wound unipotent and splits over
k′ according to Theorem 4.4. So the algebraic group (PicC/k, Y )0 is an extension
of two k- wound algebraic groups, so (PicC/k, Y )0 is a k-wound unipotent group
[Oes84, V.3.5]. Moreover µκ(P∞)/k and Pic0C/k split over k′, so (PicC/k, Y )0 also
splits over k′.
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