Schertz style class invariants for quartic CM fields
Résumé
A class invariant is a CM value of a modular function that lies in a certain unram-ified class field. We show that Siegel modular functions over $Q$ for $Γ^0 (N) ⊆ Sp_4 (Z)$yield class invariants under some splitting conditions on N. Small class invariants speed up constructions in explicit class field theory and public-key cryptography. Our results generalise results of Schertz's from elliptic curves to abelian varieties and from classical modular functions to Siegel modular functions.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|