
HAL Id: hal-01377336
https://hal.science/hal-01377336v1

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Free and Open Source Film Projection for
Digital Cinema

Nicolas Bertrand, Jean-Denis Durou, Vincent Charvillat, Carsten Griwodz

To cite this version:
Nicolas Bertrand, Jean-Denis Durou, Vincent Charvillat, Carsten Griwodz. Toward Free and Open
Source Film Projection for Digital Cinema. EUROMEDIA 2015, Apr 2015, Lisbonne, Portugal. pp.
1-6. �hal-01377336�

https://hal.science/hal-01377336v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15276

The contribution was presented at EUROMEDIA 2015 :
https://www.eurosis.org/cms/index.php?q=node/3054

To cite this version : Bertrand, Nicolas and Durou, Jean-Denis and Griwodz,
Carsten and Charvillat, Vincent Toward Free and Open Source Film Projection
for Digital Cinema. (2015) In: EUROMEDIA 2015, 27 April 2015 - 29 April
2015 (Lisbonne, Portugal).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

TOWARD FREE AND OPEN SOURCE FILM PROJECTION
FOR DIGITAL CINEMA

Nicolas Bertrand

Jean-Denis Durou

Vincent Charvillat

IRIT, UMR CNRS 505

Toulouse, France

E-mail: nicolas.bertrand@isf.cc

Carsten Griwodz

Simula Research Laboratory

Oslo, Norway

E-mail: griff@simula.no

KEYWORDS
Image Compression, Digital Cinema, JPEG2000, Open Source, VLC,
libavcodec.

ABSTRACT
Cinema industry has chosen Digital Cinema Package (DCP) as encod-
ing format for the distribution of digital films. DCP uses JPEG2000
for video compression. An efficient implementation of coding and
decoding for this format is complex, however. Currently deployed
equipment is expensive and has high maintenance costs, preventing
art-house cinema theaters from acquiring it. Therefore, we conduct
this research activity in cooperation with Utopia cinemas, a group of
art-house cinemas, whose main requirement (besides functional ones)
is to provide Free and Open Source Software (FOSS). This paper
presents a solution that achieves real-time JPEG2000 decoding and
DCP presentation based on widespread open source multimedia tools,
namely VLC and libavcodec library. We present the improvements
that were made in VLC to support the DCP packaging format, as well
as details on JPEG2000 decoding inside libavcodec (optimization and
lossy decoding). We also evaluate the performance of the decoding
chain.

I. INTRODUCTION

Cinema theaters switched from 35 mm prints to digital

era. The Digital Cinema System Specification (DCSS) [1],

provided by the Digital Cinema Initiative (DCI), is now

a world-wide standard. The specification describes how to

create, distribute and project a Digital Cinema Package (DCP).

It requires JPEG2000 as intra-frame codec for video, WAV for

audio, and XML for subtitles. Image dimensions are specified

for 2K and 4K, with three 12-bit color components sequenced

with a frequency of at least 24 fps (frames per second). The

DCP size is typically about 80–200 GB according to film

duration or compression ratio.

Our research is conducted in collaboration with Utopia

cinemas (five independent theaters in France). Those theaters

initiated this project because they need to understand the im-

plications of changing to digital. Primarily, they are concerned

about becoming dependent on a single company’s technology

for presentation, and want us to provide Free and Open Source

Software (FOSS) for decoding films distributed in the DCP

format.

The JPEG2000 [2] format was selected by DCI for video

compression because of its compression efficiency. The imple-

mentation of a fast JPEG2000 encoder and decoder, however,

is complex. Commercial equipment currently used by cinemas

relies on VLSI hardware for decompressing DCP at the

required frame rate. This kind of equipment is expensive,

and not affordable for art-house cinema theaters. Our research

goal is to lower the cost for DCP playback by developing a

software that runs on today’s standard off-the-shelf hardware.

There are already software solutions, such as Kakadu [3]

and EasyDCP [4] for real-time JPEG2000 decompression,

but these are not FOSS solutions. Kakadu is a JPEG2000

coder/decoder that supports all kinds of JPEG2000 profiles,

but cannot playback DCP. EasyDCP is dedicated to DCP

playback and can play DCP in real-time, but as Kakadu, the

software is not FOSS.

Our selection of VLC (Video LAN Client) as the basis for

our DCP decoder is due to its position as a FOSS solution

with high flexibility, performance and proliferation. We have

implemented a DCP module inside VLC, and a JPEG2000

decoder inside the libavcodec multimedia library (used by

VLC).

In the next section, we review current fast software imple-

mentations for JPEG2000 decoding. Then, we present our pro-

jection system called OpenSMS (Screen Management System)

in Section III. In Section IV we present the VLC architecture,

and the design of our module. The JPEG2000 decoder (named

J2K-libavcodec) implementation is detailed in Section V. In

Section VI, validation and performance measurements of our

solution are presented.

II. STATE OF THE ART – THE PROBLEM

The key point for DCP playback is to reach a frame rate

of 24 fps with synchronized playout of audio, video and

subtitles. The bottleneck for achieving this is the computa-

tional complexity of JPEG2000 decoding. Overcoming it in

software requires parallel computation, and there are currently

three dominant approaches to this: the use of multi-threading

and processor-specific multimedia extensions like Streaming

SIMD Extensions (SSE), the use of GPGPU, or a combination

thereof. For example, Taubman [5] relies on multi-threading

and SSE, the patented EasyDCP [6] relies on GPGPU to

present a GOP (Group Of Pictures) approach based on sim-

ilarity between codeblocks to avoid latency, Le [7] mixes

both approaches. Le [8] and Matela [9] explain proposals

for parallelizing EBCOT using GPGPU. Taubman [5] shows

that a decompression of 24 fps can be achieved with multi-

threading and SSE instructions. This solution is implemented

in Kakadu. Avoiding GPGPU reduces the decoder’s complex-

ity and hardware dependence; the dependency on NVIDIA

hardware due to the use of CUDA is a limitation of solutions

by Le [8] and Matela [9]. Although OpenCL [7] is meant

to be platform-agnostic, detailed hardware-specific tuning is

required to achieve a high performance.

Another way to reduce the decompression time is to

not completely decode all the compressed bitstream. In

Jimenez [10], a method for visually lossless decompression

is presented. The method is based on a perceptual model de-

signed by the authors for compression. The proposed strategy

is as follows for each codeblock: extract the most significant

bitplanes from the codeblock header, compute a Visibility

Threshold (VT), based on variance estimation and the author’s

perceptual model. Then, during codeblock’s decompression,

at each coding pass an error is compared to VT. If the

error is lower than VT, remaining coding passes are skipped.

Kakadu also proposes an option called “bitstream truncation”

to achieve better decompression performance by stripping

away coding passes.

We decided to implement a decoding solution that combines

multi-threading, SSE instructions and basic skip of coding

passes for least significant bitplanes codeblock’s coefficients.

This decoding technique is a key component of our alternative

projection system.

III. PROJECTION SYSTEM

The standard DCI projection system and our OpenSMS are

juxtaposed in Figure 1. Our goal is not to propose a new

projection system, but to provide a simpler version of an

existing one. Table I presents the features of both systems.

A DCI projection system is composed by a storage device

(where the DCPs are ingested), connected to an Integrated

Media Block (IMB) via a PCI-Express link. The IMB is in

charge of media decryption and decompression. Plain decoded

images are sent to the projector, the sound processor receives

the plain audio channels.

TABLE I: DCI Projection System Features Compared to OpenSMS.

Feature DCI OpenSMS

Picture Size 2K 2K interpolated

DCP 4K Support Yes Yes †

Picture Depth 12 bits 10 bits

Sound PCM 24 bits PCM 24 bits

Subtitle Yes Yes

DCP Decryption Yes Yes

Security Manager Yes No

Physical Security Yes No

Secure Logging Yes No

Forensic Watermarking Yes No
†To Be Implemented

Our OpenSMS system is composed by an off-the-shelf

hardware and an “e-cinema” projector (Barco RLMW8, using

tri-DLP as DCI projectors). For our system validation, we have

defined two hardwares: a laptop with a quad core Intel i7 and

for better performance, a bi-Xeon with 12 cores. The hardware

and the projector are connected via a HDMI link, using HDCP

encryption.

We have also decided to not implement all the security

requirements described in specification [1]. The main reason is

to reduce the system complexity and we think that the security

constraints do not fit with the projection policy of art-house

cinema. Nevertheless we are aware of content protection, and

plan to implement playback of encrypted DCP.

Our OpenSMS software is based on VLC and is presented

in Section IV.

After video decompression, to preserve correct color display

in a monitor or a projector, we implemented a GLSL filter

to convert from CIE 1931 XYZ to the required color space,

usually sRGB.

IV. DCP PLAYBACK IN VLC

VLC is a widespread cross-platform FOSS media player,

downloaded more than 1.4 billion times. VLC is essentially

a multimedia framework, where you can dynamically load

modules according to the input (files, network streams) and

the outputs (audio or video, on screen or network). The

framework’s core handles low-level operations like threading,

timing and synchronization. It is also in charge of pipelining

the media streams from input to output by connecting modules,

used to do the media processing work. An example of modules

loaded for the DCP case is illustrated in Figure 2. Each module

has a type according to its purpose, like access, demux, codec,

video output, . . .

VLC depends on a large number of FOSS libraries including

libavcodec.

Our first contribution is the creation of a DCP module,

VLC had not handled it so far. JPEG2000 decoding is done

by our decoder (J2K-libavcodec) implemented in libavcodec

(cf. Section V). The OpenGL module was slightly modified

to implement in GLSL the XYZ to sRGB conversion.

Next we present our module design. A DCP is a set of files

stored in a folder. DCP meta-data are stored in XML files,

while MXF containers are used to store the media essence

(video, audio, subtitles). There is at least one MXF file per

essence, but several audio and subtitles MXF files can be

stored in the folder to handle several languages.

A DCP is a container (the folder) that in turn contains

several other containers (the MXF files). Operations for access

and demux are not easily separated, so an access demux

module was judged more suitable for DCP. The essence

files are accessed via asdcplib external library. We chose this

library because it supports MXF containers and DCP essence

types, and it is popular in cinema tools. Once the essences

are extracted, VLC Elementary Streams (ES) are created, and

Fig. 1: Digital cinema Projection Systems. The DCI media block, integrated in the projector, performs decoding. Our system (OpenSMS) is not integrated,
and can be connected to all kinds of projectors, or display directly on a standard monitor.

Fig. 2: DCP Playback in VLC and libavcodec. Each box represents a VLC module, and its functionality is written in red. The arrows represent the streams
between modules.

sent to the decoders. ES, one per media, form the interface

between the demuxers and the decoders.

VLC design is highly multi-threaded, modules are executed

in separate threads. Consequently, demultiplexing, decoding

and display are executed asynchronously. The synchronization

of audio, video and subtitle is performed by a dating mecha-

nism called Presentation Time Stamps. The date is set in the

ES, through our module and the output modules use this date

to play at the right time.

Our DCP module is publicly available in VLC master

branch since December 2013.

Code for DCP VLC module is available in

git.videolan.org, stored in directory modules/access/dcp

(http://git.videolan.org/?p=vlc.git;a=tree;f=modules/access/dcp).

Even if the acceptance of the module required a painstaking

work, it was a big step towards a FOSS DCP playback

solution.

V. JPEG2000 DECODER IMPLEMENTATION

Our second contribution is a specific JPEG2000 decoder

for libavcodec, a coder/decoder multimedia library. Like

VLC, libavcodec is a FOSS and cross-platform project. Our

JPEG2000 decoder is not the only one. Libavcodec can also

use OpenJPEG library for decoding JPEG2000 files. Open-

JPEG is a FOSS library hat accepts all JPEG2000 profiles,

but is mostly aimed at coding still images. In contrast to this,

our codec is aimed at decoding JPEG2000 videos, especially

for cinema. By specializing, we can achieve smaller structures

and simpler code, avoiding OpenJPEG’s complex structure that

is required to support all JPEG2000 options.

As the decoder is intra-frame, we decided to multi-thread

the decoder at frame level with threading mechanisms pro-

vided by libavcodec primitives.

The inverse Discrete Wavelet Transform (DWT) and Main

Component Transform (MCT) was optimized with SSE in-

struction set. The SSE optimization is widely inspired from

OpenJPEG, and by focusing on structure size.

The lifting based 2D DWT is optimized by SSE instructions.

The six steps of irreversible 1D filtering (cf. chapter F.2.8.2

in JPEG2000 standard [2]) are executed through two SSE

functions. One function for the two first steps (linear com-

putes), the other for the remaining steps (nonlinear computes).

Implementing SSE instructions for MCT is easy, since it is a

matrix multiplication.

Furthermore, for decoding, we increase the performance by

Fig. 3: JPEG2000 Decoders Performance on Machine 1 (N = 5

resolution levels).

doing only once some parsing of JPEG2000 headers, as the

digital cinema profiles force many parameters.

Our J2K-libavcodec is also publicly available in libavcodec.

To get the released code clone git://git.libav.org/libav.git, the

JPEG2000 decoder is stored in libavcodec directory, the de-

coder is stored in jpeg2000* files. All the optimizations are

not yet pushed in libavcodec, but are publicly available in

our Gitorious account (clone git@gitorious.org:libav/nicoisfs-

dondiego-libav.git and checkout expev2 branch for JPEG2000

decoders with all optimizations).

The decoder evaluation and comparison with OpenJPEG is

presented in next section.

VI. EXPERIMENTAL VALIDATION

A. JPEG2000 Evaluation on libavcodec

The tests are made on two machines. Machine 1 is a laptop

with an Intel Core i7-2820QM operating at 2.30 GHz, the

processor has 4 cores for a total of 8 SMT threads (hyper-

threads in Intel terminology). Machine 2 is a bi-Xeon E5-2620

operating at 2.0 GHz. Each chip has 6 physical cores, resulting

in a total of 24 SMT threads. All tests are conducted with

hyperthreading turned on. The tests are performed according

to the number of CPU-threads and resolution levels. The tested

DCP is the trailer of Moonrise Kingdom, and all numbers refer

to decompression of the first 10 seconds (240 frames). The

movie was encoded with a bit rate of 128 Mbits/s. Moonrise

Kingdom image size is 1998× 1080 with 5 resolution levels.

The number N of resolution levels tested varies between 5

(2K format, 1998× 1080) and 4 (1K format, 999× 540).

In Figure 3, the comparison of J2K-libavcodec with Open-

JPEG is presented (Machine 1). As the CPU has 8 SMT

threads, the decoding performance with both decoders is

limited to 8 libavcodec threads. A performance decrease has

been observed if we use more libavcodec threads than the CPU

has virtual cores. In 2K neither OpenJPEG nor J2K-libavcodec

Fig. 4: JPEG2000 Decoders Performances on Machine 2 (N = 5

resolution levels).

reaches the target (red line) of 24 fps; at least our decoder

performs better. In 1K J2K-libavcodec reaches the target with

4 threads.

For Machine 2, the results are presented in Figure 4. All

decoders, regardless the resolution level, reach the target of

24 fps: J2K-libavcodec reaches the target frame rate with 12

threads, OpenJPEG with 16 threads.

The fps gain of our decoder at 1K is high. There are

two reasons. First, the image to decode is smaller (4 times

smaller than 2K), so there are less codeblocks to decode.

We cannot expect a gain close to 4 as the non-decoded

codeblocks are the high frequency ones: EBCOT encodes high

frequency codeblocks with less bits than low frequency. The

other reason is memory usage and CPU cache management.

With OpenJPEG, we achieve a gain of 1.5 between 2K and 1K,

while ours is around 2. The main reason for this difference is

memory management: we have smaller structures for decoding

data flow, resulting in a reduction of cache misses and page

faults.

TABLE II: Fps Comparison of Movies at Several Compression Bit Rates.
Run on Machine 2 with J2K-libavcodec in 2K.

Movie Bit rate 12 threads 24 threads
(Mbits/s) (fps) (fps)

Spring Breakers 201 19.05 24.62

Django Unchained 151 19.58 24.64

Moonrise Kingdom 128 27.12 33.76

Jeux d’été 79 30.34 38.28

Table II shows the evolution of the fps according to the

compression bit rate. The selected movies are DCP trailers

shown in movie theaters. The decoding is tested on the first

240 frames. As expected, lower compression bit rates lead to

higher frame rates. For Spring Breakers and Django Unchained

we have almost the same fps. Spring Breakers has many black

images and completely decoding black images is fast for a

JPEG2000 decoder.

Fig. 5: PSNR Comparison. A peak is present around frame 80; this is due to
the display of incrusted subtitles in our sample.

B. Image Quality Measurements

We present here tests of video quality measurements. The

used sample is the same as the one used for performance

measurements. The reference is the full 2K sample of Moon-

rise Kingdom. To test performance of lossy decoding, we skip

the last decoding passes of EBCOT, by this way we skip the

least significant bits of codeblocks coefficients. In Figure 5

we present the PSNR for the 240 frames of the sample. The

measures are made by skipping 5 and 20 passes, and also the

PSNR of the J2K-libavcodec with decompression at 1K and a

bicubic interpolation to reach 2K.

By visual inspection of the video with 5 passes skipped,

the image quality is acceptable for projection. With 20 passes

skipped the image quality is not acceptable. The 240 frames

are decomposed as follows: black image, 2 logos, movie

sequence, black image, and 3 movie sequences. The variation

of PSNR shows the various decomposition of the video.

For 2K interpolated during the same sequences, variations of

PSNR are observed. This is due to the incrustation of subtitles

in the input video. When PSNR goes down subtitles appear.

TABLE III: Bit Rate (in fps) at Several Resolution Levels and Several Pass
Skips for Moonrise Kingdom Sample.

N N − 1

Skip pass 0 33.21 63.16

Skip pass 5 46.08 94.71

Skip pass 20 61.26 204.08

Table III presents fps performance in pass skipping. The

test was executed on Machine 2. By skipping 5 passes, for

N and N − 1 resolution levels, a great performance gain is

achieved (respectively 40% and 50%). More gain is achieved

by skipping 20 passes, but the image quality is not acceptable.

As stated by Jimenez [10] for image quality measurement, we

confirm that visually lossless decoding is also computationally

advantageous for JPEG2000 cinema streams.

C. DCP Playback Evaluation

The full read of DCP with audio and video synchronized,

and correct color space display is made at VLC level. There

are no tools inside VLC to measure the global performance of

full decoding, only warnings or errors can be raised, indicating

for instance loss of synchronization between video and audio,

or decoding that is too slow. We used those warnings and

visual inspection of DCP to evaluate.

TABLE IV: DCP Read at 24 fps, at Several Resolution Levels. ‘Yes’
indicates that DCP is read without desynchronization.

Machine 2K 2K interpolated
(from 1K)

1 (i7 / 4 cores) No Yes

2 (bi-Xeon / 12 cores) No Yes

The evaluation results are reported in Table IV. We do not

succeed to play the DCP at full scale, even with the decoding

performances presented before. This is due to remaining work

on our VLC module (pre-caching of video and limitation to 16

threads for decoding the video). We can play in interpolated

2K format. The codec provides 1K streams to VLC, the

interpolation is made by VLC in the video output module.

The execution of the interpolation has no impact in DCP

playback (no image freeze, no audio/video desynchroniza-

tion). The samples used for those evaluations are available

in http://utopialab.tetaneutral.net/DCPsamples/ website.

VII. CONCLUSION AND PERSPECTIVES

We have compared our decoder performance with Open-

JPEG, the reference and fastest FOSS decoder. We have shown

that our decoder is faster, and outperforms OpenJPEG when

the highest frequency resolution level is skipped. Skipping

some LSB decoding passes in EBCOT provides a great im-

provement on performances.

Our future work on the decoding part will consist in

implementing multi-threading at codeblock level and further

reducing data structure size. The purpose of that is to have

piece of code that depends only on local data (i.e. no reference

to higher level data). In this way, data structure should be kept

in L1 and L2 caches during the execution and reduce the data

time access.

We need also to validate the pass skipping and the 1K to 2K

interpolation at system level to achieve that we will organize

visual perceptions tests in cinema projection room. The tests

will compare our system with current DCI projection system.

A comparison with closed-source software is more cum-

bersome and left for future work. Some performance results

for Kakadu are presented on the official website, but a direct

comparison is impossible because the sample sequences are

not provided. The sample image size is 20% smaller, but the

compression bit rate (244 Mbits/s) is twice higher than the

one from our test sequence Moonrise Kingdom. On a bi-Xeon,

Kakadu achieves a framerate of 24.24 fps (35.08 fps with the

separate ”speed pack”). In comparison, we achieve 34.04 fps

on the same kind of machine. Results for EasyDCP are not

publicly available.

As the number of cores increases in current architectures,

we expect to avoid the usage of GPGPU at decoding level.

In the overall pipeline however, we will use GPGPU, in

particular for filtering (color space change and/or image color

corrections) after decoding.

At VLC level, we need to optimize the DCP module to

handle audio, video and subtitle synchronization with video

in full resolution. Asdcplib allows management of encrypted

MXF files, so we will implement handling of encrypted DCP.

This feature will also be very useful for cinema exhibitors.

We are not far, from the point of view of performance

and functionality, from a complete FOSS solution for DCP

playback, usable by movie distributors, to preview the DCP,

and by exhibitors for DCP playback.

REFERENCES

[1] DCI, Digital Cinema System Specification, Digital Cinema Initiatives,
1.2 with errata edition, Mar. 2012.

[2] ITU-T, Information technology – JPEG2000 image coding system – Part

1: Core coding system, Aug. 2002.
[3] UNSW, “Kakadu software,” July 2013.
[4] FraunHoffer IIS, “EasyDCP software suite,” July 2013.
[5] D. Taubman, “Multithreaded processing paradigms for JPEG2000,” in

MMSP 2012, 2012, pp. 164–169.
[6] V. Bruns, H. Sparenberg, and S. Fossel, “Video decoder and methods

for decoding a sequence of pictures, patent wo 2012004164 a1,” Jan.
2012.

[7] R. Le, J.L. Mundy, and R.I. Bahar, “High Performance Parallel
JPEG2000 Streaming Decoder Using GPGPU-CPU Heterogeneous Sys-
tem,” in ASAP 2012, 2012, pp. 16–23.

[8] R. Le, I.R. Bahar, and J.L. Mundy, “A novel parallel Tier-1 coder for
JPEG2000 using GPUs,” in SASP 2011, 2011, pp. 129–136.

[9] J. Matela, M. Šrom, and P. Holub, “Low GPU Occupancy Approach
to Fast Arithmetic Coding in JPEG2000,” in LNCS 7119, pp. 136–145.
2012.

[10] L. Jimenez-Rodriguez, F. Auli-Llinas, and M.W. Marcellin, “Visually
lossless strategies to decode and transmit JPEG2000 imagery,” Signal

Processing Letters, IEEE, vol. 21, no. 1, pp. 35–38, 2014.

