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ABSTRACT

This paper introduces a Bayesian non parametric (BNP) model asso-

ciated with a Markov random field (MRF) for detecting changes be-

tween remote sensing images acquired by homogeneous or heteroge-

neous sensors. The proposed model is built for an analysis window

which takes advantage of the spatial information via an MRF. The

model does not require any a priori knowledge about the number of

objects contained in the window thanks to the BNP framework. The

change detection strategy can be divided into two steps. First, the

segmentation of the two images is performed using a region based

approach. Second, the joint statistical properties of the objects in

the two images allows an appropriate manifold to be defined. This

manifold describes the relationships between the different sensor re-

sponses to the observed scene and can be learnt from a training un-

changed area. It allows us to build a similarity measure between the

images that can be used in many applications such as change detec-

tion or image registration. Simulation results conducted on synthetic

and real optical and synthetic aperture radar (SAR) images show the

efficiency of the proposed method for change detection.

Index Terms— Change detection, Bayesian non parametric,

Markov random field, Markov chain Monte Carlo, remote sensing.

1. INTRODUCTION

Many practical applications require the joint analysis of images ac-

quired by multiple sensors. Depending on the situation (particular

features to be observed or external constraints), different kinds of

sensors can be used for imaging a scene of interest. After acquiring

the images, computing an appropriate similarity measure between

these images is an important step for change detection, image reg-

istration or database updating. The similarity measures available in

the literature are mainly devoted to images acquired by the same

kind of sensors (denoted as homogeneous images in this paper). For

instance, similarity measures designed for optical images include the

so-called difference image derived from image pixels [1–4], wavelet

coefficients [5, 6], and region based approaches using Markov Ran-

dom Fields (MRF) [7]. On the other hand, similarity measures pro-

posed for SAR images can be based on the the log-ratio image [8–11]

or on multivariate probability distributions [12–14]. Similarity mea-

sures that do not target a particular sensor type include the correla-
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tion coefficient [15] for homogeneous sensors and the mutual infor-

mation [15–18] or the copulas theory [19] for heterogeneous sensors.

Note that the measure based on copulas initially investigated in [19]

cannot be generalized easily to situations where more than two im-

ages have to be compared.

A flexible method has been recently proposed to derive a simi-

larity measure between images acquired by homogeneous and het-

erogeneous sensors [20, 21]. This method considers a manifold that

describes the joint behavior of the sensors. Based on the physical

properties of the sensors and on the observed scene, a multivariate

statistical model was proposed for the pixel intensities within the

analysis window. The proposed model was based on a mixture dis-

tribution representing each object of the analyzing window by one

of the mixture components. The mixture was composed of a finite

but unknown number of components associated with the objects in-

cluded in the analyzing window. The mixture parameters were then

estimated by means of a modified expectation-maximization (EM)

algorithm [22] allowing the number of components within a prede-

fined range to be estimated. Note that the choice of this range was

related to the observation window size and to the kind of observed

scene (urban area, coast, etc.).

This paper introduces a new Bayesian model based on specific

priors taking advantage of the correlations between adjacent pix-

els in the estimation window by means of an MRF and mitigating

the absence of information about the number of components in this

window by using a Bayesian nonparametric distribution. More pre-

cisely, a Bayesian non parametric (BNP) model allows us to estimate

the number of mixture components through a prior based on a Chi-

nese restaurant process (CRP). The BNP model is combined with an

MRF to take into account the image spatial correlation [23]. This is

an improvement with respect to [20, 21], which relies on a heuristic

estimation of the number of components, and does not account for

spatial correlation between pixels. Accounting for the spatial cor-

relation leads to a significant increase in the parameter estimation

accuracy and thus in the change detection performance. Moreover,

due to its robustness to the number of objects contained in the anal-

ysis window, the BNP framework makes it possible to increase the

size of the analysis window. As a consequence, a local analysis can

now be performed on regions rather than on small sliding windows,

resulting in higher resolution change maps.

The paper is organized as follows: Section 2 formulates the

problem and recalls previous works. Section 3 defines the new sta-

tistical model and the corresponding parameter estimation algorithm

while Section 4 defines the change detection strategy. Section 5 eval-

uates the performance of the proposed change detector for synthetic



and real data. Conclusions are reported in Section 6.

2. PROBLEM FORMULATION AND PREVIOUS WORK

A flexible change detection strategy for images acquired by het-

erogeneous sensors was introduced in [20, 21]. This strategy relies

on a multivariate statistical model for the pixel intensities observed

through multiple sensors. The pixel intensity observed through the

sensor S is denoted as

IS = fS [TS(P ), ηS ] (1)

where TS(P ) is the manifestation, through sensor S, of the physical

properties P of the observed scene, whereas f(·, ·) models the cor-

ruption of TS(P ) with the measurement noise denoted as ηS . For

a given object with physical properties P , this model leads to the

probability density function (pdf) of IS |TS(P ) (which is equivalent

to IS |P ). For instance, in the case of optical images

IOpt|P ∼ N
[
TOpt(P ), σ2]

. (2)

This model can be extended to a set of D sensors, S1, . . . , SD , as-

suming that the measurement noises affecting the different sensors

ηS1
, . . . , ηSD

are independent. The joint distribution of the set of

observed pixel intensities I = {ISd
}D
d=1 is thus the product of their

marginal distributions

p(I|P ) = p(IS1
, . . . , ISD

|P ) =
D∏

d=1

p(ISd
|P ). (3)

The model is applied on an analysis window W to obtain p(I|W ).
Taking into account that the number of objects in the window (and

thus the amount of different values of P ) is finite, P |W can be

modeled as a discrete random variable. Consequently, p(I|W ) is

a mixture distribution [20, 21] whose components correspond to the

values of P denoted as {Pk}
K

k=1 where K is the number of objects

in the window W

p(I|W ) =
K∑

k=1

wk p(I|Pk). (4)

The vector v(P ) = [TS1
(P ), . . . , TSD

(P )] can be estimated for

each mixture component (i.e., for each object in the analysis win-

dow) from the observed pixel intensities. As explained in [20, 21],

this vector belongs to a manifold that relates the properties of the

different sensors. The distance between an estimated vector v(P )
denoted as v̂(P ) and the manifold can be used as a similarity mea-

sure to detect changes. This distance is a priori unknown. However

it can be estimated as the density of v̂(P ) obtained from a learning

set of unchanged samples.

In [20, 21], v(P ) was estimated from the observed data using a

modified version of the EM algorithm [22] that estimated the number

of components K within a predefined range [Kmin,Kmax]. This range

was fixed a priori as functions of the size of the analysis window and

the observed scene. Moreover, a limitation of the algorithm proposed

in [20,21] is that it was not exploiting the spatial correlation between

adjacent pixels of the estimation window. For instance, a random

permutation of the pixels within the analysis window produced the

same estimates, in presence or absence of spatial correlation.

3. A NEW BAYESIAN NONPARAMETRIC MODEL BASED

ON A MARKOV RANDOM FIELD

3.1. Bayesian non parametric model

As already mentioned, the number of components of the mixture

distribution associated with an analysis window is unknown but fi-

nite since there is a limited number of objects (although selected

from an infinite set of possible objects) within the analysis window.

This property can be considered through a Dirichlet process mix-

ture (DPM) [24] defined for each set of intensities {In}
N

n=1 in the

window W as follows

In|Pn ∼ M(θn) (5)

θn ∼ Θ (6)

Θ ∼ DP(Θ0(ψ), α) (7)

where θn is the parameter vector of the distribution M , whose den-

sity is (3), Pn is the value of P that produced In, Θ0(ψ) is the

prior distribution of the parameters θn with hyperparameters vector

ψ and α is the DP concentration parameter. Each realization Θ of

DP(Θ0(ψ), α) is a discrete distribution with pdf

p(θ) =
∑K

k=1
wkδ(θ − θk) (8)

where δ(·) is the Dirac delta function, wk are the weights in (4) and

K is a random variable with support N+. It has been shown [25]

that θn exhibits a clustering property and that (5), (6) and (7) are

equivalent to the so-called Chinese restaurant process (CRP) mixture

In|zn = k ∼ M(θk) (9)

zn ∼ CRP(α) (10)

θk ∼ Θ0(ψ) (11)

where zn is a discrete random variable representing the label of a

partition of θn into an unbounded number K of classes. Because of

(10), the distribution of the label zn is defined as

p(zn = k) =

{
α

N+α
, if zn = 0

Nk

N+α
, otherwise

(12)

where Nk is the number of samples In assigned to the class k, and

zn = 0 means that a new class is created. This approach has been

widely studied [24,26], and presented as a BNP approach to consider

an unknown number of components in a mixture model.

3.2. Markov random field

In [23], a DP mixture is coupled with an MRF prior on z = {zn}
N

n=1

to impose spatial smoothness for image segmentation. The joint dis-

tribution of the group of random variables z, p(z) with a neigh-

borhood graph G is called an MRF if the distribution of a particular

variable zn conditional to all the other variables, denoted z−n, is the

same as the the distribution conditioned to a reduced set of variables

zδ(n), where δ(n) denotes the neighborhood of n, i.e.,

p(zn|z−n) = p
(
zn

∣∣zδ(n)

)
. (13)

However, this relation is usually difficult to verify. The Hammersley-

Clifford theorem [27] states that p(z) satisfies (13) if and only if it

can be factorized over the cliques C of G. If we consider a cost

function H(z) such that p(z) ∝ exp [H(z)], this condition is

H(z) =
∑

C⊂C
HC(zC) (14)

where zC = {zn}n∈C
and HC(·) is a local cost function. If we

denote as H(zn|z−n) all the terms in H(z) involving zn, i.e.,

H(zn|z−n) =
∑

C⊂C|n∈C
HC(zC) (15)

then the conditional pdf p(zn|z−n) can be expressed as

p(zn|z−n) ∝ exp [H(zn|z−n)]. (16)

Since zn is a discrete random variable representing a partition

label, we are interested in evaluating whether two samples In and

Im belong to the same class, i.e., if zn = zm. This can be evaluated



with a cost function satisfying (14) as follows

H(zn|z−n) =
∑

m∈δ(n)
ωnm1zn(zm) (17)

where 1zn(zm) is an indicator function taking the value of 1 when

zn = zm and 0 otherwise, ωmn is a weight relating the samples In
and Im, and δ(n) defines a neighborhood of the n-th pixel con-

structed as the group of samples Im with a spatial L∞ distance

smaller than a certain threshold (i.e., a square region around the

pixel of interest). In this paper, we propose to consider the following

weight

ωnm ∝ exp

[
−
(xn − xm)2 + (yn − ym)2

d2

]
(18)

where d is a parameter related the neighborhood size (indicating how

fast the influence between two pixels decrease with the distance) and

[xn, yn], [xm, ym] are the 2D coordinates of the pixels associated

with the intensities In and Im, while the neighborhood δ(n) is lim-

ited to pixels with a L∞ distance of less than 5d.

This framework can be integrated with a DPM to produce a

DPM-MRF mixture. In [23] it is proved that the product of (12)

and (16) satisfies the condition (13). A direct consequence of (12)

and (16) is the following conditional distribution

p(zn|z−n) ∝






α, if zn = 0

λNk exp
(∑

m∈δk(n) ωnm

)
, otherwise

(19)

where δk(n) is the group of samples in the neighborhood of n be-

longing to the partition k, and λ is a parameter weighting the influ-

ence of the MRF, chosen by cross-validation in our simulations.

3.3. A Collapsed Gibbs Sampler

To obtain the vector v̂(P ) associated with each pixel, we must

identify the object corresponding to this pixel, i.e., find z =
argmaxz p(z|I). Markov chain Monte Carlo (MCMC) algorithms

can be used to sample jointly from a group of random variables

by sampling each variable conditionally to the others. When the

sampled variables are discrete, the mode or maximum of a distri-

bution can be estimated by computing the mode or maximum with

the generated samples. Since z has a multivariate discrete distri-

bution, MCMC algorithms are particularly adapted to maximize

p(z|I) with respect to z by iteratively sampling p(zn|z−n, I) for

1 ≤ n ≤ N . We can express this conditional distribution up to a

normalizing constant as

p(zn|z−n, I) ∝ p(I|zn, z−n)p(zn|z−n) (20)

where p(zn|z−n) can be obtained from (19), and p(I|z) is obtained

after marginalizing out θ,

p(I|z,ψ) =

∫
p(I|z,θ) p(θ|ψ) dθ (21)

=
∏K

k=1

∫
p
(
I{k}

∣∣θk
)
p(θk|ψ) dθk (22)

=
∏K

k=1
p
(
I{k}

∣∣ψ
)

(23)

where I{k} = {In}zn=k
is the group of samples In assigned to

class k, and p(θk) is obtained from (11). Note that marginalizing

out θ, which leads to a collapsed Gibbs sampler, increases the con-

vergence speed, and can reduce the amount of computation at each

iteration [28].

By choosing appropriate priors p(θk|ψ), the integral can be ana-

lytically solved. However, in order to avoid the computation of (22),

(a) Analysis window. (b) Detection by EM
[20, 21].

(c) Detection by DPM-
MRF (this paper).

Fig. 1. Objects detected in the image (a) using EM (b) and DPM-

MRF (c).

we can choose a conjugate prior as follows

θ ∼ Θ0(ψ) (24)

θ
∣∣I{k} ∼ Θ0

[
ψ

′
I{k},ψ

]
(25)

where the hyperparameters update rule ψ′
I{k},ψ

, yields

p
(
I{k}

∣∣ψ
)
=

p
(
I{k}

∣∣θk
)
p(θ|ψ)

p
(
θk

∣∣∣ψ′

(I{k},ψ)

) (26)

where all terms depending on θ have been simplified.

Since we are only interested in p(zn|z−n, I) up to a propor-

tional constant we can replace the term p(I|z,ψ) with

p(I|z,ψ)

p(I−n|z−n,ψ)
=

p
(
I{k}

∣∣ψ
)

p
(
I{k}−n

∣∣ψ
) (27)

where I−n is the set of all samples except In (i.e., {Im}
m 6=n

), and

I{k}−n is the set of all samples in the k-th class excepting In (i.e.,

{Im}
m 6=n,zm 6=k

). This is particularly useful when p(θ|ψ) belongs

to an exponential family, since (27) can be expressed in terms of its

sufficient statistics.

4. REGION BASED CHANGE DETECTION

In [20, 21], a similarity measure was computed for each analysis

window. However, the resolution of the change map was directly

linked to the size of the estimation window. Moreover, the estimation

algorithm was based on a soft pixel classification: each pixel was

assigned to different classes with particular weights. Conversely, the

method proposed in this paper produces a hard classification linking

each pixel to a particular object.

Figure 1 illustrates the difference between both algorithms on a

typical example. Fig. 1(a) is an image with 100 × 100 pixels and 3

spectral bands obtained from Google Earth with a pixel resolution of

7.27m. Figure 1(b) displays the posterior probabilities of the labels

estimated using the EM algorithm. As a consequence of EM soft

clustering, only 3 classes are identified, while the mixture contains

9 components. Moreover, since the parameter estimation algorithm

does not account for spatial correlations, some isolated pixels are

miss-classified. In Figure 1(c), 6 classes are identified. The hard

classification obtained with the MCMC-DPM approach solves the

first issue and the MRF reduces the number of isolated pixels.

This improvement enables the use of the similarity measure at

the object level. In [20, 21], each analysis window produced a set of

estimated vectors {v̂(Pk)}
K

k=1, with their corresponding similarity

measures {dk}
K

k=1. The similarity measure dn corresponding to a

pixel In was shared by all the pixels belonging to the same analysis

window W , i.e.,

dn = dW =
∑K

k=1
wkdk (28)



(a) Synth. opt. image. (b) Synth. SAR image.
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(c) Detect. performance.

(d) Change mask. (e) Change map (EM). (f) C. map (DPM-MRF).

Fig. 2. Change detection on synthetic heterogeneous images.

With the proposed approach, the similarity measure assigned to each

pixel depends on the region it belongs to, so that its similarity mea-

sure is simply defined as

dn = dzn (29)

where zn depends not only on the window, but also on the neigh-

borhood of In and on In itself. This strategy produces a pixel-level

instead of a window-level change detection. This change results on

a more detailed estimation of the change map, improving the per-

formance for windows containing adjacent changed and unchanged

areas. Note that it would be possible to run the algorithm on the

whole image instead of an analysis window. However, this would

increase considerably the computational cost of the algorithm.

5. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm we have run

different tests on synthetic and real images, and have compared the

performance of the DPM-MRF algorithm with the EM algorithm

studied in [20, 21] and change detectors based on the correlation co-

efficient, the mutual information and, in the case of real data, the

copulas theory. The performance is evaluated by means of the re-

ceiver operating characteristics (ROC) [29] curves.

5.1. Synthetic images

Figures 2(a) and 2(b) shows two synthetic optical and SAR images

affected by changes in the upper part of the image as shown in the

change mask (d). Both images were generated with the image gen-

eration model described in [20, 21]. Figure 2(d) was computed from

the ground truth, where black areas indicate the changes. The change

map in Fig. 2(e) shows the estimated change maps using our previ-

ous algorithm [20, 21], with an analysis window of 20 × 20 pixels,

while Fig. 2(f) shows the change map for the approach described in

this paper using a window size of 100 × 100 pixels. The circular

zoom area highlights a typical resolution enhancement obtained by

the proposed change detector. The resolution obtained in Fig. 2(e) is

limited by the window based approach, where each pixel represents

the measured distance for the whole analysis window. This is partic-

ularly visible on the edges between changed and unchanged areas,

where the analysis window might contain changed and unchanged

regions. However, the DPM-MRF algorithm can detect changes us-

ing a pixel by pixel approach, increasing the accuracy of the resulting

change map as observed in Fig. 2(f). The ROC curves in Fig. 2(c)

display the performance improvement obtained with the proposed

approach compared with the previous work, dropping the equal er-

ror rate (EER, i.e., where the probability of detection PD and the

(a) Google Earth – Dec. 2008 (b) TerraSAR-X – July 2007

(c) Change map (EM) (d) Change map (DPM-MRF)

(e) Change mask

0 1
0

1

PFA

P
D

BNP

EM

Copulas

Correl.

Mut.Inf.

(f) Detection performance

Fig. 3. Change detection results on heterogeneous images

probability of false alarm PFA coincide) from 5.5% to 4.4%, which

represents a 20% improvement.

5.2. Real optical and SAR images

Figures 3(a) and 3(b) show one optical image from Google Earth and

one SAR image from a TerraSAR-X satellite, acquired during and

after a big flooding in Gloucester (UK) respectively. The change

mask in Fig. 3(e) represents our ground truth provided by a photo

interpreter, where the black areas indicate the flooded areas. The

change maps in Figs. 3(c) and 3(d) show the estimated change maps

using our previous algorithm [20, 21] with a 10 × 10 analysis win-

dows, and the approach described in this paper with a 200×200 anal-

ysis window (note that the window size was determined to optimize

the processing time). Both figures display a circular zoom area em-

phasizing the resolution enhancement obtained by the proposed ap-

proach. The ROC curves in Fig. 3(f) show more quantitative results.

As it can be observed, the use of a BNP model combined with an

MRF allows significant performance improvement. The EER drop

from EM to DPM-MRF is from 14% to 8%.

6. CONCLUSION

This paper introduced a new Bayesian model for change detection

based on a Dirichlet process mixture combined with a Markov ran-

dom field. This new model allowed to detect changes between het-

erogeneous images based on the strategy presented in our previous

work [20, 21]. The main properties of the proposed change detec-

tion strategy are to account for an unknown number of objects in the

analysis window using a Chinese restaurant prior and to the presence

of spatial correlations between adjacent pixels in the window using a

Markov random field. This strategy enables the detection of changes

with a region based detection approach mitigating the impact of the

size of the estimation window. The results obtained with synthetic

and real data are very promising. Future work includes validating

the proposed method on a wider range of datasets, reducing the de-

pendency of the manifold estimation on selected training region and

estimating the DPM-MRF parameters from the sampled data.
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