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Abstract

The Mullins effect refers to a stress-softening phenomenon of rubber-like

materials during cyclic loading. Anisotropy of the material behaviour is

generally observed after stretching. In this paper, a large set of original

suitable experiments are reported to characterise this effect under several

deformation conditions. Then, a phenomenological model is derived to cap-

ture the anisotropic distribution. For that, the affine micro-sphere model

(Miehe et al., 2004) is amended with a directional network alteration in or-

der to describe anisotropy. The alteration process, involving the breakage

and the slippage of the links embedded in the macromolecular network, is

modelled by the evolution of the average number of monomer segments per

chain during stretching. The average chain length and the chain density

are incrementally described by functions to allow both softening and stiffen-

ing, depending to the maximum and the minimum stretch rates and levels

endured in each direction. The good capacity of the model to reproduce
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experimental observations validates the above assumptions.

Keywords: Mullins effect, stress softening, constitutive equation, network

alteration theory, anisotropy.

1. Introduction

Industrial competition in automotive industry has led to a growing use

of numerical simulation in the design process of elastomeric parts such as

tires, seals, engine mounts, shock absorbers... A good understanding and

a well-established modelling of the material behaviour are essential prereq-

uisites for efficient numerical modelling as Finite Element analysis. Elas-

tomers are known to exhibit a strongly non-linear elastic behaviour under

static loading conditions, characterised by the well-known S-shaped uniaxial

response. Inelastic features such as hysteresis, stress-softening and residual

strain are observed under cyclic loading. The strain-induced stress-softening

phenomenon, widely known as the Mullins effect (Mullins, 1947, 1969), is

characterised by a reduction of stiffness during the first loading cycles. More-

over, the material response is perceptibly more compliant at strain smaller

than the maximum strain endured during this first cycle, as pointed out by

many authors (Mullins, 1947; Bonart, 1968; James and Green, 1975; Muhr

et al., 1999; Robisson, 2000; Pawelski, 2001; Chagnon, 2003; Dorfmann and

Pancheri, 2012; Machado et al., 2012; Merckel et al., 2012; Rebouah and

Chagnon, 2014), the level of softening is not identical in all directions and

present induced anisotropy. Moreover, rubber-like materials subjected to cy-

cling loading conditions do not return to their initial state when unloaded,

and residual strain is generally observed after unloading.
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The Mullins effect does not find unanimous physical explanation at present

(Diani et al., 2009) and occurs both in unfilled and filled elastomers, though

its influence is more pronounced in filled rubber-like materials. To describe

the strain-induced anisotropy of the Mullins effect, different approaches were

developed. Besdo and Ihlemann (2005) introduced a tensorial history func-

tion based on second-order tensors evaluated using ellipsoid representations

of all right Cauchy-Green tensors previously encountered during the deforma-

tion process. Shariff (2006) proposed a phenomenological damage anisotropic

model based on the assumption that stress-softening is related to principal

stretches, and to maximum and minimum strain values of the principal-

direction line elements encountered during the deformation history. Göktepe

and Miehe (2005) investigated the molecular damage concept developed by

Govindjee and Simo (1991), and decomposed the network structure into a

particle-to-particle and a crosslink-to-crosslink part. They exclusively asso-

ciated the anisotropic stress-softening phenomenon to the particle-to-particle

contribution, which involves breakage of bonds between chains and filler par-

ticles, and associated a scalar damage parameter with each direction of the

hyperelastic micro-sphere model (Miehe et al., 2004). Thereby, the model in-

herently reproduces the strain-induced anisotropic distribution of the Mullins

effect and naturally includes residual strain. Diani et al. (2006b) combined

the Pawelski (2001) directional molecular-based hyperelastic model with the

Marckmann et al. (2002) alteration theory and derived an anisotropic model

for the Mullins effect and the inherent induced residual strain. Dargazany

and Itskov (2009) proposed a similar approach by taking into account the

existence of different chains with different lengths in each direction. In a
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similar approach, Itskov et al. (2010) proposed three damage evolution func-

tions for the three principal stretches. Dorfmann and Pancheri (2012) used a

pseudo elastic approach to take into account the stress softening and changes

in material symmetry. Merckel et al. (2013) used the strain amplification fac-

tor concept introduced in the microsphere approach. Rebouah et al. (2013)

and Machado et al. (2014) proposed to develop a constitutive equation that

depends both on the maximum and actual deformation in a full network

approach.

A residual strain is generally observed after removal of the stress. The

magnitude of this residual strain increases with the amount of fillers in rubber

and with the maximum stretch endured before unloading (Dorfmann and Og-

den, 2004). To model both stress-softening and residual stretch, Ogden and

Roxburgh (1999) used the previous pseudo-elastic approach to describe the

Mullins effect, and incorporated a single additional damage variable function

of the maximum strain previously achieved and for which no restriction is

henceforth imposed. Holzapfel et al. (1999) extended this model to the inclu-

sion of an anisotropic description of the damage mechanism governed by three

damage variables related to the evolution of principal stretches. Dorfmann

and Ogden (2004) also investigated the theory of pseudo-elasticity and devel-

oped a model combining stress-softening and residual strain by including two

additional parameters respectively related to these inelastic phenomena. The

authors pointed out that the anisotropic material response under uniaxial de-

formation (transversal isotropy) may be described by a strain energy function

which is not symmetrical in terms of principal stretches (i.e. which does not

satisfy the well-known Valanis and Landel (1967) assumption). They as-
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sociated the induced anisotropy only with the residual strain variable but

specified that a more general model, where the induced anisotropy is related

to the softening variable, can be derived. Recently, Rebouah and Chagnon

(2014) proposed a directional model were the stress becomes zero in some

directions before the zero deformation is obtained to generate residual elon-

gation.

The aim of the present study is to experimentally exhibit and model the

evolution of stiffness of rubber in different directions depending on the his-

tory and the directions of first stretching. The residual strain and the loss of

isotropy inside the material will be analysed through a large panel of loading

conditions. In this way, we propose a phenomenological constitutive model

established under micro-mechanical considerations and that principally ac-

counts for the anisotropy induced by the Mullins effect. The first key con-

tribution is concerned with the investigation of a set of original appropriate

homogeneous experiments conducted under various deformation conditions.

Results obtained lead to a thorough understanding of the anisotropic na-

ture of stress-softening and the residual strain and highlight the occurrence

of a stiffening effect along contracted directions (stretch lower than 1) be-

yond the pre-softening stretch level. Pursuing the network alteration theory

proposed by Marckmann et al. (2002), these inelastic phenomena are asso-

ciated with micro-structural alteration mechanisms involving slippage and

breakage of links between polymer chains. This rearrangement is reflected

by the increase of chain contour length in tensile stretched regions and its

slow decrease along contracted directions.

The paper is organised as follows. Section 2 reports experimental inves-
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tigations emphasing anisotropy of the material properties which takes place

under homogeneous uniaxial simple tests: tensile test, pure shear, modified

equibiaxial and ”biaxial” extension. Section 3 is devoted to the derivation of

a phenomenological model, based on micro-mechanical considerations, that

incorporates the anisotropic evolution of stress-softening and stiffening ef-

fects. Section 4 is dedicated to the evaluation of predictive capabilities of the

model. The model is fitted on experimental results presented in the paper.

Finally, some concluding remarks are given in Section 5.

2. Experimental observations

An important feature of the stress-softening effect is the occurrence of

anisotropic material properties under stretching. This property has hith-

erto received little attention in the literature. A thorough understanding of

this phenomenon and the evaluation of the anisotropic model proposed in

the following require appropriate experiments. Within this framework, sev-

eral quasi-static pure homogeneous experiments were performed according

to different loading conditions. These experiments were conducted under

controlled displacement conditions at a constant strain rate of 0.04167 s−1

by the French Research Department of the Trelleborg group. The material

used in this work is filler-reinforced natural rubber with a mass percentage

of carbon black of approximately 30%. The detailed composition of the ma-

terial is given in Le Cam et al. (2004). Note that stress values in the present

paper are normalised. All experiments are repeated on four lots of samples.

All curves presented in this paper are the mean responses of the specimens.
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2.1. Simple tension tests of previously softened specimens

The observation of the influence of anisotropic effects requires mechanical

tests involving different stretching directions. One of them consists first in

performing five pre-softening uniaxial tensile cycles up to a stretch equal to

3.25 on a virgin large flat dumbbell sample extracted from a calendered plate.

The later sample is 110 mm long and 40 mm large in the useful area. The

thickness is equal to 2 mm. Smaller dumbbell samples are then cut from

this large specimen with different orientations with respect to the direction

of pre-softening stretch (reference direction)1. The later are 10 mm long

and 2.5 mm large in the useful area. Fig. 1(a) shows how the small dumbbell

samples are extracted from the large one. Then, they are submitted to tensile

stretch loading until breakage.

Small samples are also cut in a virgin large specimen and similar tensile

tests were performed in order to evaluate the initial anisotropy of the plate.

Fig. 1(b) shows the evolution of the nominal stress (first Piola-Kirchhoff

stress) π as a function of the principal stretch λ along the loading direction.

These experimental results exhibit an appreciable stiffer mechanical response

when approaching the calendering direction.

As we only focus on the anisotropy induced by Mullins effect and not

by the calendering process, the initial anisotropy observed above is taken

into account by normalizing the mechanical response of specimens for each

direction. The calendering direction is retained as the reference response (0◦-

direction) and a corrective factor is calculated for each angle. This factor is

1All the samples cut in a specimen which was already stretched will be called “secondary

specimens”.
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Figure 1: Anisotropic distribution of stress-softening developed under tensile stretching.

(a): geometry of the large and the secondary small dumbbells specimens. (b): initial

anisotropy of the large virgin dumbbell samples extracted from a calendered plate. Stress-

stretch responses of small test pieces cut at various angles from the reference direction are

presented.

evaluated so that all virgin curves are superimposed with the reference one

(cf. Table 1).

We observe that this factor is linear with the angle. Then, mechani-

cal responses of the pre-softened small samples are corrected by using the

aforementioned corrective factor depending on the extraction angle.

Note furthermore that, due to residual strain, the dimensions of the small

specimen are necessarily measured in a pre-softened configuration. Since

the pre-softening tensile test generates an appreciable residual stretch λres,

stress-free configurations before and after this pre-softening are different (see
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angle of extraction (◦) corrective factor

0 1.0

22.5 1.036

45 1.072

67.5 1.108

90 1.144

Table 1: Value of corrective factors depending on the direction of extraction of the small

specimen relatively to the calendered direction of the large specimen

Fig. 2).

Figure 2: Cinematics of the deformation

Distribution of the residual stretches naturally depends of the angle of ex-

traction θ. Comparison of stress-stretch responses of small samples rigorously

requires the use of a unique reference configuration. The total Lagrangian

approach is used in the numerical experiments detailed in Section 3. Thus,

the unstrained virgin material configuration is adopted as the reference one.

Reference dimensions of the cut samples are determined with respect to this

configuration. Thus, they are determined from the ratio of the small samples

initial dimensions in the pre-softened configuration to the residual stretches
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in the corresponding principal directions of the secondary tensile deforma-

tion.

Figure 3: Reference basis of the small specimen extracted from the large pre-softened

specimen.

Considering residual stretches, defined by the residual deformation gra-

dient tensor Fres, and the principal basis of deformation {ei}i=1...3, residual

stretches are defined in a new basis, e∗i = Rei, which is the strain principal

directions of the cut samples during the succeeding stretches (see ig. 3). and

where R is the rotation tensor between e and e∗. Then, the new reference

deformation gradient tensor is given by:

F∗
res = RTFresR (1)

Fig. 4 shows stress-stretch responses of secondary specimens extracted at

different angles (0◦, 22.5◦, 45◦, 67.5◦ and 90◦) from the reference direction.

The nominal stress and stretch are both expressed in the virgin unstrained

configuration and the stretch-stress curves are corrected according to the

initial anisotropy of the virgin material as described above. Mechanical re-

sponses of the pre-deformed specimens appear to be lower than the virgin

material one. This reflects the strain-induced stress-softening phenomenon.

The anisotropic distribution of stress-stretch properties is also clearly ob-
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Figure 4: Anisotropy induced by the Mullins effect under cyclic tensile conditions up to a

stretch of 3.25. Comparison of tensile stress-stretch uniaxial responses of a virgin sample

and pre-softened samples cut at different angles from the reference direction. Error bars

shows experimental dispersal on four samples.

servable. Although the prior tensile stretch produced stress-softening in all

selected directions, the softening level significantly decreases as the direction

deviates from the one of the initial stretch. It also appears to be nearly null

in the orthogonal direction (90◦ in the figure). Furthermore, all secondary

specimens are conditioned to the same stretch ratio. The material gets stiffer

when the stretch level approaches the maximum stretch endured during the

pre-softening stretch level (i.e. λ = 3.25). The material does not completely

recover its virgin behaviour beyond the pre-softening stretch level (cf. table

2).

Indeed, due to residual strain, the secondary loading curves should rejoin

the virgin curve for stretch levels slightly higher than the maximal previously
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angle of extraction (◦) λ1res λ2res λ3res

0 1.05 0.975 0.9768

22.5 1.0390 0.9859 0.9768

45 1.0125 1.0125 0.9768

67.5 0.9859 1.0390 0.9768

90 0.975 1.05 0.9768

Table 2: Residual strain of the small specimens in their principal axes

endured one (Johnson and Beatty, 1993). As Muhr et al. (1999) pointed out,

the softening generally remains above the prior maximum endured stretch

level (Diani et al., 2009). The authors specified that application of the resid-

ual strain correction, usually adopted for the idealisation of the Mullins effect,

would reduce this drop below the virgin curve.

Mechanical responses of the 0◦, 22.5◦ and 45◦-small samples exhibit a

slope close to the virgin curve one beyond the maximum stretch previously

reached. On the other hand, relatively to the virgin material response, sig-

nificant stiffening appears for angles of 67.5◦ and 90◦ when the pre-softening

stretch level is exceeded. The latest samples have submitted stretches lower

than 1 during the pre-softening cyclic test. Consequently, it seems that stress-

softening phenomenon is coupled with a stiffening effect in these directions.

Even if the observed effect is rather small in comparison with the experimen-

tal dispersal, the same phenomenon is observed for each lot of samples.

We may presume that stiffening is linked to the compression loading con-

ditions. This assumption is consistent with the common perception of the

Mullins effect which is generally ascribed to the quasi-irreversible rearrange-
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ment of the molecular network under stretching. In that case, the material is

assumed to have a selective memory of the maximum stretch ratio encoun-

tered during its loading history and to adapt a new equilibrium configuration

softer than the virgin one as long as this maximum stretch is not exceeded.

Finally note that, in conformity with the incompressibility of the material,

samples cut at 0◦ and 22.5◦ reveal a residual stretch greater than 1, those

oriented at 67.5◦ and 90◦ manifest a contraction residual stretch (< 1) whilst

the specimen extracted at 45◦ does not show any.

2.2. Pure shear tests from previously softened specimens

Similar experiments are conducted with a pure shear pre-softening test.

Here, the specimen used for the pure shear test is moulded and is assumed

to be initially homogeneous and isotropic unlike the calendered plate. The

specimen is 300 mm long, 40 mm width and 2 mm thick. The width inside

fixation rolls is equal to 35 mm. It is submitted to five cycles of pre-softening

pure shear loading up to a stretch of 4 (Fig. 5: the width of the specimen is

stretched of 400%).

Figure 5: The pure shear sample and the secondary small dumbbells samples used for the

characterisation of the anisotropic distribution of stress-softening developed under pure

shear stretching

As shown in Fig. 5, small dumbbell samples are cut from this pre-softened

specimen at different orientations (0◦, 30◦, 45◦, 60◦ and 90◦) in compari-

son with the reference direction (belonging to the pre-softening stretch one)
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and undergo uniaxial stretch until breakage. The corresponding experimen-

tal results, expressed in the unstrained virgin configuration, are shown in

Fig. 6. The level of softening that occurs after the pre-softening pure shear

test is clearly as lower as the direction deviates from the pure shear load-

ing direction. Observations similar to those relative to the previous uniaxial

tensile tests can be made about the recovering of the virgin material be-

haviour beyond the pre-softening stretch level (λ = 4). However, a stiffening

effect which occurs in directions close to the direction orthogonal to the pre-

softening uniaxial tensile stretch loading is not clearly observable here. Since

the material is not stretched nor contracted in the direction orthogonal to the

pure shear loading one, this observation coincides with the previous analysis

where the stiffening phenomenon appears when stretches are lower than 1.

The smaller the angle is (in comparison with the reference one), the greater

the amount of residual stretch is. The sample oriented to 90◦ does not exhibit

any residual strain.

2.3. Modified biaxial tension tests from previously softened specimens

Tests inspired by the so-called modified biaxial tension test proposed by

Pawelski (2001) are performed. These experiments consist beforehand in

pre-softening successively in two directions and then in cutting small sec-

ondary samples at different angles in order to evaluate the anisotropic effects

induced by stress-softening. As illustrated in Fig. 7, a cross-shaped sample

cut in a calendered plate is considered and its arms are slitted to ensure

the homogeneity of deformation in the central area. The central area is a

square 40 mm long and 2 mm thick. The lengths of the arms are equal to

60 mm. This specimen is first submitted to five cycles perpendicularly to
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Figure 6: (a) Anisotropy induced by the Mullins effect under cyclic pure shear conditions

up to λ = 4. Comparison of tensile stress-stretch uniaxial responses of a virgin sample

and samples cut at different angles from the reference direction, (b) close-up to residual

stretches

the calendering direction with a standard tensile test machine, while the two

arms orthogonal to the loading direction remain free. A similar pre-softening

loading is next applied in the calendering direction called reference direction.

Afterwards, small secondary dumbbell samples are extracted in the central

area of the pre-softened cross-shaped specimen at different angles (0◦, 22.5◦,

45◦, 67.5◦ and 90◦). Then, simple tensile tests are performed until breakage.

First, pre-softening tensile stretches of 3.25 are applied in the central area

of the cross-shaped sample in both directions. Mechanical responses of the

cut samples are compared to the unstrained virgin material response in Fig. 8.

Note that the calendered plates used for this experiment are similar to the
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(a) (b) (c)

Figure 7: The cross-shaped sample and the secondary small dumbbell samples used for

the characterisation of the anisotropic distribution of stress-softening induced by modified

equibiaxial stretching. (a) Undeformed, (b) deformed and (c) pre-softened cut configura-

tions of the cross-shaped specimen.

0◦
22.5◦

45◦
67.5◦

90◦

virgin

λ=3.25

λ

π
(M

P
a
)

54.543.532.521.51

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 8: Anisotropy induced by the Mullins effect under cyclic modified equibiaxial con-

ditions up to a stretch of 3.25 in both directions. Comparison of tensile stress-stretch

uniaxial responses of a virgin sample and samples cut at different angles from the refer-

ence direction.
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ones used for the uniaxial tensile test of section 2.1. A correction is performed

to take into account the initial anisotropy of the plates. The responses of

the material are reported in Fig. 8. As expected, the 45◦-secondary sample

exhibits the smaller amount of softening since the maximum pre-stretch en-

dured in this direction is the lowest one. However, a remaining significant

softening occurs beyond the pre-softening stretch level. The 22.5◦ and 0◦-

samples are slightly stiffer than the virgin sample beyond the prior maximum

stretch ratio, while 67.5◦ and 90◦-samples exhibit a significant drop below the

virgin curve. Consequently, it seems that, under the maximum stretch ra-

tio endured during the pre-softening test, the succession of compressive and

tensile loading affects the material response. Indeed, due to the testing pro-

cedure, this experiment differs from a pure equi-biaxial test. Load histories

in the two pre-stretching directions are different. The 22.5◦ and 0◦-directions

successively experience contraction followed by tensile stretch, whilst the

67.5◦ and 90◦-directions undergo tensile stretch followed by compressive one.

These observations confirm the previously assumed existence of a directional

chain network rearrangement which takes place during stretching. Mecha-

nisms involved in this process may generate a new stress-free equilibrium

configuration stiffer than the virgin one after compression.

An analogous test is conducted by applying a pre-stretching of 3.25 in

the first direction of the cross-shaped specimen, perpendicular to the calen-

dering one, whereas the reference direction is stretched up to a factor 2.25.

Responses are depicted in Fig. 9. The respective contributions of the two

pre-softening contributions, as well as the induced anisotropy, are clearly

distinguishable. Remarks similar to those enunciated above may be stated
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Figure 9: Anisotropy induced by the Mullins effect under cyclic modified biaxial conditions

up to a stretch of 2.25 in the first direction and 3.25 in the second one Comparison of tensile

stress-stretch uniaxial responses of a virgin sample and samples cut at different angles from

the reference direction.

concerning the influence of the loading history undergone in each material

direction.

2.4. Conclusions

All the experimental observations made in the present section clearly

highlight the anisotropic nature of the Mullins effect. The angular distri-

bution of stress-softening occurring under various homogeneous deformation

modes apparently depends on the maximum stretches undergone by the ma-

terial. However, an induced stiffening phenomenon along contracted direc-

tions was exhibited and the influence of the loading history is pointed out.

This large variety of experimental results will be used to validate the model
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derived in the next section.

3. Constitutive model

The aim of this section is to build a constitutive model for rubber which is

able to take into account anisotropy induced by pre-stretches. Mathematical

symbols are defined at the end of the paper.

The previous experimental observations are consistent with a network

alteration as proposed by Marckmann et al. (2002) where alteration depends

on the stretch endured by chains and thus on the direction of stretching.

3.1. Description of the model

Rubber elasticity can be described through micro-mechanically based

models. As they are explicitly expressed in terms of these two parame-

ters, the chain density n and the average number of monomers per chains N ,

micromechanical network models based on non-Gaussian chain statistics are

well-adapted to the use of stress-softening.

In the paper, the affine “Micro-sphere” model of Miehe et al. (2004) is

chosen as the reference elastic model with a set of 42 directions. For conve-

nience, denote λc = λ (dc) = ‖F · dc‖ =
√
dc T ·C · dc the stretch of a single

chain oriented in the direction of the unit vector dc. The representation of

the macroscopic Cauchy stress tensor under the incompressibility assumption

(detF = 1) is given by :

σ = CR

√
N

r
∑

c=1

[

ωc

λc
L−1

(

λc

√
N

)

(F · dc)⊗ (F · dc)

]

− pI (2)
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where dc represents the direction vector of the chain c, λ(dc) is the stretch

of the chain c, ωc is the weight factor associated to the chain c, CR = nkT

represents the material stiffness expressed in terms of the chains density n,

I is the unit tensor and p a pressure classically introduced to impose incom-

pressibility. This hyperelastic constitutive equation contains two physically-

motivated material parameters N and CR.

Besides the alteration processes previously stated by Marckmann et al.

(2002), we can presume that reversible mechanisms should be involved. In

particular, we can mention the slippage of chains over filler particles, draw-

ing of chains from coils or from their layers coating the surface of filler par-

ticles, slippage of macromolecular chains at topological entanglement junc-

tions (Svistkov and Komar, 2005), etc. This latest mechanism may explain

the stiffening phenomenon observed in Section 2 along contracted directions.

From a statistical point of view, chains embedded in the macromolecular

network are improbably oriented along a straight line. Considering a chain

passing through an entanglement loop formed by another molecule, as shown

in Fig. 10(a), ends of this chain are certainly oriented in different direc-

tions. Application of an uniaxial tensile external force induces the slippage

of the chain through this entanglement junction. As a chain is a sequence of

monomer segments between two subsequent junctions, the length and con-

sequently the number of monomers of the chain oriented along the tensile

direction increases (i.e. the part of the chain situated above the junction

point in Fig. 10(b)), whilst the one of the other chain (i.e. the part of

the chain situated below the junction point) decreases. We can presume

that interactions with the neighbouring molecular network or eventually the
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quasi-irreversible tightening of the entanglement loop make this change of

conformation not fully recoverable during unloading (Fig. 10(c)). Another

consequence is that the number of monomers in each direction changes and

the mass conservation cannot be considered in each direction, but globally

(if any).

(a) (b) (c)

Figure 10: Schematic representation of a chain, depicted in bold line, slipping through an

entanglement loop formed by another macromolecule (in grey line): (a) initial undeformed

configuration, (b) deformed configuration under uniaxial tensile loading and (c) stress-free

configuration after application of the stretching.

As a result, the breakage and slippage mechanisms occurring upon stretch-

ing lead to a new equilibrium stress-free configuration that exhibits memory

effects of the loading pre-history. This behaviour could be considered as a

transformation of the network where internal variables are evolving under

different paths depending on loading history. This brings to the association

of stress-softening and stiffening phenomena respectively with stretched and

contracted directions. The average chain length increases under tension and
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decreases under contraction.

With a view to simplification, material directions of the idealized network

are assumed to be independent one on another. Stress-softening and stiffen-

ing phenomena in a direction are supposed to only depend on the alteration

process in this direction, involving both breakage and slippage mechanisms.

The alteration process is modelled by considering an alteration function of

both a stress-softening and a stiffening variable, respectively denoted αc and

βc, which affect the chain oriented in the direction dc of the discrete network.

The alteration function is identical for all directions (isotropy of the mech-

anism) and describes the evolution of the average number of monomers per

chain upon loading. The material is assumed to have a directional selective

memory of the alteration process such that for c = 1, ..., r:

N c(t) = N0 f
(

α̇c, β̇c, αc, βc
)

, (3)

where N0 = N c(t = 0) denotes the average number of monomers per chain

within the virgin material and where alteration variables αc(t) and βc(t) are

defined along the considered chain direction c by:

αc(t) = max
0≤τ≤t

[λc(τ)] (4)

and

βc(t) = min
0≤τ≤t

[λc(τ)] (5)

ẋ denotes the rate of x.

The present model differs from those proposed by Diani et al. (2006a)

or Göktepe and Miehe (2005) because the alteration function does not only

depend on the maximum stretch. To simplify, we assume that the evolution
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of the number of monomers by chain only depends on the history of the

each direction. We also assume that the material presents a continuous

and discontinuous evolution law as proposed by Miehe (1995). A term of

continuous damage Dc is introduced. Dc is supposed to increase whatever

the chain increases or decreases, and only depends on the stretch rate |λ̇c|. A
term of discontinuous evolution is added to take into account the dependence

upon the maximum and the minimum stretches (respectively αc and βc) and

the associated rates (respectively α̇c and β̇c).

˙(N cCc
R) = N0C0

R (1−Dc) g
(

α̇c, β̇c, αc, βc
)

(6)

with Dc defined by Ḋc = D(|λ̇c|).

3.2. Thermodynamical aspects

Within this framework, the amended macroscopic strain energy density

is defined by

W
(

F,α,β, α̇, β̇,D
)

≈
r

∑

c=1

ωc (1−Dc)ncw (λc, N c, Cc
r)− pI (7)

The alteration variables α = (αc)c=1,...,r, β = (βc)c=1,...,r and D =

(Dc)c=1,...,r may be considered as internal variables. Then the evolution of

N c must be consistent with the Clausius-Planck inequality that guarantees a

positive macroscopic dissipation. The dissipation Dint is defined for isother-

mal deformation by:

Dint = Π : Ḟ− Ẇ > 0 ∀ F with detF = 1, (8)
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According to the model of Miehe et al. (2004) and Eqs. (6), the strain

energy density W can be writen as:

W = C0
RN

0

r
∑

c=1

[

ωc (1−Dc)g
(

α̇c, β̇c, αc, βc
)

[

λc

√
N

c ξ
c + ln

(

ξc

sinh ξc

)]]

+W0

(9)

with ξc = L−1(λc�
√
N c). We note χ(ξ) = λc

√
N

c ξc + ln
(

ξc

sinh ξc

)

.

N c depends on αc and βc while (N cCc
R) depends on α, β, α̇ and β̇, and

finally Ḋ depends on |λ̇c|. Therefore the expression of the dissipation Dint is

obtained by developping partial derivatives of each term.

Dc
int = + ∂g

∂α̇c

∂α̇c

∂t
− ωcC0

RN
0 (1−Dc)χ(ξ)

[

∂g

∂αc
α̇c + ∂g

∂βc
β̇c + ∂g

∂β̇c

∂β̇c

∂t

]

− ωcC0
RN

0 (1−Dc)gN0 ∂χ(ξ)
∂Nc

[

∂f

∂αc
α̇c + ∂f

∂α̇c

∂α̇c

∂t
+ ∂f

∂βc
β̇c + ∂f

∂β̇c

∂β̇c

∂t

]

+ ωcC0
RN

0 gχ(ξ)Ḋc = Dc(g)
int +Dc(f)

int +Dc(D)
int

(10)

Dint =
r

∑

c=1

(Dc(g)
int + Dc(f)

int +Dc(D)
int ) = D(g)

int +D(f)
int +D(D)

int (11)

It is to note that the damage always increases, as the bounds of the

stretches, thus Ḋc > 0, Dc > 1, α̇c > 0 and β̇c 6 0. Nevertheless the

stiffening phenomenon imposes ∂N c�∂βc > 0. So, the only way to satisfy

the positivity of Dint is that positive terms in Eq. (10) balance negative ones.

For a given load (for instance a general biaxial extension), stretches λi∈1,2,3

are linked by the kinematic constraint of incompressibility (λ1λ2λ3 = 1) un-

like (αc)c=1,...,r and (βc)c=1,...,r. Reported on the Micro-sphere representation,

α and β form yield surfaces whose evolution are directional and history de-

pendant (see Fig. 11). Unfortunately, these surfaces are not regular and not

convex in the undeformed configuration. We can only notice that the lower
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(a) (b)

Figure 11: Representation of the internal state variables in the Micro-sphere. Vectors dc

are scaled respectively with 1 (white), with αc (red) and with βc (green) for a biaxial

extension (a) and an uniaxial extension (b). The three surfaces are concentric; offsets on

axis 3 have been applied for illustration.

value of β is generally reached in a direction orthogonal to a direction where

α is the greater. The model induces a complex expression of Dint which does

not allow a simple relation between terms to enforce its positiveness. We

propose to verify it a posteriori in section 4.2.

4. Comparison of the model with experimental data

4.1. Proposed model and identification

The aim of this section is to determine the alteration function involved

in the model and to estimate the material parameters in order to reproduce
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the trend of experimental data. The ability of the formulation to predict

stress-softening, stiffening and residual strain phenomena is assessed.

Since evolution of the average chain contour length cannot be experimen-

tally observed, the evolution of alteration during stretching is described by

the following empirical alteration functions:

f
(

α̇c, β̇c, αc, βc
)

= exp(a1(α
c − 1)) + b1(β

c − 1), (12)

g
(

α̇c, β̇c, αc, βc
)

= a3 exp(a3(α
c − 1))α̇c + b3 exp(b4(α

c − 1))β̇c (13)

where a1, b1, a3, b3, and b4 are material parameters. These equations

must satisfy conditions Eq. (10). Note that, insofar as it clearly depends

on the nature of the material and the forming process, this form is specific

to the material used in the present study. The current average number of

monomers per chain N c (t) then follows Eq. (3). The larger is the value of

N c, the greater is the chain locking stretch value.

The damage function is chosen as:

Ḋ = ν|λ̇| (14)

where ν is a material parameter. That means that less and less macro-

molecular chains are concerned by the mechanical response of the material.

Nevertheless, by assuming ν = 0, the density of active macromolecules stay

constant. The material parameters were fitted on all the experimental tests,

the values are summarized in Table 3.

An illustration of the abilities of the model is presented in Fig. 12. The

model demonstrates its possibilities to describe cyclic loadings, i.e., the dif-

ference between the first and second loadings and the difference with the next
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Parameters Cc
R0N

c
0 N c

0 a1 a3 b1 b3 b4 ν

Values 0.239 5.65 0.410 0.370 0.578 0.669 0.796 0.00590

Table 3: Values of the material parameters fitted on the experimental results of Section 2

loading. Moreover by changing the material parameters along the direction,

the model can be initially anisotropic, and the different evolutions of the

parameters according to the direction induced anisotropy.

cyclic loading

monotonic loading

λ

Π
(M

P
a
)

4.543.532.521.51

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 12: Example of a cyclic loading with the ”extension” component and the ”path”

component of the stess softening model.

First, the uniaxial tension test with secondary specimens is numerically

reproduced by firstly simulating kinematics of the preconditioning tensile
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test in order to evaluate the new stress-free configuration (average chain

length and density, prior maximum and minimum chain stretches) in each

discretized direction. While considering these characteristics as initial ones,

analytical simulation of the subsequent tensile tests on cut samples is then

achieved for the retained set of loading directions (oriented at 0◦, 22.5◦, 45◦,

67.5◦ and 90◦ from the pre-softening loading direction). As shown in Fig. 13,

the proposed model provides a good agreement with experimental data de-

picted in Fig. 4, more precisely, it successfully predicts the anisotropic dis-

tribution of stress-softening, stiffening and residual strain phenomena under

uniaxial tensile stretching.
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Figure 13: Model prediction (right) of the anisotropy induced by the Mullins effect under

cyclic tensile conditions up to a stretch of 3.25, compared with experiments (left).

Fig. 14 presents the evolution of variables involved in the proposed for-

mulation and highlights the influence of history of each chain in the global

response of the specimen. Loading is decomposed in time ranges. From t = 0
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Figure 14: Evolution of internal variables during unixial stretch for chains oriented at 0◦

and 90◦ respectively.

to t1, the micro-sphere is stretched in direction 90◦ to λ = 3.25. Then from t1

to t2 the microsphere is unstained, then stretched in direction 0◦ to λ = 4.5

(reaching value λ = 3.25 at time t3). Finally, the microsphere is unstrained.

When the both chains reach the same value of αc and βc (i.e. α90 = α0 and

β90 = β0) the parameters Nc are identical (N90 = N0 = 12.21) but the dam-

age parameters are different (D0 = 0.029 and D90 = 0.018) as they depends

on the loading paths. That explains the difference of the responses observed

in Fig. 13.

Pure shear tests with secondary specimens are then simulated in a sim-

ilar way. As illustrated in Fig. 15, model predictions correctly describe the
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dependence of the material response on the direction, this dependence being

induced by the prior pure shear loading. Nevertheless, the remaining soft-

ening effect, significant on experimental results above the prior maximum

stretch level endured, is not reproduced by the constitutive equation.
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Figure 15: Model predictions (right) of the anisotropy induced by the Mullins effect under

cyclic pure shear conditions up to a stretch of 4, compared with experiments (left).

Results of calculations for the modified equibiaxial test with secondary

samples are shown in Fig. 16. The response of the model is corrected by the

initial anisotropy in order to be compared with experimental data of Fig. 8.

Despite a small discrepancy about the amount of softening, the general trend

of data is fairly well described below and beyond the pre-softening stretch

level. While comparing experimental and theoretical results for the modified

biaxial respectively shown in Fig. 9 and 17, a similar conclusion can be drawn.
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Figure 16: Model predictions (right) of the anisotropy induced by the Mullins effect under

cyclic modified ”equibiaxial” conditions up to a stretch of 3.25 in both directions, compared

with experiments (left).
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Figure 17: Model predictions (right) of the anisotropy induced by the Mullins effect under

cyclic modified ”biaxial” conditions up to a stretch of 2.25 in the first direction and 3.25

in the second one, compared with experiments (left).
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4.2. Thermodynamics

As seen in section 3.2, the only way to verify the positiveness of the

energy dissipation is to verify it a posteriori. For the proposed equation, the

derivatives to introduce in eq. 10 are:

∂f

∂αc
= a1 exp(a1(α

c − 1)), ∂g

∂αc
= a3 exp(a3(α

c − 1))α̇c + b3b4 exp(b4(α
c − 1))β̇c

∂f

∂α̇c
= 0, ∂g

∂α̇c
= a3 exp(a3(α

c − 1))

∂f

∂βc
= b1,

∂g

∂βc
= 0

∂f

∂β̇c
= 0, ∂g

∂β̇c
= b3 exp(b4(α

c − 1))

(15)

We can notice that, for the present model, the positiveness of the energy

dissipation can not be ensured mathematically. This invalidates it for further

predictive simulations. But, in this paper, the model is only used to vali-

date the assumption of a stiffening phenomenon involved in the stretching

of rubber. In the following, we only try to validate the positiveness of the

dissipation of the present simulation, with the material parameters given in

table 3.

We first verified the positiveness of the dissipation for the above exper-

iments. Fig. 18 shows the dissipation of the sample as a function of time

during the test for the tensile test (corresponding to Fig. s 13 and 14). We

can notice that the dissipation Dint is always positive. The same verifications

are made for all the test-cases with the same conclusion.

To support this verification we propose to use the above fitted model and

to impose a quiet complex load history. Load histories are built including

cyclic loads of four different types among uniaxial extension, equi-biaxial
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Figure 18: Dissipation inside the material during the uniaxial tensile test. A first extension

to λ = 3.25 is applied in direction 0◦ then a second extension of λ = 6 in a different

direction.

extension, general biaxial extension, and pure shear deformations. Then the

dissipation Dint obtained by the development of Eq.8 is computed.

An example of arbitrary biaxial extension is given in Fig. 19(a) according

to the plan λ1 and λ2 (because of the incompressibility the state of deforma-

tion can be resumed by both parameters λ1 and λ2). The positiveness of the

corresponding dissipation is observed as show in Fig. 19(b).

This process is repeated for many different load paths and the second

principle of thermodynamics is systematically verified.

Fig. 19(b) shows that of negative partDg of the dissipation due to function

g of equation (9) is counterbalanced by the other terms of the dissipation. It

is also to note the part DD of the damage function is negligible with respect

to the other terms.
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Figure 19: (a) Arbitrary biaxial load path given as function of λ1 and λ2, (b) coresponding

dissipation given as function of λ2

5. Concluding remarks

A relevant experimental procedure was proposed to characterise the anisotropic

distribution of stress-softening under various homogeneous deformation modes.

Besides the generally observed stress-softening and residual strain phenom-

ena, a stiffening effect has been stated in contracted regions beyond the

maximum stretch level previously undergone by the material. Within this

framework, we proposed a new network mechanism for the anisotropic de-

scription of these inelastic effects, which are considered to result from the

breakdown and slippage of junctions bridging polymer chains and/or filler

particles. This alteration scenario leads to an increase of the average chain

contour length in tensile loaded regions and a decrease in contracted zones.

This approach is implemented in a hyperelastic network-based formulation

34



by describing the evolution of the material parameters through an alteration

function involving both a softening and a stiffening variable. Since the struc-

tural rearrangements are assumed to generate a new equilibrium stress-free

configuration, this evolution is described in an incremental way. Discretized

integration formula, well-adapted to the representation of initial or induced

anisotropy, is retained to numerically perform the homogenisation procedure.

It was shown that, our model reproduces the residual stretch as a natural

consequence of the anisotropic character of the alteration process. Suitability

of the resulting formulation is demonstrated on the basis of available experi-

mental results highlighting the anisotropic material properties generated by

prior loading. Finally, the proposed formulation permits to fit globally a

large set of experimental data that are very different in term of strain states

with few material parameters.
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Notations

x scalar x

f(x) f as function of x

∂f

∂x
partial derivative of f with respect to x

ẋ derivative of x with respect to time

b vector b

A tensor A

bT transpose of b

A · b dot product of A by b

A : B double-dot product of A by B

A⊗B dyadic product of A by B

≈ is approximated by...
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