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ABSTRACT

This paper is focused on spectral unmixing and presents an
original technique based on Optimal Transport. Optimal
Transport consists in estimating a plan that transports a spec-
trum onto another with minimal cost, enabling to compute
an associated distance (Wasserstein distance) that can be
used as an alternative metric to compare hyperspectral data.
This is exploited for spectral unmixing where abundances in
each pixel are estimated on the basis of their projections in
a Wasserstein sense (Bregman projections) onto known end-
members. In this work an over-complete dictionary is used
to deal with internal variability between endmembers, while
a regularization term, also based on Wasserstein distance, is
used to promote prior proportion knowledge in the endmem-
ber groups. Experiments are performed on real hyperspectral
data of asteroid 4-Vesta.

Index Terms— Optimal Transport, Spectral Unmixing,
Endmember Variability, Wassertein Distance, Bregman Pro-
jection

1. INTRODUCTION

Unmixing is an active field in hyperspectral data analysis and
consists in estimating the abundance of pure materials (named
endmembers) that are part of a pixel spectrum. These pure
elements are either estimated from the image (unsupervised
methods) or directly given in a prior knowledge (supervised
approach).

Unmixing spectral information. A large number of al-
gorithms have been proposed to deal with hyperspectral
unmixing (HSU) (see [1, 2] for a comprehensive survey)
and existing methods can roughly be distinguished by their
mixing process assumption (linear or not). Under linear as-
sumption, associated techniques have good relative balance
between computational complexity and acceptable accuracy.
However in practice such linear assumption is violated in
many cases [1] for example because of multiple scattering
phenomenon [3] that occurs due to the interaction of light

with several materials (in macroscopic scale). It can also
be due to intimate mixing of materials which refers to the
simultaneous interaction of light with all the endmembers
(in microscopic scale) [4]. These phenomena have raised a
number of different nonlinear mixing models such as intimate
mixtures, bilinear models and other physics-based nonlinear
mixing models in order to give an approximate formulation of
the real mixing process. Intimate mixture models rely in gen-
eral in the formulation and inversion of the radiative transfer
[5]. However all physical quantities involved, often depend
on unknown parameters in the observed scene, yielding a
difficult estimation process. This is the reason why (non-
linear) analytical models such as bilinear models have been
applied with success to represent the multiple scattering phe-
nomenon. One can for example mention the non-linear model
proposed by Nascimento [6], the general bilinear model [7],
linear-quadratic mixing. [8]. Also a comparison of these
models in a forestry context can be seen in [9]. To deal with
nonlinearity, kernel-based algorithms which project the input
data in a feature space of (possibly very) high dimension
where linearity is improved also offer interesting alternatives
[3, 10].

Endmember variability. In addition to abundance estima-
tion, the problem of endmember quality has been the focus
of several recent studies. As a matter of fact in many cases
endmembers are either estimated up to some uncertainties or
characterized not only by a single spectrum but rather by a
set of different spectra. Using only one spectrum to decom-
pose the information is then hazardous and likely to decrease
the efficiency of the unmixing process. In order to cope with
these issues, over complete dictionaries of hyperspectral sig-
natures have reveal their efficiency [11, 12]. The general idea
is to construct a set/dictionary of endmembers larger than
the effective number of pure materials to deal with the inter-
nal heterogeneity inside a particular material (which should
correspond to only one endmember in classical approaches).
This principle will be explored in this paper.



Spectra comparison. & optimal transport In all tech-
niques mentioned above, a metric between spectra is re-
quired. Several criteria have been used in a hyperspectral
context (spectral angle mapper and Euclidean minimum
distance being the two most popular ones), however, few
approaches consider spectra as probability distributions in
the spectral domain. We consider in this work an original
metric, designed between probability density functions to
compare spectra. This metric, based on optimal transport
(OT) is called Wasserstein distance, and can be designed to
be mostly sensitive to shifts in the frequency domains. To
exploit OT, each spectrum should be normalized (the integra-
tion along spectral values should be 1) in order to be viewed
as a probability distribution. By doing this normalization
we make the analysis insensitive to quantities of materials in
each pixel and we rather focus on proportions. This enables
for example to improve robustness against shadows or other
large radiance changes and as discussed in [13], can prevent
degenerate solutions.

Outline of the paper. In the next section, we explain the
basics of OT together with the entropy-based regularization
term which is used for calculation of abundance coefficients.
Experiments on the challenging 4-Vesta asteroid dataset are
then shown and discussed in section 3.

2. UNMIXING USING PRIORS AND ITERATIVE
BREGMAN PROJECTIONS

We first introduce optimal transport, then we present in sec-
tion 2.2 a regularized version more efficient from a compu-
tational point of view and section 2.3 proposes an unmixing
model based on optimal transport.

2.1. Optimal transport of spectra

Optimal Transport (OT) can be seen as the search for a plan
that moves (transports) a spectrum µ1 onto another spectrum
µ2 with a minimum cost. This cost is usually related to a
metric of the embedding space. In our case, we will gener-
ally use a squared Euclidean distance L2

2 as this cost, but it
should be mentioned that other cost functions, specific to a
given problem, might be used. In the relaxed formulation of
Kantorovitch [14], OT seeks for an optimal coupling that can
be seen as a joint probability distribution between µ1 and µ2.
In other words, if we define Π(µ1, µ2) the space of proba-
bility distributions over R2 with prescribed marginals µ1 and
µ2, the optimal transport is the coupling γ ∈ Π(µ1, µ2) which
minimizes the following quantity:

Wc(µ1, µ2) = inf
γ∈Π(µ1,µ2)

∫
R2

c(x1,x2)dγ(x1,x2) (1)

where c(x1,x2) is the cost between x1 and x2 (issued from
distributions µ1 and µ2 respectively). In the discrete versions

of the problem, i.e. when µ1 and µ2 are sampled by a sensor
and expressed as vectors of Rd, the previous equation reads:

WC(µ1, µ2) = min
γ∈Π(µ1,µ2)

< γ,C >F , (2)

where < ., . >F is the Frobenius dot product and C ≥ 0 is a
cost matrix (of size d×d), which gathers all the costs for mov-
ing from bin i to bin j, and γ is now a matrix of size d×d, with
marginals defined as µ1 and µ2. We note that this distance is
also known as the Earth Moving Distance in the computer vi-
sion community [15]. Solving for equation (2) is a simple
linear programming problem with equality constraints, but its
dimensions scales quadratically with the number of samples
in the spectra. This might generate computational problems
when the dimension of distributions is high, as in hyperspec-
tral data. For this reason, we now consider a regularized ver-
sion of the problem which has the extra benefit of being faster
to solve.

2.2. Entropy regularized Optimal Transport and Breg-
man projections

The idea is here to put a regularization term over γ that con-
trols the smoothness of the coupling through its entropy. The
entropy regularized version of the discrete optimal transport
problem reads [16]:

WC,ε(µ1, µ2) = min
γ∈Π(µ1,µ2)

< γ,C >F −εh(γ), (3)

where h(γ) is the entropy of γ, reading

h(γ) = −
∑
ij

γij log γij = − < γ, log γ >F ,

if log is applied component-wise to γ. Denoting the Kullback
Leibler divergence (KL), i.e. KL(γ, ρ) =

∑
ij γij log

γij
ρij

=<

γ, log γ
ρ >F where again the log and the division are taken

component wise, one can establish the following link between
OT and Bregman projections:

Proposition 2.1 [OT as a Bregman projection [17, Eq.
(6)]] The minimizer γ? of (3) is the solution of the following
Bregman projection

γ? = arg min
γ∈Π(µ1,µ2)

KL(γ, ζ), (4)

where ζ = exp(−Cε ).

Interestingly enough, the entropy regularized version
of OT admits a simple algorithm for the resolution of this
problem, based on the successive projections over the two
marginal constraints. More specifically, solving (4) when
one of the two marginals is unknown admits a closed form
solution.



Proposition 2.2 [Closed form solution of OT with one un-
known marginal [17, Eq. (7)]] For an undefined µ2, γ? is
solely constrained by one marginal µ1 and is the solution of
the following closed-form projection:

γ? = diag

(
µ1

ζ1

)
ζ (5)

where again the division has to be understood component-
wise. Consequently, by iterating over successive Bregman
projections on the set of the two marginal constraints, one
can derive an efficient algorithm to solve for the OT problem.
We refer the reader to [17] for a more complete treatment on
this subject. Finally, when several OT distances are implied in
the same optimization problem, this iterative projection strat-
egy is still applicable. We use this property in our unmixing
model, described in the following.

2.3. Unmixing model

We start here by recalling our initial assumptions. We as-
sume a linear mixture for each spectrum µ : µ = Eα where
matrix E of size d × q contains q (known) endmembers of
dimension d and vector α > 0 of size q × 1 has to be es-
timated under the sum-to-one constraint, i.e. αT1 = 1. As
such, it corresponds to discrete probability distribution func-
tion or histogram. From the image analysis, we seek to ex-
tract p abundances per pixels of distinct materials of interest.
In practice the number of endmembers q exceeds the number
of proportions p we aim at estimating (q ≥ p). This allows to
consider several distinct versions of spectra for the same ma-
terial of interest, thus accounting for endmembers variability.
In addition we assume that we have a prior knowledge α0

(p-dimensional) over the abundances.
The unmixing of a spectrum µ is the solution of the fol-

lowing optimization:

α = arg min
α

WC0,ε0(µ,Eα)︸ ︷︷ ︸
data fitting

+τ WC1,ε1(α, α0)︸ ︷︷ ︸
prior

. (6)

As it can be seen, the problem is subdivided in a data fitting
term (which tries to find the best decomposition from obser-
vations) and a regularization term (which enforces the com-
pliance of the solution with the prior) balanced by parameter
τ ∈ R+. From these two terms, regarding equation (3), two
cost functions C0 and C1 are involved. Matrix C0 is linked
with a metric in the spectral dimensions of the data (and is
usually related to the L2-norm along frequencies) while C1

is a cost matrix of size q × p with a specific structure which
contains information about the classes of endmembers. Two
endmembers related to the same element will share a very
low cost with the corresponding material in α0 but a higher
cost with other materials. An easy way to handcraft C1 is
to set C1(i, j) = 0 if endmember i is related to material
j, and 1 elsewhere. Finally, two regularization parameters

Algorithm 1 Supervised unmixing procedure with OT
1: Input: µ
2: Parameters: α0,E,τ ,C0,C1,ε0,ε1,maxIter
3: cpt← 0, err←∞
4: α← 1/q
5: ζ0 ← exp(−C0

ε0
), ζ1 ← exp(−C1

ε1
)

6: while cpt <maxIter and err>threshold do
7: ζ0 ← diag( µ

ζ01 )ζ0
8: ζ1 ← diag( α0

ζ11 )ζ1
9: µtmp ← exp(log(ζ01) + τ log(Eζ11))

10: ζ0 ← ζ0 diag(
µtmp

ζT0 1
)

11: ζ1 ← ζ1 diag(
ETµtmp

ζT1 1
)

12: err← ||α(cpt) − α(cpt−1)||2
13: cpt←cpt+1
14: end while
15: return α

ε0 and ε1 related to the regularized version of the transport
have to be set. The resolution of the optimization problem in
(6), inspired from the weighted Wasserstein barycenter prob-
lem [17], is done using iterative Bregman projections. Algo-
rithm 1 presents the corresponding procedure in pseudo-code.

3. EXPERIMENTS AND ANALYSIS

Fig. 1. Mosaic of northern hemisphere of Vesta-4 asteroid.
The window in red (61× 61) is used as the test bed.

3.1. 4-Vesta properties and dataset

A mosaic of Vesta-4 asteroid is visible in Figure 1. The image
is taken by visible and infrared mapping spectrometer (VIR)
which comes with two arrays of detectors: One array covering
the visible range (between .25µm and 1.05µm) with spec-
tral sampling of 1.8nm and the other covering the infrared
range (between 1.0µm and 5.0µm) with spectral sampling of
9.8nm. The total number of considered bands after remov-
ing the noisy ones are d = 383 covering the range of .55µm
to 2.4µm . Although there is no exact information about the
components of the crust and mantel of this protoplanet aster-
oid, some expert knowledge is available (see [18] and [19]).
From this we know that the major surface is dominated by
three rocks: Eucrite, Howardite and Diogenite. It is believed



that roughly the southern hemisphere of 4-Vesta is Deogenite-
rich while the northern hemisphere crust is mainly composed
of Eucrite and different types of pyroxene with recently de-
tected clusters of Olivine.

3.2. Experimental setup

We used a total number of q = 20 spectral signatures of dif-
ferent lithologies, found ubiquitously in the composition of
the meteorites, collected on Earth. we could categorize these
signatures in 3 groups: Olivine, Orthopyroxene, Eucrit. Con-
sequently we set p = 3 in order to identify ”maximally pure”
endmembers which are believed to exist within the scene. As
the consequence, matrix C1 involved in equation (6) will be
of dimension 20 × 3. As mentioned in previous section, this
cost matrix contains information about the classes of end-
members (two endmembers related to the same material will
share a very low cost with the corresponding material in α0

but a higher cost with other materials). In particular we set
C1(i, j) = 0 if endmember i is related to material group j,
and 1 elsewhere.

As for the cost matrix C0 in relation (6), we simply use
the L2

2 norm between each spectral value. The regularization
parameters ε0 and ε1 have been set to 1 and 103 and the bal-
ance parameter is τ = 0.9 . This is set manually from data
but more advanced approaches with cross-correlation could
be used. For setting prior knowledge of the expected end-
members different combinations of non-negative 3-values for
α0 with non-negativity and additvity constraints were tested.
By α0 we reflect our prior expectation of the proportions of
the 3 expected groups of lithologies.

3.3. Unmixing results and discussion

We made some experiments with setting different combina-
tions of priors for each group of materials. By this we ob-
serve abundance maps with some nuances. These are rep-
resented in Fig. 2 a). It is interesting to observe that in all
cases, spatially consistent areas extracted and correspond to
existing spatial patterns of rocks. This is in contrast to the un-
mixing results we achieved by using constrained least squares
(CLS) method which is illustrated in 2 b). As for the quan-
tities of pure elements, our results are consistent with very
recent studies [19] on this part of 4-Vesta. In particular the
fact that different compositions of Orthopyroxene are domi-
nant while Olivine patches are spatially much more isolated
and sparse goes well with the latest observations on the com-
position of the materials of this area. As the role of priors
one can see the change in susceptibility/sensitiveness towards
a particular material when changing the prior value over that
material. This in particular is visible w.r.t the Olivine maps.

a) Estimated Abundance Maps with different priors α0.

b) Estimated Abundance Maps with Constrained Least Squares.

Fig. 2. Estimated Abundance Maps using OT (top) and CLS
(bottom)

4. DISCUSSION/CONCLUSION

In this work we have proposed a hyperspectral unmixing ap-
proach based an optimal transport. This metric, devoted to
distributions, is mostly senstive to shifts in the frequency do-
mains and therefore differs from most usual criteria as spec-
tral angle mapper or Euclidean distance. The problem of
spectral variability and the confusion in selecting the best end-
members among the existing dictionary is addressed through
an overcomplete dictionary. This results in a specific cost-
function to optimize where both observation and regulariza-
tion terms are based on OT. Our primarily experiments on the
real 4-Vesta dataset show a good accordance of our results
with the unmixing issued from the latest geological findings
about the composition of lithologies on this asteroid.
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Nenna, and Gabriel Peyré, “Iterative bregman projections for
regularized transportation problems,” SIAM Journal on Scien-
tific Computing, vol. 37, no. 2, pp. A1111–A1138, 2015.

[18] E Ammannito, MC De Sanctis, E Palomba, A Longobardo,
DW Mittlefehldt, HY McSween, S Marchi, MT Capria, F Ca-
paccioni, A Frigeri, et al., “Olivine in an unexpected location
on vesta/’s surface,” Nature, vol. 504, no. 7478, pp. 122–125,
2013.

[19] Jean-Philippe Combe, Thomas B McCord, Lucy A McFadden,
Simone Ieva, Federico Tosi, Andrea Longobardo, Alessandro
Frigeri, Maria Cristina De Sanctis, Eleonora Ammannito, Ot-
taviano Ruesch, et al., “Composition of the northern regions
of vesta analyzed by the dawn mission,” Icarus, vol. 259, pp.
53–71, 2015.


