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Abstract—Domain adaptation is one of the most chal-

lenging tasks of modern data analytics. If the adapta-

tion is done correctly, models built on a specific data

representation become more robust when confronted to

data depicting the same classes, but described by another

observation system. Among the many strategies proposed,

finding domain-invariant representations has shown excel-

lent properties, in particular since it allows to train a

unique classifier effective in all domains. In this paper, we

propose a regularized unsupervised optimal transportation

model to perform the alignment of the representations in

the source and target domains. We learn a transportation

plan matching both PDFs, which constrains labeled samples

of the same class in the source domain to remain close

during transport. This way, we exploit at the same time the

labeled samples in the source and the distributions observed

in both domains. Experiments on toy and challenging real

visual adaptation examples show the interest of the method,

that consistently outperforms state of the art approaches. In

addition, numerical experiments show that our approach
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leads to better performances on domain invariant deep

learning features and can be easily adapted to the semi-

supervised case where few labeled samples are available in

the target domain.

Index Terms—Unsupervised Domain Adaptation, Op-

timal Transport, Transfer Learning, Visual Adaptation,

Classification.

I. INTRODUCTION

Modern data analytics are based on the availability

of large volumes of data, sensed by a variety of ac-

quisition devices and at high temporal frequency. But

this large amounts of heterogeneous data also make

the task of learning semantic concepts more difficult,

since the data used for learning a decision function

and those used for inference tend not to follow the

same distribution. Discrepancies (also known as drift)

in data distribution are due to several reasons and are

application-dependent. In computer vision, this problem

is known as the visual adaptation domain problem, where

domain drifts occur when changing lighting conditions,

acquisition devices, or by considering the presence or

absence of backgrounds. In speech processing, learning

from one speaker and trying to deploy an application

targeted to a wide public may also be hindered by the

differences in background noise, tone or gender of the

speaker. In remote sensing image analysis, one would

like to leverage from labels defined over one city image

to classify the land occupation of another city. The drifts
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observed in the probability density function (PDF) of

remote sensing images are caused by variety of factors:

different corrections for atmospheric scattering, daylight

conditions at the hour of acquisition or even slight

changes in the chemical composition of the materials.

For those reasons, several works have coped with

these drift problems by developing learning methods

able to transfer knowledge from a source domain to

a target domain for which data have different PDFs.

Learning in this PDF discrepancy context is denoted

as the domain adaptation problem [37]. In this work,

we address the most difficult variant of this problem,

denoted as unsupervised domain adaptation, where

data labels are only available in the source domain.

We tackle this problem by assuming that the effects of

the drifts can be reduced if data undergo a phase of

adaptation (typically, a non-linear mapping) where both

domains look more alike.

Several theoretical works [2], [36], [22] have empha-

sized the role played by the divergence between the

data probability distribution functions of the domains.

These works have led to a principled way of solving

the domain adaptation problem: transform data so as

to make their distributions “closer”, and use the label

information available in the source domain to learn

a classifier in the transformed domain, which can be

applied to the target domain. Our work follows the same

intuition and proposes a transformation of the source

data that fits a least effort principle, i.e. an effect

that is minimal with respect to a transformation cost or

metric. In this sense, the adaptation problem boils down

to: i) finding a transformation of the input data matching

the source and target distributions and then ii) learning

a new classifier from the transformed source samples.

This process is depicted in Figure 1. In this paper, we

advocate a solution for finding this transformation based

on optimal transport.

Optimal Transport (OT) problems have recently raised

interest in several fields, in particular because OT theory

can be used for computing distances between probabil-

ity distributions. Those distances, known under several

names in the literature (Wasserstein, Monge-Kantorovich

or Earth Mover distances) have important properties: i)

They can be evaluated directly on empirical estimates

of the distributions without having to smoothen them

using non-parametric or semi-parametric approaches; ii)

By exploiting the geometry of the underlying metric

space, they provide meaningful distances even when the

supports of the distributions do not overlap. Leveraging

from these properties, we introduce a novel framework

for unsupervised domain adaptation, which consists in

learning an optimal transportation based on empirical ob-

servations. In addition, we propose several regularization

terms that favor learning of better transformations w.r.t.

the adaptation problem. They can either encode class

information contained in the source domain or promote

the preservation of neighborhood structures. An efficient

algorithm is proposed for solving the resulting regu-

larized optimal transport optimization problem. Finally,

this framework can also easily be extended to the semi-

supervised case, where few labels are available in the

target domain, by a simple and elegant modification in

the optimal transport optimization problem.

The remainder of this Section presents related works,

while Section II formalizes the problem of unsupervised

domain adaptation and discusses the use of optimal

transport for its resolution. Section III introduces op-

timal transport and its regularized version. Section IV

presents the proposed regularization terms tailored to fit

the domain adaptation constraints. Section V discusses

algorithms for solving the regularized optimal transport

problem efficiently. Section VI evaluates the relevance of
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Fig. 1: Illustration of the proposed approach for domain adaptation. (left) dataset for training, i.e. source domain,

and testing, i.e. target domain. Note that a classifier estimated on the training examples clearly does not fit the target

data. (middle) a data dependent transportation map Tγ0 is estimated and used to transport the training samples

onto the target domain. Note that this transformation is usually not linear. (right) the transported labeled samples

are used for estimating a classifier in the target domain.

our domain adaptation framework through both synthetic

and real-world examples.

A. Related works

Domain adaptation. Domain adaptation strategies

can be roughly divided in two families, depending on

whether they assume the presence of few labels in the

target domain (semi-supervised DA) or not (unsuper-

vised DA).

In the first family, methods which have been proposed

include searching for projections that are discriminative

in both domains by using inner products between source

samples and transformed target samples [42], [32], [29].

Learning projections, for which labeled samples of the

target domain fall on the correct side of a large margin

classifier trained on the source data, have also been

proposed [27]. Several works based on extraction of

common features under pairwise constraints have also

been introduced as domain adaptation strategies [26],

[52], [47].

The second family tackles the domain adaptation

problem assuming, as in this paper, that no labels are

available in the target domain. Besides works dealing

with sample reweighting [46], many works have con-

sidered finding a common feature representation for the

two (or more) domains. Since the representation, or

latent space, is common to all domains, projected labeled

samples from the source domain can be used to train a

classifier that is general [18], [38]. A common strategy is

to propose methods that aim at finding representations

in which domains match in some sense. For instance,

adaptation can be performed by matching the means

of the domains in the feature space [38], aligning the

domains by their correlations [33] or by using pair-

wise constraints [51]. In most of these works, feature

extraction is the key tool for finding a common latent

space that embeds discriminative information shared by

all domains.

Recently, the unsupervised domain adaptation prob-

lem has been revisited by considering strategies based on

a gradual alignment of a feature representation. In [24],

authors start from the hypothesis that domain adaptation

can be better estimated when comparing gradual dis-
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tortions. Therefore, they use intermediary projections of

both domains along the Grassmannian geodesic connect-

ing the source and target eigenvectors. In [23], [54], all

sets of transformed intermediary domains are obtained

by using a geodesic-flow kernel. While these methods

have the advantage of providing easily computable out-

of-sample extensions (by projecting unseen samples onto

the latent space eigenvectors), the transformation defined

remains global and is applied in the same way to the

whole target domain. An approach combining sample

reweighting logic with representation transfer is found

in [53], where authors extend the sample re-weighing

to reproducing kernel Hilbert space through the use of

surrogate kernels. The transformation achieved is again

a global linear transformation that helps in aligning

domains.

Our proposition strongly differs from those reviewed

above, as it defines a local transformation for each

sample in the source domain. In this sense, the domain

adaptation problem can be seen as a graph matching

problem [35], [10], [11] as each source sample has to

be mapped on target samples under the constraint of

marginal distribution preservation.

Optimal Transport and Machine Learning. The opti-

mal transport problem has first been introduced by the

French mathematician Gaspard Monge in the middle

of the 19th century as a way to find a minimal effort

solution to the transport of a given mass of dirt into

a given hole. The problem reappeared in the middle

of the 20th century in the work of Kantorovitch [30]

and found recently surprising new developments as a

polyvalent tool for several fundamental problems [49].

It was applied in a wide panel of fields, including

computational fluid mechanics [3], color transfer be-

tween multiple images or morphing in the context of

image processing [40], [20], [5], interpolation schemes

in computer graphics [6], and economics, via matching

and equilibriums problems [12].

Despite the appealing properties and application suc-

cess stories, the machine learning community has con-

sidered optimal transport only recently (see, for instance,

works considering the computation of distances between

histograms [15] or label propagation in graphs [45]); the

main reason being the high computational cost induced

by the computation of the optimal transportation plan.

However, new computing strategies have emerged [15],

[17], [5] and made possible the application of OT

distances in operational settings.

II. OPTIMAL TRANSPORT AND APPLICATION TO

DOMAIN ADAPTATION

In this section, we present the general unsupervised

domain adaptation problem and show how it can be

addressed from an optimal transport perspective.

A. Problem and theoretical motivations

Let Ω ∈ Rd be an input measurable space of dimen-

sion d and C the set of possible labels. P(Ω) denotes

the set of all probability measures over Ω. The standard

learning paradigm assumes the existence of a set of

training data Xs = {xsi}
Ns
i=1 associated with a set of

class labels Ys = {ysi }
Ns
i=1, with ysi ∈ C, and a testing

set Xt = {xti}
Nt
i=1 with unknown labels. In order to infer

the set of labels Yt associated with Xt, one usually

relies on an empirical estimate of the joint probability

distribution P(x, y) ∈ P(Ω × C) from (Xs,Ys), and

assumes that Xs and Xt are drawn from the same

distribution P(x) ∈ P(Ω).

B. Domain adaptation as a transportation problem

In domain adaptation problems, one assumes the

existence of two distinct joint probability distributions
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Ps(x
s, y) and Pt(x

t, y), respectively related to a source

and a target domains, noted as Ωs and Ωt. In the

following, µs and µt are their respective marginal dis-

tributions over X. We also denote fs and ft the true

labeling functions, i.e. the Bayes decision functions in

each domain.

At least one of the two following assumptions is

generally made by most domain adaptation methods:

• Class imbalance: Label distributions are different

in the two domains (Ps(y) 6= Pt(y)), but the

conditional distributions of the samples with respect

to the labels are the same (Ps(x
s|y) = Pt(x

t|y));

• Covariate shift: Conditional distributions of the la-

bels with respect to the data are equal (Ps(y|xs) =

Pt(y|xt), or equivalently fs = ft = f ). However,

data distributions in the two domains are supposed

to be different (Ps(x
s) 6= Pt(x

t)). For the adapta-

tion techniques to be effective, this difference needs

to be small [2].

In real world applications, the drift occurring between

the source and the target domains generally implies a

change in both marginal and conditional distributions.

In our work, we assume that the domain drift is due

to an unknown, possibly nonlinear map of the input

space T : Ωs → Ωt. This map may have a physical

interpretation (e.g. change in the acquisition conditions,

sensor drifts, thermal noise, etc.). It can also be directly

caused by the unknown process that generates the data.

Additionnally, we also suppose that the transformation

preserves the conditional distribution, i.e.

Ps(y|xs) = Pt(y|T(xs)).

This means that the label information is preserved by

the transformation, and the Bayes decision functions are

tied through the equation ft(T(x)) = fs(x).

Another insight can be provided regarding the trans-

formation T. From a probabilistic point of view, T

transforms the measure µ in its image measure, noted

T#µ, which is another probability measure over Ωt

satisfying

T#µ(x) = µ(T−1(x)), ∀x ⊂ Ωt (1)

T is said to be a transport map or push-forward from

µs to µt if T#µs = µt (as illustrated in Figure 2.a).

Under this assumption, Xt are drawn from the same

PDF as T#µs. This provides a principled way to solve

the adaptation problem:

1) Estimate µs and µt from Xs and Xt (Equation

(6))

2) Find a transport map T from µs to µt

3) Use T to transport labeled samples Xs and train

a classifier from them.

Searching for T in the space of all possible transfor-

mations is intractable, and some restrictions need to be

imposed. Here, we propose that T should be chosen so

as to minimize a transportation cost C(T) expressed as:

C(T) =

∫
Ωs

c(x,T(x))dµ(x), (2)

where the cost function c : Ωs × Ωt → R+ is a

distance function over the metric space Ω. C(T) can be

interpreted as the energy required to move a probability

mass µ(x) from x to T(x).

The problem of finding such a transportation of min-

imal cost has already been investigated in the litera-

ture. For instance, the optimal transportation problem

as defined by Monge is the solution of the following

minimization problem:

T0 = argmin
T

∫
Ωs

c(x,T(x))dµ(x), s.t. T#µs = µt

(3)

The Kantorovitch formulation of the optimal transporta-

tion [30] is a convex relaxation of the above Monge
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problem. Indeed, let us define Π as the set of all

probabilistic couplings ∈ P(Ωs×Ωt) with marginals µs

and µt. The Kantorovitch problem seeks for a general

coupling γ ∈ Π between Ωs and Ωt:

γ0 = argmin
γ∈Π

∫
Ωs×Ωt

c(xs,xt)dγ(xs,xt) (4)

In this formulation, γ can be understood as a joint prob-

ability measure with marginals µs and µt as depicted

in Figure 2.b. γ0 is also known as transportation plan

[43]. It allows to define the Wasserstein distance of

order p between µs and µt. This distance is formalized

as

Wp(µs, µt)
def
=

(
inf
γ∈Π

∫
Ωs×Ωt

d(xs,xt)pdγ(xs,xt)

) 1
p

= inf
γ∈Π

{(
E

xs∼µs,xt∼µt

d(xs,xt)p
) 1

p

}
(5)

where d is a distance and the corresponding cost function

c(xs,xt) = d(xs,xt)p. The Wasserstein distance is also

known as the Earth Mover Distance in the computer

vision community [41] and it defines a metric over the

space of integrable squared probability measures.

In the remainder, we consider the squared `2 Eu-

clidean distance as a cost function, c(x,y) = ‖x− y‖22
for computing optimal transportation. As a consequence,

we evaluate distances between measures according to

the squared Wasserstein distance W 2
2 associated with

the Euclidean distance d(x,y) = ‖x − y‖2. The main

rationale for this choice is that it experimentally provided

the best result on average (as shown in the supplemen-

tary material). Nevertheless, other cost functions better

suited to the nature of specific data can be considered,

depending on the application at hand and the data

representation, as discussed more in details in Section

III-D.

III. REGULARIZED DISCRETE OPTIMAL TRANSPORT

This section discusses the problem of optimal trans-

port for domain adaptation. In the first part, we introduce

the OT optimization problem on discrete empirical dis-

tributions. Then, we discuss a regularized variant of this

discrete optimal transport problem. Finally, we address

the question of how the resulting probabilistic coupling

can be used for mapping samples from source to target

domain.

A. Discrete optimal transport

When µs and µt are only accessible through discrete

samples, the corresponding empirical distributions can

be written as

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(6)

where δxi
is the Dirac function at location xi ∈ Rd.

psi and pti are probability masses associated to the i-

th sample and belong to the probability simplex, i.e.∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 1. It is straightforward to

adapt the Kantorovich formulation of optimal transport

problem to the discrete case. We denote B the set

of probabilistic couplings between the two empirical

distributions defined as:

B =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt

}
(7)

where 1d is a d-dimensional vector of ones. The Kan-

torovitch formulation of the optimal transport [30] reads:

γ0 = argmin
γ∈B

〈γ,C〉F (8)

where 〈., .〉F is the Frobenius dot product and C ≥ 0 is

the cost function matrix, whose term C(i, j) = c(xsi ,x
t
j)

denotes the cost to move a probability mass from xsi to

xtj . As previously detailed, this cost was chosen as the

squared Euclidean distance between the two locations,

i.e. C(i, j) = ||xsi − xtj ||22.
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Note that when ns = nt = n and ∀i, j psi = ptj =

1/n, γ0 is simply a permutation matrix. In this case,

the optimal transport problem boils down to an optimal

assignment problem. In the general case, it can be shown

that γ0 is a sparse matrix with at most ns + nt − 1 non

zero entries, equating the rank of the constraint matrix

expressing the two marginal constraints.

Problem (8) is a linear program and can be solved

with combinatorial algorithms such as the simplex meth-

ods and its network variants (successive shortest path

algorithms, Hungarian or relaxation algorithms). Yet, the

computational complexity was shown to be O((ns +

nt)nsntlog(ns+nt)) [1, p. 472, Th. 12.2] at best, which

dampens the utility of the method when handling large

datasets. However, the regularization scheme recently

proposed by Cuturi [15] presented in the next section,

allows a very fast computation of a transportation plan.

B. Regularized optimal transport

Regularization is a classical approach used for pre-

venting overfitting when few samples are available for

learning. It can also be used for inducing some properties

on the solution. In the following, we discuss a regu-

larization term recently introduced for optimal transport

problem.

Cuturi [15] proposed to regularize the expression

of the optimal transport problem by the entropy of

the probabilistic coupling. The resulting information-

theoretic regularized version of the transport γλ0 is the

solution of the minimization problem:

γλ0 = argmin
γ∈B

〈γ,C〉F + λΩs(γ), (9)

where Ωs(γ) =
∑
i,j γ(i, j) log γ(i, j) computes the

negentropy of γ. The intuition behind this form of

regularization is the following: since most elements of

γ0 are 0 as the solution of a linear program, one

can look for a smoother version of the transport, thus

lowering its sparsity, by increasing its entropy. As a

result, the optimal transport γλ0 will have a denser

coupling between the distributions. Ωs(·) can also be

interpreted as a Kullback-Leibler divergence KL(γ‖γu)

between the joint probability γ and a uniform joint

probability γu(i, j) = 1
nsnt

. Indeed, by expanding this

KL divergence, we have KL(γ‖γu) = log nsnt +∑
i,j γ(i, j) log γ(i, j). The first term is a constant w.r.t.

γ, which means that we can equivalently use KL(γ‖γu)

or Ωs(γ) =
∑
i,j γ(i, j) log γ(i, j) in Equation (9).

Hence, as the parameter λ weighting the entropy-

based regularization increases, the sparsity of γλ0 de-

creases and source points tend to distribute their prob-

ability masses toward more target points. When λ be-

comes very large (λ→∞), the OT solution of Equation

(9) converges toward γλ0 (i, j)→ 1
nsnt

,∀i, j.

Another appealing outcome of the regularized OT

formulation given in Equation (9) is the derivation of a

computationally efficient algorithm based on Sinkhorn-

Knopp’s scaling matrix approach [31]. This efficient

algorithm will also be a key element in our methodology

presented in Section IV.

C. OT-based mapping of the samples

In the context of domain adaptation, once the proba-

bilistic coupling γ0 has been computed, source samples

have to be transported in the target domain. For this

purpose, one can interpolate the two distributions µs

and µt by following the geodesics of the Wasserstein

metric [49, Chapter 7], parameterized by t ∈ [0, 1]. This

defines a new distribution µ̂ such that:

µ̂ = argmin
µ

(1− t)W2(µs, µ)2 + tW2(µt, µ)2. (10)

Still following Villani’s book, one can show that for a
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squared `2 cost, this distribution boils down to:

µ̂ =
∑
i,j

γ0(i, j)δ(1−t)xs
i+txt

j
. (11)

Since our goal is to transport the source samples onto

the target distribution, we are mainly interested in the

case t = 1. For this value of t, the novel distribution

µ̂ is a distribution with the same support of µt, since

Equation (11) reduces to

µ̂ =
∑
j

p̂tjδxt
j
. (12)

with p̂tj =
∑
i γ0(i, j). The weights p̂tj can be seen as

the sum of probability mass coming from all samples

{xsi} that is transferred to sample xtj . Alternatively,

γ0(i, j) also tells us how much probability mass of xsi

is transferred to xtj . We can exploit this information to

compute a transformation of the source samples. This

transformation can be conveniently expressed with re-

spect to the target samples as the following barycentric

mapping:

x̂si = argmin
x∈Rd

∑
j

γ0(i, j)c(x,xtj). (13)

where xsi is a given source sample and x̂si is its corre-

sponding image. When the cost function is the squared

`2 distance, this barycenter corresponds to a weighted

average and the sample is mapped into the convex

hull of the target samples. For all source samples, this

barycentric mapping can therefore be expressed as:

X̂s = Tγ0
(Xs) = diag(γ01nt)

−1γ0Xt. (14)

The inverse mapping from the target to the source

domain can also be easily computed from γT0 . Interest-

ingly, one can show [17, Eq. 8] that this transformation

is a first order approximation of the true ns Wasserstein

barycenters of the target distributions. Also note that

when marginals µs and µt are uniform, one can easily

derive the barycentric mapping as a linear expression:

X̂s = nsγ0Xt and X̂t = ntγ
>
0 Xs (15)

for the source and target samples.

Finally, remark that if γ0(i, j) = 1
nsnt

,∀i, j, then each

transported source point converges toward the center of

mass of the target distribution that is 1
nt

∑
j xtj . This

occurs when λ→∞ in Equation (9).

D. Discussion

We discuss here the requirements and conditions of

applicability of the proposed method.

Guarantees of recovery of the correct transformation.

Our goal for achieving domain adaptation is to uncover

the transformation that occurred between source and

target distributions. While the family of transformation

that an OT formulation can recover is wide, we provide

a proof that, for some simple affine transformations of

discrete distributions, our OT solution is able to match

source and target examples exactly.

Theorem 3.1: Let µs and µt be two discrete distribu-

tions with n Diracs as defined in Equation (6). If the

following conditions hold

1) The source samples in µs are xsi ∈ Rd,∀i ∈

1, . . . , n such that xsi 6= xsj if i 6= j .

2) All weights in the source and target distributions

are 1
n .

3) The target samples are defined as xti = Axsi + b

i.e. an affine tranformation of the source samples.

4) b ∈ Rd and A ∈ S+ is a strictly positive definite

matrix.

5) The cost function is c(xs,xt) = ‖xs − xt‖22.

then the solution T0 of the optimal transport problem

(8) is so that T0(xsi ) = Axsi + b = xti ∀i ∈ 1, . . . , n.

In this case, we retrieve the exact affine transformation

on the discrete samples, which means that the label
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information are fully preserved during transportation.

Therefore, one can train a classifier on the mapped

samples with no generalization loss. We provide a

simple demonstration in the supplementary material.

Choosing the cost function. In this work, we have

mainly considered a `2-based cost function. Let us

now discuss the implication of using a different cost

function in our framework. A number of norm-based

distances have been investigated by mathematicians [49,

p 972]. Other types of metrics can also be considered,

such as Riemannian distances over a manifold [49,

Part II], or learnt metrics [16]. Concave cost functions

are also of particular use in real life problems [21].

Each different cost function will lead to a different OT

plan γ0, but the cost itself does not impact the OT

optimization problem, i.e. the solver is independent from

the cost function. Nonetheless, since c(·, ·) defines the

Wasserstein geodesic, the interpolation between domains

defined in Equation (10) leads to a different trajectory

(potentially non-unique). Equation (11), which corre-

sponds to c(·, ·), is a squared `2 distance, so it does

not hold anymore. Nevertheless, the solution of (10)

for t = 1 does not depend on the cost c and one

can still use the proposed barycentric mapping (13).

For instance if the cost function is based on the `1

norm, the transported samples will be estimated using

a component-wise weighted median. Unfortunately, for

more complex cost functions, the barycentric mapping

might be complex to estimate.

IV. CLASS-REGULARIZATION FOR DOMAIN

ADAPTATION

In this section we explore regularization terms that

preserve label information and sample neighborhood

during transportation. Finally, we discuss the semi-

supervised case and show that label information in the

target domain can be effectively included in he proposed

model.

A. Regularizing the transport with class labels

Optimal transport, as it has been presented in the

previous section, does not use any class information.

However, and even if our goal is unsupervised domain

adaptation, class labels are available in the source do-

main. This information is typically used only during

the decision function learning stage, which follows the

adaptation step. Our proposition is to take advantage of

the label information for estimating a better transport.

More precisely, we aim at penalizing couplings that

match source samples with different labels to same target

samples.

To this end, we propose to add a new term to the

regularized optimal transport, leading to the following

optimization problem:

min
γ∈B

〈γ,C〉F + λΩs(γ) + ηΩc(γ), (16)

where η ≥ 0 and Ωc(·) is a class-based regularization

term.

In this work, we propose and study two choices for

this regularizer Ωc(·). The first is based on group spar-

sity and promotes a probabilistic coupling γ0 where a

given target sample receives masses from source samples

which have same labels. The second is based on graph

Laplacian regularization and promotes a locally smooth

and class-regular structure in the source transported

samples.

1) Regularization with group-sparsity: With the first

regularizer, our objective is to exploit label information

in the optimal transport computation. We suppose that

all samples in the source domain have labels. The

main intuition underlying the use of this group-sparse
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xs

µt(T(xs))µs(x
s)

T(xs)⌦s ⌦t

(a)

⌦t

⌦s

(b) (c)

Fig. 2: Illustration of the optimal transport problem. (a) Monge problem over 2D domains. T is a push-forward

from Ωs to Ωt. (b) Kantorovich relaxation over 1D domains: γ can be seen as a joint probability distribution with

marginals µs and µt. (c) Illustration of the solution of the Kantorovich relaxation computed between two ellipsoidal

distributions in 2D. The grey line between two points indicate a non-zero coupling between them.

regularizer is that we would like each target sample to

receive masses only from source samples that have the

same label. As a consequence, we expect that a given

target sample will be involved in the representation of

transported source samples as defined in Equation (14),

but only for samples from the source domain of the

same class. This behaviour can be induced by means

of a group-sparse penalty on the columns of γ.

This approach has been introduced in our preliminary

work [14]. In that paper, we proposed a `p− `1 regular-

ization term with p < 1 (mainly for algorithmic reasons).

When applying a majoration-minimization technique on

the `p − `1 norm, the problem can be cast as problem

(9) and can be solved using the efficient Sinkhorn-Knopp

algorithm at each iteration. However, this regularization

term with p < 1 is non-convex and thus the proposed

algorithm is guaranteed to converge only to local sta-

tionary points.

In this paper, we retain the convexity of the underlying

problem and use the convex group-lasso regularizer `1−

`2 instead. This regularizer is defined as

Ωc(γ) =
∑
j

∑
cl

||γ(Icl, j)||2, (17)

where || · ||2 denotes the `2 norm and Icl contains the

indices of rows in γ related to source domain samples

of class cl. Hence, γ(Icl, j) is a vector containing

coefficients of the jth column of γ associated to class

cl. Since the jth column of γ is related to the jth

target sample, this regularizer will induce the desired

sparse representation in the target sample. Among other

benefits, the convexity of the corresponding problem

allows to use an efficient generic optimization scheme,

presented in Section V.

Ideally, with this regularizer we expect that the masses

corresponding to each group of labels are matching sam-

ples of the source and target domains exclusively. Hence,

for the domain adaptation problem to have a relevant

solution, the distributions of labels are expected to be

preserved in both the source and target distributions. We

thus need to have Ps(y) = Pt(y). This assumption,

which is a classical assumption in the field of learning, is

nevertheless a mild requirement since, in practice, small
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deviations of proportions do not prevent the method from

working (see reference [48] for experimental results on

this particular issue).

2) Laplacian regularization: This regularization term

aims at preserving the data structure – approximated by

a graph – during transport [20], [13]. Intuitively, we

would like similar samples in the source domain to also

be similar after transportation. Hence, denote as x̂si the

transported source sample xsi , with x̂si being linearly de-

pendent on the transportation matrix γ through Equation

(14). Now, given a positive symmetric similarity matrix

Ss of samples in the source domain, our regularization

term is defined as

Ωc(γ) =
1

N2
s

∑
i,j

Ss(i, j)‖x̂si − x̂sj‖22, (18)

where Ss(i, j) ≥ 0 are the coefficients of matrix Ss ∈

RNs×Ns that encodes similarity between pairs of source

sample. In order to further preserve class structures, we

can sparsify similarities for samples of different classes.

In practice, we thus impose Ss(i, j) = 0 if ysi 6= ysj .

The above equation can be simplified when the

marginal distributions are uniform. In that case, trans-

ported source samples can be computed according to

Equation (15). Hence, Ωc(γ) boils down to

Ωc(γ) = Tr(X>t γ
>LsγXt), (19)

where Ls = diag(Ss1)−Ss is the Laplacian of the graph

Ss. The regularizer is therefore quadratic w.r.t. γ.

The regularization terms (18) or (19) are defined based

on the transported source samples. When a similarity

information is also available in the target samples, for

instance, through a similarity matrix St, we can take

advantage of this knowledge and a symmetric Laplacian

regularization of the form

Ωc(γ) = (1− α)Tr(X>t γ
>LsγXt) + αTr(X>s γLtγ

>Xs)

(20)

can be used instead. In the above equation Lt =

diag(St1)−St is the Laplacian of the graph in the target

domain and 0 ≤ α ≤ 1 is a trade-off parameter that

weights the importance of each part of the regularization

term. Note that, unlike the matrix Ss, the similarity

matrix St cannot be sparsified according to the class

structure, since labels are generally not available for the

target domain.

A regularization term similar to Ωc(γ) has been

proposed in [20] for histogram adaptation between im-

ages. However, the authors focused on displacements

(x̂si − xsi ) instead of on preserving the class structure

of the transported samples.

B. Regularizing for semi-supervised domain adaptation

In semi-supervised domain adaptation, few labelled

samples are available in the target domain [50]. Again,

such an important information can be exploited by means

of a novel regularization term to be integrated in the orig-

inal optimal transport formulation. This regularization

term is designed such that samples in the target domain

should only be matched with samples in the source

domain that have the same labels. It can be expressed

as:

Ωsemi(γ) = 〈γ,M〉 (21)

where M is a ns × nt cost matrix, with M(i, j) = 0

whenever ysi = ytj (or j is a sample with unknown

label) and +∞ otherwise. This term has the benefit to

be parameter free. It boils down to changing the original

cost function C, defined in Equation (8), by adding an

infinite cost to undesired matches. Smooth versions of

this regularization can be devised, for instance, by using

a probabilistic confidence of target sample xtj to belong

to class ytj . Though appealing, we have not explored this

latter option in this work. It is also noticeable that the
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Laplacian strategy in Equation (20) can also leverage

on these class labels in the target domain through the

definition of matrix St .

V. GENERALIZED CONDITIONAL GRADIENT FOR

SOLVING REGULARIZED OT PROBLEMS

In this section, we discuss an efficient algorithm for

solving optimization problem (16), that can be used with

any of the proposed regularizers.

Firstly, we characterize the existence of a solution to

the problem. We remark that regularizers given in Equa-

tions (17) and (18) are continuous, thus the objective

function is continuous. Moreover, since the constraint

set B is a convex, closed and bounded (hence compact)

subset of Rd, the objective function reaches its minimum

on B. In addition, if the regularizer is strictly convex

that minimum is unique. This occurs for instance, for

the Laplacian regularization in Equation (18).

Now, let us discuss algorithms for computing optimal

transport solution of problem (16). For solving a similar

problem with a Laplacian regularization term, Ferradans

et al. [20] used a conditional gradient (CG) algorithm

[4]. This approach is appealing and could be extended

to our problem. It is an iterative scheme that guaran-

tees any iterate to belong to B, meaning that any of

those iterates is a transportation plan. At each of these

iterations, in order to find a feasible search direction,

a CG algorithm looks for a minimizer of the objective

function’s linear approximation . Hence, at each iteration

it solves a Linear Program (LP) that is presumably

easier to handle than the original regularized optimal

transport problem. Nevertheless, and despite existence

of efficient LP solvers such as CPLEX or MOSEK, the

dimensionality of the LP problem makes this LP problem

hardly tractable, since it involves ns × nt variables.

In this work, we aim for a more scalable algorithm. To

this end, we consider an approach based on a general-

ization of the conditional gradient algorithm [7] denoted

as generalized conditional gradient (GCG).

The framework of the GCG algorithm addresses the

general case of constrained minimization of composite

functions defined as

min
γ∈B

f(γ) + g(γ), (22)

where f(·) is a differentiable and possibly non-convex

function; g(·) is a convex, possibly non-differentiable

function; B denotes any convex and compact subset of

Rn. As illustrated in Algorithm 1, all the steps of the

GCG algorithm are exactly the same as those used for

CG, except for the search direction part (Line 3). The

difference is that GCG linearizes only part f(·) of the

composite objective function, instead of the full objective

function. This approach is justified when the resulting

nonlinear optimization problem can be efficiently solved.

The GCG algorithm has been shown by Bredies et

al. [8] to converge towards a stationary point of Problem

(22). In our case, since g(γ) is differentiable, stronger

convergence results can be provided (see supplementary

material for a discussion on convergence rate and duality

gap monitoring).

More specifically, for problem (16) we can set

f(γ) = 〈γ,C〉F + ηΩc(γ) and g(γ) = λΩs(γ).

Supposing now that Ωc(γ) is differentiable, step 3 of

Algorithm 1 boils down to

γ? = argmin
γ∈B

〈
γ,C + η∇Ωc(γ

k)
〉
F

+ λΩs(γ)

Interestingly, this problem is an entropy-regularized op-

timal transport problem similar to Problem (9) and can

be efficiently solved using the Sinkhorn-Knopp scaling

matrix approach.

In our optimal transport problem, Ωc(γ) is instantiated

by the Laplacian or the group-lasso regularization term.
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Algorithm 1 Generalized Conditional Gradient

1: Initialize k = 0 and γ0 ∈ P

2: repeat

3: With G ∈ ∇f(γk), solve

γ? = argmin
γ∈B

〈γ,G〉F + g(γ)

4: Find the optimal step αk

αk = argmin
0≤α≤1

f(γk + α∆γ) + g(γk + α∆γ)

with ∆γ = γ∗ − γk

5: γk+1 ← γk + αk∆γ, set k ← k + 1

6: until Convergence

The former is differentiable whereas the group-lasso

is not when there exists a class cl and an index j

for which γ(Icl, j) is a vector of 0. However, one

can note that if the iterate γk is so that γk(Icl, j) 6=

0 ∀cl,∀j, then the same property holds for γk+1. This

is due to the exponentiation occurring in the Sinkhorn-

Knopp algorithm used for the entropy-regularized opti-

mal transport problem. This means that if we initialize

γ0 so that γ0(Icl, j) 6= 0, then Ωc(γ
k) is always

differentiable. Hence, our GCG algorithm can also be

applied to the group-lasso regularization, despite its non-

differentiability in 0.

VI. NUMERICAL EXPERIMENTS

In this section, we study the behavior of four different

versions of optimal transport applied to DA problem. In

the rest of the section, OT-exact is the original transport

problem (8), OT-IT the Information theoretic regularized

one (9), and the two proposed class-based regularized

ones are denoted OT-GL and OT-Laplace, correspond-

ing respectively to the group-lasso (Equation (17)) and

Laplacian (Equation (18)) regularization terms. We also

present some results with our previous class-label based

regularizer built upon an `p − `1 norm: OT-LpL1 [14].

A. Two moons: simulated problem with controllable

complexity

In the first experiment, we consider the same toy

example as in [22]. The simulated dataset consists of

two domains: for the source, the standard two entangled

moons data, where each moon is associated to a specific

class (See Figure 3(a)). The target domain is built by

applying a rotation to the two moons, which allows to

consider an adaptation problem with an increasing diffi-

culty as a function of the rotation angle. This example is

notably interesting because the corresponding problem is

clearly non-linear, and because the input dimensionality

is small, 2, which leads to poor performances when ap-

plying methods based on subspace alignment (e.g. [23],

[34]).

We follow the same experimental protocol as in [22],

thus allowing for a direct comparison with the state-of-

the-art results presented therein. The source domain is

composed of two moons of 150 samples each. The target

domain is also sampled from these two shapes, with

the same number of examples. Then, the generalization

capability of our method is tested over a set of 1000

samples that follow the same distribution as the target

domain. The experiments are conducted 10 times, and

we consider the mean classification error as comparison

criterion. As a classifier, we used a SVM with a Gaussian

kernel, whose parameters were set by 5-fold cross-

validation. We compare the adaptation results with two

state-of-the-art methods: the DA-SVM approach [9] and

the more recent PBDA [22], which has proved to provide

competitive results over this dataset.

Results are reported in Table I. Our first observation

is that all the methods based on optimal transport behave

better than the state-of-the-art methods, in particular

October 6, 2016 DRAFT



14

Target rotation angle 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828

DASVM [9] 0 0 0.259 0.284 0.334 0.747 0.82

PBDA [22] 0 0.094 0.103 0.225 0.412 0.626 0.687

OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507

OT-IT 0 0.007 0.054 0.102 0.221 0.398 0.508

OT-GL 0 0 0 0.013 0.196 0.378 0.508

OT-Laplace 0 0 0.004 0.062 0.201 0.402 0.524

TABLE I: Mean error rate over 10 realizations for the

two moons simulated example.

for low rotation angles, where results indicate that the

geometrical structure is better preserved through the

adaptation by optimal transport. Also, for large angle

(e.g. 90◦), the final score is also significantly better than

other state-of-the-art method, but falls down to a 0.5

error rate, which is natural since in this configuration a

transformation of −90◦, implying an inversion of labels,

would have led to similar empirical distributions. This

clearly shows the capacity of our method to handle large

domain transformations. Adding the class-label informa-

tion into the regularization also clearly helps for the mid-

range angle values, where the adaptation shows nearly

optimal results up to angles < 40◦. For the strongest

deformation (> 70◦ rotation), no clear winner among

the OT methods can be found. We think that, regardless

of the amount and type of regularization chosen, the

classification of test samples becomes too much tributary

of the training samples. These ones mostly come from

the denser part of µs and as a consequence, the less dense

parts of this PDF are not satisfactorily transported. This

behavior can be seen in Figure 3d.

B. Visual adaptation datasets

We now evaluate our method on three challenging real

world vision adaptation tasks, which have attracted a lot

of interest in recent computer vision literature [39]. We

start by presenting the datasets, then the experimental

protocol, and finish by providing and discussing the

results obtained.

1) Datasets: Three types of image recognition prob-

lems are considered: digits, faces and miscellaneous

objects recognition. This choice of datasets was already

featured in [34]. A summary of the properties of each

domain considered in the three problems is provided

in Table II. An illustration of some examples of the

different domains for a particular class is shown in

Figure 4.

Digit recognition. As source and target domains, we

use the two digits datasets USPS and MNIST, that share

10 classes of digits (single digits 0 − 9). We randomly

sampled 1, 800 and 2, 000 images from each original

dataset. The MNIST images are resized to the same

resolution as that of USPS (16× 16). The grey levels of

all images are then normalized to obtain a final common

feature space for both domains.

Face recognition. In the face recognition experiment, we

use the PIE ("Pose, Illumination, Expression") dataset,

which contains 32 × 32 images of 68 individuals taken

under various pose, illumination and expressions con-

ditions. The 4 experimental domains are constructed

by selecting 4 distinct poses: PIE05 (C05, left pose),

PIE07 (C07, upward pose), PIE09 (C09, downward pose)

and PIE29 (C29, right pose). This allows to define 12

different adaptation problems with increasing difficulty

(the most challenging being the adaptation from right

to left poses). Let us note that each domain has a

strong variability for each class due to illumination and

expression variations.

Object recognition. We used the Caltech-Office

dataset [42], [24], [23], [54], [39]. The dataset con-

tains images coming from four different domains: Ama-

zon (online merchant), the Caltech-256 image collec-
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(a) source domain (b) rotation=20◦ (c) rotation=40◦ (d) rotation=90◦

Fig. 3: Illustration of the classification decision boundary produced by OT-Laplace over the two moons example

for increasing rotation angles. The source domain is represented as coloured points. The target domain is depicted

as points in grey (best viewed with colors).

tion [25], Webcam (images taken from a webcam) and

DSLR (images taken from a high resolution digital SLR

camera). The variability of the different domains come

from several factors: presence/absence of background,

lightning conditions, noise, etc. We consider two feature

sets:

• SURF descriptors as described in [42], used to

transform each image into a 800 bins histogram.

These histograms are subsequently normalized and

reduced to standard scores.

• two DeCAF deep learning features sets [19]: these

features are extracted as the sparse activation of the

neurons from the fully connected 6th and 7th layers

of a convolutional network trained on imageNet

and then fine tuned on the visual recognition tasks

considered here. As such, they form vectors with

4096 dimensions.

2) Experimental setup: Following [23], the classifi-

cation is conducted using a 1-Nearest Neighbor (1NN)

classifier, which has the advantage of being parameter

free. In all experiments, 1NN is trained with the adapted

source data, and evaluated over the target data to provide

a classification accuracy score. We compare our optimal

Problem Domains Dataset # Samples # Features # Classes Abbr.

Digits
USPS USPS 1800 256 10 U

MNIST MNIST 2000 256 10 M

Faces

PIE05 PIE 3332 1024 68 P1

PIE07 PIE 1629 1024 68 P2

PIE09 PIE 1632 1024 68 P3

PIE29 PIE 1632 1024 68 P4

Objects

Calltech Calltech 1123 800|4096 10 C

Amazon Office 958 800|4096 10 A

Webcam Office 295 800|4096 10 W

DSLR Office 157 800|4096 10 D

TABLE II: Summary of the domains used in the visual

adaptation experiment

Fig. 4: Examples from the datasets used in the visual

adaptation experiment. 5 random samples from one class

are given for all the considered domains.
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transport solutions to the following baseline methods that

are particularly well adapted for image classification:

• 1NN is the original classifier without adaptation and

constitutes a baseline for all experiments;

• PCA, which consists in applying a projection on the

first principal components of the joint source/target

distribution (estimated from the concatenation of

source and target samples);

• GFK, Geodesic Flow Kernel [23];

• TSL, Transfer Subspace Learning [44], which op-

erates by minimizing the Bregman divergence be-

tween the domains embedded in lower dimensional

spaces;

• JDA, Joint Distribution Adaptation [34], which

extends the Transfer Component Analysis algo-

rithm [38];

In unsupervised DA no target labels are available.

As a consequence, it is impossible to consider a cross-

validation step for the hyper-parameters of the different

methods. However, and in order to compare the methods

fairly, we follow the following protocol. For each source

domain, a random selection of 20 samples per class (with

the only exception of 8 for the DSLR dataset) is adopted.

Then the target domain is equivalently partitioned in a

validation and test sets. The validation set is used to

obtain the best accuracy in the range of the possible

hyper-parameters. The accuracy, measured as the percent

of correct classification over all the classes, is then

evaluated on the testing set, with the best selected hyper-

parameters. This strategy normally prevents overfitting

on the testing set. The experimentation is conducted 10

times, and the mean accuracy over all these realizations

is reported.

We considered the following parameter range : for

subspace learning methods (PCA,TSL, GFK, and JDA)

we considered reduced k-dimensional spaces with k ∈

{10, 20, . . . , 70}. A linear kernel was chosen for all the

methods with a kernel formulation. For the all methods

requiring a regularization parameter, the best value was

searched in λ = {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The

λ and η parameters of our different regularizers (Equa-

tion (16)), are validated using the same search interval. In

the case of the Laplacian regularization (OT-Laplace),

St is a binary matrix which encodes a nearest neighbors

graph with a 8-connectivity. For the source domain, Ss

is filtered such that connections between elements of

different classes are pruned. Finally, we set the α value

Equation (20) to 0.5.

3) Results on unsupervised domain adaptation: Re-

sults of the experiment are reported in Table III where

the best performing method for each domain adaptation

problem is highlighted in bold. On average, all the OT-

based domain adaptation methods perform better than

the baseline methods, except in the case of the PIE

dataset, where JDA outperforms the OT-based methods

in 7 out of 12 domain pairs. A possible explanation

is that the dataset contains a lot of classes (68), and

the EM-like step of JDA, which allows to take into

account the current results of classification on the target,

is clearly leading to a benefit. We notice that TSL,

which is based on a similar principle of distribution

divergence minimization, almost never outperforms our

regularized strategies, except on pair A→C. Among the

different optimal transport strategies, OT-Exact leads to

the lowest performances. OT-IT, the entropy regularized

version of the transport, is substantially better than OT-

Exact, but is still inferior to the class-based regularized

strategies proposed in this paper. The best performing

strategies are clearly OT-GL and OT-Laplace with a

slight advantage for OT-GL. OT-LpL1, which is based

on a similar regularization strategy as OT-GL, but with
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TABLE III: Overall recognition accuracies in % obtained over all domains pairs using the SURF features. Maximum

values for each pair is indicated in bold font.

Domains 1NN PCA GFK TSL JDA OT-exact OT-IT OT-Laplace OT-LpLq OT-GL

U→M 39.00 37.83 44.16 40.66 54.52 50.67 53.66 57.42 60.15 57.85

M→U 58.33 48.05 60.96 53.79 60.09 49.26 64.73 64.72 68.07 69.96

mean 48.66 42.94 52.56 47.22 57.30 49.96 59.20 61.07 64.11 63.90

P1→P2 23.79 32.61 22.83 34.29 67.15 52.27 57.73 58.92 59.28 59.41

P1→P3 23.50 38.96 23.24 33.53 56.96 51.36 57.43 57.62 58.49 58.73

P1→P4 15.69 30.82 16.73 26.85 40.44 40.53 47.21 47.54 47.29 48.36

P2→P1 24.27 35.69 24.18 33.73 63.73 56.05 60.21 62.74 62.61 61.91

P2→P3 44.45 40.87 44.03 38.35 68.42 59.15 63.24 64.29 62.71 64.36

P2→P4 25.86 29.83 25.49 26.21 49.85 46.73 51.48 53.52 50.42 52.68

P3→P1 20.95 32.01 20.79 39.79 60.88 54.24 57.50 57.87 58.96 57.91

P3→P2 40.17 38.09 40.70 39.17 65.07 59.08 63.61 65.75 64.04 64.67

P3→P4 26.16 36.65 25.91 36.88 52.44 48.25 52.33 54.02 52.81 52.83

P4→P1 18.14 29.82 20.11 40.81 46.91 43.21 45.15 45.67 46.51 45.73

P4→P2 24.37 29.47 23.34 37.50 55.12 46.76 50.71 52.50 50.90 51.31

P4→P3 27.30 39.74 26.42 46.14 53.33 48.05 52.10 52.71 51.37 52.60

mean 26.22 34.55 26.15 36.10 56.69 50.47 54.89 56.10 55.45 55.88

C→A 20.54 35.17 35.29 45.25 40.73 30.54 37.75 38.96 48.21 44.17

C→W 18.94 28.48 31.72 37.35 33.44 23.77 31.32 31.13 38.61 38.94

C→D 19.62 33.75 35.62 39.25 39.75 26.62 34.50 36.88 39.62 44.50

A→C 22.25 32.78 32.87 38.46 33.99 29.43 31.65 33.12 35.99 34.57

A→W 23.51 29.34 32.05 35.70 36.03 25.56 30.40 30.33 35.63 37.02

A→D 20.38 26.88 30.12 32.62 32.62 25.50 27.88 27.75 36.38 38.88

W→C 19.29 26.95 27.75 29.02 31.81 25.87 31.63 31.37 33.44 35.98

W→A 23.19 28.92 33.35 34.94 31.48 27.40 37.79 37.17 37.33 39.35

W→D 53.62 79.75 79.25 80.50 84.25 76.50 80.00 80.62 81.38 84.00

D→C 23.97 29.72 29.50 31.03 29.84 27.30 29.88 31.10 31.65 32.38

D→A 27.10 30.67 32.98 36.67 32.85 29.08 32.77 33.06 37.06 37.17

D→W 51.26 71.79 69.67 77.48 80.00 65.70 72.52 76.16 74.97 81.06

mean 28.47 37.98 39.21 42.97 44.34 36.69 42.30 43.20 46.42 47.70

a different optimization scheme, has globally inferior

performances, except on some pairs of domains (e.g.

C→A ) where it achieves better scores. On both digits

and objects recognition tasks, OT-GL significantly out-

performs the baseline methods.

In the next experiment (Table IV), we use the same

experimental protocol on different features produced by

the DeCAF deep learning architecture [19]. We report

the results of the experiment conducted on the Office-

Caltech dataset, with the OT-IT and OT-GL regular-

ization strategies. For comparison purposes, JDA is also

considered for this adaptation task. The results show that,

even though the deep learning features yield naturally a

strong improvement over the classical SURF features,
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TABLE IV: Results of adaptation by optimal transport

using DeCAF features.

Layer 6 Layer 7

Domains DeCAF JDA OT-IT OT-GL DeCAF JDA OT-IT OT-GL

C→A 79.25 88.04 88.69 92.08 85.27 89.63 91.56 92.15

C→W 48.61 79.60 75.17 84.17 65.23 79.80 82.19 83.84

C→D 62.75 84.12 83.38 87.25 75.38 85.00 85.00 85.38

A→C 64.66 81.28 81.65 85.51 72.80 82.59 84.22 87.16

A→W 51.39 80.33 78.94 83.05 63.64 83.05 81.52 84.50

A→D 60.38 86.25 85.88 85.00 75.25 85.50 86.62 85.25

W→C 58.17 81.97 74.80 81.45 69.17 79.84 81.74 83.71

W→A 61.15 90.19 80.96 90.62 72.96 90.94 88.31 91.98

W→D 97.50 98.88 95.62 96.25 98.50 98.88 98.38 91.38

D→C 52.13 81.13 77.71 84.11 65.23 81.21 82.02 84.93

D→A 60.71 91.31 87.15 92.31 75.46 91.92 92.15 92.92

D→W 85.70 97.48 93.77 96.29 92.25 97.02 96.62 94.17

mean 65.20 86.72 83.64 88.18 75.93 87.11 87.53 88.11

the proposed OT methods are still capable of improving

significantly the performances of the final classification

(up to more than 20 points in some case, e.g. D→A or

A→W). This clearly shows how OT has the capacity to

handle non-stationarity in the distributions that the deep

architecture has difficulty handling. We also note that

using the features from the 7th layer instead of the 6th

does not bring a strong improvement in the classification

accuracy, suggesting that part of the work of the 7th layer

is already performed by the optimal transport.

4) Semi-supervised domain adaptation: In this last

experiment, we assume that few labels are available

in the target domain. We thus benchmark our semi-

supervised approach on SURF features extracted from

the Office-Caltech dataset. We consider that only 3

labeled samples per class are at our disposal in the

target domain. In order to disentangle the benefits of the

labeled target samples brought by our optimal transport

strategies from those brought by the classifier, we make a

distinction between two cases: in the first one, denoted as

“Unsupervised + labels”, we consider that the label target

samples are available only at the learning stage, after an

TABLE V: Results of semi-supervised adaptation with

optimal transport using the SURF features.

s

Unsupervised + labels Semi-supervised

Domains OT-IT OT-GL OT-IT OT-GL MMDT [28]

C→A 37.0 ± 0.5 41.4 ± 0.5 46.9 ± 3.4 47.9 ± 3.1 49.4 ± 0.8

C→W 28.5 ± 0.7 37.4 ± 1.1 64.8 ± 3.0 65.0 ± 3.1 63.8 ± 1.1

C→D 35.1 ± 1.7 44.0 ± 1.9 59.3 ± 2.5 61.0 ± 2.1 56.5 ± 0.9

A→C 32.3 ± 0.1 36.7 ± 0.2 36.0 ± 1.3 37.1 ± 1.1 36.4 ± 0.8

A→W 29.5 ± 0.8 37.8 ± 1.1 63.7 ± 2.4 64.6 ± 1.9 64.6 ± 1.2

A→D 36.9 ± 1.5 46.2 ± 2.0 57.6 ± 2.5 59.1 ± 2.3 56.7 ± 1.3

W→C 35.8 ± 0.2 36.5 ± 0.2 38.4 ± 1.5 38.8 ± 1.2 32.2 ± 0.8

W→A 39.6 ± 0.3 41.9 ± 0.4 47.2 ± 2.5 47.3 ± 2.5 47.7± 0.9

W→D 77.1 ± 1.8 80.2 ± 1.6 79.0 ± 2.8 79.4 ± 2.8 67.0 ± 1.1

D→C 32.7 ± 0.3 34.7 ± 0.3 35.5 ± 2.1 36.8 ± 1.5 34.1 ± 1.5

D→A 34.7 ± 0.3 37.7 ± 0.3 45.8 ± 2.6 46.3 ± 2.5 46.9 ± 1.0

D→W 81.9 ± 0.6 84.5 ± 0.4 83.9 ± 1.4 84.0 ± 1.5 74.1 ± 0.8

mean 41.8 46.6 54.8 55.6 52.5

unsupervised domain adaptation with optimal transport.

In the second case, denoted as “semi-supervised”, labels

in the target domain are used to compute a new trans-

portation plan, through the use of the proposed semi-

supervised regularization term in Equation (21)).

Results are reported in Table V. They clearly show the

benefits of the proposed semi-supervised regularization

term in the definition of the transportation plan. A

comparison with the state-of-the-art method of Hoffman

and colleagues [28] is also reported, and shows the

competitiveness of our approach.

VII. CONCLUSION

In this paper, we described a new framework based on

optimal transport to solve the unsupervised domain adap-

tation problem. We proposed two regularization schemes

to encode class-structure in the source domain during the

estimation of the transportation plan, thus enforcing the

intuition that samples of the same class must undergo

similar transformation. We extended this OT regularized

framework to the semi-supervised domain adaptation

case, i.e. the case where few labels are available in the
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target domain. Regarding the computational aspects, we

suggested to use a modified version of the conditional

gradient algorithm, the generalized conditional gradient

splitting, which enables the method to scale up to real-

world datasets. Finally, we applied the proposed meth-

ods on both synthetic and real world datasets. Results

show that the optimal transportation domain adaptation

schemes frequently outperform the competing state-of-

the-art methods.

We believe that the framework presented in this paper

will lead to a paradigm shift for the domain adaptation

problem. Estimating a transport is much more general

than finding a common subspace, but comes with the

problem of finding a proper regularization term. The pro-

posed class-based or Laplacian regularizers show very

good performances, but we believe that other types of

regularizer should be investigated. Indeed, whenever the

transformation is induced by a physical process, one may

want the transport map to enforce physical constraints.

This can be included with dedicated regularization terms.

We also plan to extend our optimal transport framework

to the multi-domain adaptation problem, where the prob-

lem of matching several distributions can be cast as a

multi-marginal optimal transport problem.
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