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Nonequivalence of Controllability Properties for Piecewise Linear

Markov Switch Processes

Dan Goreac
∗†

Abstract

In this paper we study the exact null-controllability property for a class of controlled PDMP of switch type with switch-

dependent, piecewise linear dynamics and multiplicative jumps. First, we show that exact null-controllability induces a con-

trollability metric. This metric is linked to a class of backward stochastic Riccati equations. Using arguments similar to the

euclidian-valued BSDE in [4], the equation is shown to be equivalent to an iterative family of deterministic Riccati equations

that are solvable. Second, we give an example showing that, for switch-dependent coefficients, exact null-controllability is

strictly stronger than approximate null-controllability. Finally, we show by convenient examples that no hierarchy holds be-

tween approximate (full) controllability and exact null-controllability. The paper is intended as a complement to [15] and [14].

Résumé

Nous étudions la propriété de zéro-contrôlabilité exacte pour une classe de processus de type Markovien à switch ayant

des dynamiques linéaires par morceaux à coefficients switchés et bruit multiplicatif. Premièrement, nous montrons que la zéro-

contrôlabilité exacte induit une métrique de contrôlabilité. Celle-ci est liée à une classe d’équations stochastiques rétrogrades

de type Riccati. En employant des arguments similaires aus EDSR classiques ([4]), l’équation de Riccati se réduit à une famille

d’équations itératives déterministes de type Riccati qui admettent une solution unique. Deuxièmement, nous présentons un

exemple montrant que, pour des systèmes à coefficients switchés, la propriété de zéro-contrôlabilité exacte est strictement plus

forte que celle de zéro-contrôlabilité approchée. Finalement, nous montrons, à l’aide d’exemples particuliers, l’impossibilité à

établir une hiérarchie entre les propriétés de contrôlabilité approchée (vers une cible arbitraire) et celle de zéro-contrôlabilité

exacte. Ce travail doit être regardé en complément des études menées dans [15] et [14].

1 Introduction

We study the exact null-controllability property for a class of piecewise deterministic Markov processes of
switch type. More precisely, our model belongs to Markovian systems consisting of a couple mode/ trajectory
(Γ, X) . The mode Γ is a pure jump uncontrolled Markov process corresponding to spikes inducing regime
switching. The second component X obeys a controlled linear stochastic differential equation (SDE) with
respect to the compensated random measure associated to Γ. The linear coefficients governing the dynamics
depend on the current mode.

The exact null-controllability problem concerns criteria allowing one to drive the XT component to zero.
This property is of particular importance in the study of regulatory networks (e.g. [5], [16], [22], [6], etc.) to
distinguish, for example, lytic pathways (e.g. [16]).

An extensive literature on controllability is available in different frameworks: finite-dimensional deter-
ministic setting (Kalman’s condition, Hautus test [17]), infinite dimensional settings (via invariance criteria
in [26], [7], [25], [20], [19], etc.), Brownian-driven control systems (exact terminal-controllability in [23], ap-
proximate controllability in [3], [10], mean-field Brownian-driven systems in [13], infinite-dimensional setting
in [9], [27], [1], [11], etc.), jump systems ([12], [14], etc.). We refer to [14] for more details on the literature
as well as applications one can address using switch models.

The recent papers [14] and [15] consider different characterizations of approximate and approximate null-
controllability properties for the same class of systems. However, they do not address the question of exact
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null-controllability (which, in non-stochastic time-homogeneous framework, is identified with approximate
null-controllability).

The aim of the present paper is to offer a complement to the research topics in [14] and [15]. In [14], a
Riccati-type argument is used to characterize approximate controllability for systems with constant coeffi-
cients. Our first aim (in Section 3.1) is to give an answer to the problem left open in [14, Remark 4] where
a family of backward stochastic Riccati equations are presented and absence of results on the solvability is
mentioned. As a by-product, the result provides a metric-type characterization of exact null-controllability
in Section 3.2. In Section 3.3, we give an example of approximate null-controllable system which fails to
be exactly null-controllable. Finally, in Section 3.4, we show by convenient examples that no hierarchy can
be established between approximate (full) controllability and exact null-controllability. In other words, we
present an example of approximate controllable yet non exactly null-controllable system and an example of
null-controllable system which fails to be approximately controllable in certain directions.

We begin with presenting the model and the standing assumptions in Section 2.1. The technical con-
structions allowing to prove the theoretical results are gathered in Section 2.2. The controllability notions
(exact null, approximate null, approximate) are given in Section 2.3. We gather in the same section some
useful results on approximate and approximate null-controllability given in [14] and [15]. The main results on
Riccati BSDEs are given in Section 3.1. The method allowing to deal with this stochastic system is based on
the recent ideas in [4]. As a by-product, the result on Riccati BSDE provides a metric-type characterization
of exact null-controllability in Section 3.2. Hierachy (or absence of) between exact null-controllability and
approximate null-controllability (resp. approximate full controllability) make the object of Section 3.3 (resp.
Section 3.4).

2 Model and Preliminaries

2.1 The Model

We briefly recall the construction of a particular class of pure jump, non explosive processes on a space Ω and
taking their values in a metric space (E,B (E)) . Here, B (E) denotes the Borel σ-field of E. The elements of
the space E are referred to as modes. These elements can be found in [8] in the particular case of piecewise
deterministic Markov processes (see also [2]). To simplify the arguments, we assume that E is finite and we
let p ≥ 1 be its cardinal. The process is completely described by a couple (λ,Q) , where λ : E −→ R+ and
the measure Q : E −→ P (E), where P (E) stands for the set of probability measures on (E,B (E)) such that
Q (γ, {γ}) = 0. Given an initial mode γ0 ∈ E, the first jump time satisfies P

0,γ0 (T1 ≥ t) = exp (−tλ (γ0)) .
The process Γγ0

t := γ0, on t < T 1. The post-jump location γ1 has Q (γ0, ·) as conditional distribution.
Next, we select the inter-jump time T2 − T1 such that P0,γ0

(
T2 − T1 ≥ t / T1, γ

1
)
= exp

(
−tλ

(
γ1
))

and set

Γγ0

t := γ1, if t ∈ [T1, T2) . The post-jump location γ2 satisfies P0,γ0
(
γ2 ∈ A / T2, T1, γ

1
)
= Q

(
γ1, A

)
, for all

Borel set A ⊂ E. And so on. To simplify arguments on the equivalent ordinary differential system, following
[4, Assumption (2.17)], we will assume that the system stops after a non-random, fixed number M > 0 of
jumps i.e. P0,γ0 (TM+1 = ∞) = 1.

We look at the process Γγ0 under P0,γ0 and denote by F
0 the filtration

(
F[0,t] := σ {Γγ0

r : r ∈ [0, t]}
)
t≥0

.

The predictable σ-algebra will be denoted by P0 and the progressive σ-algebra by Prog0. As usual, we
introduce the random measure q on Ω× (0,∞) × E by setting q (ω,A) =

∑
k≥1 1

(

Tk(ω),Γ
γ0
Tk(ω)

(ω)
)

∈A
, for all

ω ∈ Ω, A ∈ B (0,∞)×B (E) . The compensated martingale measure is denoted by q̃. (Further details on the
compensator are given in Section 2.2.)

We consider a switch system given by a process (X(t),Γγ0(t)) on the state space RN ×E, for some N ≥ 1
and the family of modes E. The control state space is assumed to be some Euclidian space R

d, d ≥ 1. The
component X(t) follows a controlled differential system depending on the hidden variable γ. We will deal
with the following model.

(1)

{
dXx,u

s = [A (Γγ0
s )Xx,u

s +B (Γγ0
s )us] ds+

∫
E
C
(
Γγ0

s−, θ
)
Xx,u

s− q̃ (ds, dθ) , s ≥ 0,
Xx,u

0 = x.

The operators A (γ) ∈ R
N×N , B (γ) ∈ R

N×d and C (γ, θ) ∈ R
N×N , for all γ, θ ∈ E. For linear operators,

we denote by ker their kernel and by Im the image (or range) spaces. Moreover, the control process u :
Ω×R+ −→ R

d is an R
d-valued, F0− progressively measurable, locally square integrable process. The space

of all such processes will be denoted by Uad and referred to as the family of admissible control processes. The
explicit structure of such processes can be found in [21, Proposition 4.2.1], for instance. Since the control
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process does not (directly) intervene in the noise term, the solution of the above system can be explicitly
computed with Uad processes instead of the (more usual) predictable processes.

2.2 Technical Preliminaries

Before giving the reduction of our backward Riccati stochastic equation to a system of ordinary Riccati
differential equations, we need to introduce some notations making clear the stochastic structure of several
concepts : final data, predictable and càdlàg adapted processes and compensator of the initial random
measure. The notations in this subsection follow the ordinary differential approach from [4]. Since we are
only interested in what happens on [0, T ] , we introduce a cemetery state (∞, γ) which will incorporate all
the information after T ∧ TM . It is clear that the conditional law of Tn+1 given

(
Tn,Γ

γ0

Tn

)
is now composed

by an exponential part on [Tn ∧ T, T ] and an atom at ∞. Similarly, the conditional law of Γγ0

Tn+1
given(

Tn+1, Tn,Γ
γ0

Tn

)
is the Dirac mass at γ if Tn+1 = ∞ and given by Q otherwise. Finally, under the assumption

P
0,γ0 (TM+1 = ∞) = 1, after TM , the marked point process is concentrated at the cemetery state.

We set ET : = ([0, T ]× E) ∪ {(∞, γ)}. For every n ≥ 1, we let ET,n ⊂
(
ET

)n+1
be the set of all marks

of type e = ((t0, γ0) , ..., (tn, γn)) , where

(2) t0 = 0, (ti)0≤i≤n are non-decreasing; ti < ti+1, if ti ≤ T ; (ti, γi) = (∞, γ) , if ti ≤ T, ∀0 ≤ i ≤ n−1,

and endow it with the family of all Borel sets Bn. For these sequences, the maximal time is denoted by
|e| := tn. Moreover, by abuse of notation, we set γ|e| := γn. Whenever T ≥ t > |e| , we set

(3) e⊕ (t, γ) := ((t0, γ0) , ..., (tn, γn) , (t, γ)) ∈ ET,n+1.

By defining

(4) en :=
(
(0, γ0) ,

(
T1,Γ

γ0

T1

)
, ...,

(
Tn,Γ

γ0

Tn

))
,

we get an ET,n−valued random variable, corresponding to our mode trajectories.
A càdlàg process Y continuous except, maybe, at switching times Tn and taking its values in a

topological vector space S is given by the existence of a family of Bn⊗B ([0, T ]) /B (S)-measurable functions
yn such that, for all e ∈ ET,n, y

n (e, ·) is continuous on [0, T ] and constant [0, T ∧ |e|] and

(5) If |e| = ∞, then yn (e, ·) = 0. Otherwise, on Tn (ω) ≤ t < Tn+1 (ω) , yt (ω) = yn (en (ω) , t) , t ≤ T .

Similar, an S−valued F-predictable process Z defined on Ω× [0, T ]×E is given by the existence of a
family of Bn ⊗ B ([0, T ])⊗ B (E) /B (S)−measurable functions zn satisfying
(6)
If |e| = ∞, then zn (e, ·, ·) = 0. On Tn (ω) < t ≤ Tn+1 (ω) , zt (ω, γ) = zn (en (ω) , t, γ) , for t ≤ T , γ ∈ E.

To deduce the form of the compensator, one simply writes

q̂ (ω, dt, dγ) :=
∑

n≥0

q̂nen(ω) (dt, dγ) 1Tn(ω)<t≤Tn+1(ω)∧T

such that
(7)

If n ≥ M, then q̂ne (dt, dγ) = δγ (dγ) δ∞ (dt) .

If n ≤ M − 1, q̂ne (dt, dγ) = λ(γ|e|)Q(γ|e|, dγ)1|e|<∞,t∈[|e|,T ]Leb (dt) + δγ (dγ) δ∞ (dt) 1(|e|<∞,t>T )∪|e|=∞.

The coefficient function A (Γγ0

t ) is adapted and can be seen as follows: if |e| = ∞, then A = 0; otherwise,
one works with A

(
γ|e|
)
. Similar constructions hold true for C. In fact, the results of the present paper can

be generalized to more general path-dependence of the coefficients.

2.3 Approximate Controllability, Exact and Approximate Null-Controllability

We will be dealing with the following notions of controllability.
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Definition 1 (i) Given the finite time horizon T > 0, the system (1) is said to be approximately controllable
(with initial mode γ0 ∈ E) if, for every final data ξ ∈ L

2
(
Ω,F[0,T ],P

0,γ0;RN
)
(i.e. F[0,T ]-measurable, square

integrable), every initial condition x ∈ R
N and every ε > 0, there exists some admissible control process

u ∈ Uad such that E0,γ0

[
|Xx,u

T − ξ|
2
]
≤ ε.

(ii) The system (1) is said to be approximately null-controllable if the previous condition holds for ξ = 0.
(iii) The system (1) is said to be (exactly) null-controllable (with initial mode γ0 ∈ E) if, for every initial
condition x ∈ R

N there exists some admissible control process u ∈ Uad such that Xx,u
T = 0, P0,γ0-a.s..

The approach of [14, Theorem 1] relies on the duality between the concepts of controllability and observ-
ability. For these reasons, one introduces the backward stochastic differential equation.

(8)

{
dY T,ξ

t =
∫
E
ZT,ξ
t (θ) q̃ (dt, dθ)−A∗ (Γγ0

t )Y T,ξ
t dt−

∫
E
C∗ (Γγ0

t , θ)ZT,ξ
t (θ) q̂ (dt, dθ) ,

Y T,ξ
T = ξ ∈ L

2
(
Ω,F[0,T ],P

0,γ0 ;RN
)
.

The following characterization follows from standard considerations on the controllability linear operator(s)
(cf. [14, Theorem 1]).

Theorem 2 ([14, Theorem 1]) The necessary and sufficient condition for approximate null-controllability

(resp. approximate controllability) of (1) with initial mode γ0 ∈ E is that any solution
(
Y T,ξ
t , ZT,ξ

t (·)
)
of

the dual system (8) for which Y T,ξ
t ∈ kerB∗ (Γγ0

t ) , P0,γ0⊗Leb almost everywhere on Ω× [0, T ] should equally

satisfy Y T,ξ
0 = 0, P0,γ0−almost surely (resp. Y T,ξ

t = 0, P0,γ0⊗Leb− a.s.).

Equivalent assertions are easily obtained by interpreting the system (8) as a controlled, forward one :

(9) dY y,v
t =

∫

E

vt (θ) q̃ (dt, dθ)−A∗ (Γγ0

t )Y y,v
t dt−

∫

E

C∗ (Γγ0

t , θ) vt (θ) q̂ (dt, dθ) , Y y,v
0 = y ∈ R

N .

The family of admissible control processes is given by v ∈ L2
(
q;RN

)
i.e. the space of all P0 ⊗ B (E) -

measurable, RN−valued functions vs (ω, θ) on Ω× R+ × E such that

E
0,γ0

[∫ T

0

∫

E

|vs (θ)|
2
q̂ (ds, dθ)

]
< ∞,

for all T < ∞.
Similar duality arguments yield the following characterization of (exact) null-controllability.

Proposition 3 The necessary and sufficient condition for exact null-controllability at time T > 0 of (1)
with initial mode γ0 ∈ E is the existence of a positive constant CT > 0 such that for every initial data

y ∈ R
N and every v ∈ L2

(
q;RN

)
, one has |y|

2
≤ CTE

0,γ0

[∫ T

0 |B∗ (Γγ0

t )Y y,v
t |

2
dt
]
.

The proof is quasi-identical to the duality arguments in [14, Theorem 1] by invoking [24, Appendix B,
Proposition B.1].

In the remaining of the section, unless stated otherwise, we assume the control matrix B to be mode-
independent (constant). Using the explicit construction of BSDE with respect to marked-point processes, an
invariance (algebraic) necessary and sufficient criterion for approximate null-controllability has been given
in [15, Theorem 6]. We recall the following invariance concepts (cf. [7], [26]).

Definition 4 Given a linear operator A ∈RN×N and a family C =(Ci)1≤i≤k ⊂ R
N×N , a set V ⊂ R

N is

said to be (A; C)- invariant if AV ⊂ V +
k∑

i=1

Im Ci.

We construct a mode-indexed family of linear subspaces of RN denoted by
(
VM,n
γ

)
0≤n≤M, γ∈E

by setting

(10) A∗ (γ) := A∗ (γ)−

∫

E

(C∗ (γ, θ) + I)λ(γ)Q(γ, dθ) and V M,M
γ = kerB∗,

for all γ ∈ E, and computing, for every 0 ≤ n ≤ M − 1,
(11)

V M,n
γ the largest

(
A∗ (γ) ;

[
(C∗(γ, θ) + I)Π

V
M,n+1
θ

: θ ∈ E, Q (γ, θ) > 0
])

− invariant subspace of kerB∗.

Here, ΠV denotes the orthogonal projection operator onto the linear space V ⊂ R
N . The explicit criterion

is the following
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Theorem 5 ([15, Theorem 6]) The switch system (1) is approximately null-controllable (in time T > 0)
with γ0 as initial mode, if and only if the generated set V M,0

γ0
reduces to {0} .

In the same paper [15], the property of approximate null-controllability for general systems is shown
(using convenient examples) to be strictly weaker than approximate controllability. The following sufficient
criterion is proven to guarantee the approximate controllability.

Proposition 6 ([15, Condition 10]) Let us assume that the largest
(A∗ (γ) ; [(C∗(γ, θ) + I)ΠkerB∗ : Q (γ, θ) > 0])-invariant subspace of kerB∗ is reduced to {0}, for every

γ ∈ E. Then, for every T > 0 and every γ0 ∈ E, the system (1) is approximately controllable in time T > 0.

3 A Backward Stochastic Riccati Equation Approach to Exact

Null-Controllability

3.1 A Riccati Equation

A simple look at [14, Remark 4] shows that a key argument in the analysis of controllability properties
resides in a family of backward stochastic Riccati equations. The authors of [14, Remark 4] argue that their
analysis is limited by solvability of the general BSDE of the form
(12)



dKε,B
t =

(
Kε,B

t A∗ (Γγ0

t ) +A (Γγ0

t )Kε,B
t − B (Γγ0

t )
)
dt+

∫
E
Hε,B

t (θ) q (dt, dθ)

+
∫
E

[(
f ε,B
t (θ)

)∗
gε,Bt (θ) f ε,B

t (θ)−Hε,B
t (θ)

]
q̂ (dt, dθ) ,

where f ε,B
t (θ) :=

(
C (Γγ0

t , θ)Kε,B
t −Hε,B

t (θ)
)

and gε,Bt (θ) :=
(
εI +Kε,B

t +Hε,B
t (θ)

)−1

, t ∈ [0, T ] .

Kε,B
t = 0, εI +Kε,B

t +Hε,B
t (θ) > 0, for almost all t ∈ [0, T ] .

Here, B (Γγ0

t ) are positive semi-definite matrix. However, by using the structure of the jumps and inspired
by [4], existence of the solution of the previous BSDE will be reduced to a family of itterated (classical)
Riccati equations.

The first result gives existence and uniqueness for the solution of the previous equation. Before stating
and proving this result, let us concentrate on the specific form of the jump contribution H . We consider a
càdlàg process Kε,B continuous except, maybe, at switching times Tn. Then, as explained before, this can
be identified with a family

(
kn,ε,B

)
. We construct, for every n ≥ 0,

(13) k̂n+1,ε,B (e, t, γ) := kn+1,ε,B (e⊕ (t, γ) , t) 1|e|<t

and Kε,B
t can be obtained by simple integration of the previous quantity with respect to the conditional law

of
(
Tn+1,Γ

γ0

Tn+1

)
knowing FTn

. Then, H is simply given by hn,ε,B (e, t, γ) := k̂n+1,ε,B (e, t, γ)− kn,ε,B (e, t) .

The main theoretical contribution of the subsection is the following.

Theorem 7 We assume that P0,γ0 (TM+1 = ∞) = 1, for some M ≥ 1. For every ε > 0 and every T > 0,

the Riccati BSDE (12) admits a unique solution
(
Kε,B

· , Hε,B
· (·)

)
consisting of an SN

+ -valued (i.e. positive

semi-definite) càdlàg process Kε,B
· continuous everywhere except, maybe, at jump times and an SN -valued

(i.e. symmetric matrix-valued) F-predictable process Hε.

Proof. For notation purposes, we will consider B to be fixed and drop the dependency on B. The proof
consists of two steps.
Step 1. Using the previous structure of the candidate to the solution of the Riccati equation, one gets an
equivalent system of ordinary Riccati-type differential equations





kM,ε (·) = 0, kn,ε (en, T ) = 0, for every 0 ≤ n ≤ M − 1,
dkn,ε (en, t) =

[
kn,ε (en, t)A

∗
(
γ|en|

)
+A

(
γ|en|

)
kn,ε (en, t)− B

(
γ|en|

)]
dt

+
∫
E

[
(fn (en, t, θ))

∗ gn (en, t, θ) f
n (en, t, θ)

]
q̂ (dt, dθ)−

∫
E

[
k̂n+1,ε (en, t, θ)− kn,ε (en, t)

]
q̂ (dt, dθ) ,

for t ∈ [0, T ] , where fn (en, t, θ) =
(
C
(
γ|en|, θ

)
+ I
)
kn,ε (en, t)− k̂n+1,ε (en, t, θ) and

gn (en, t, θ) :=
(
εI + kn+1,ε (en ⊕ (t, γ) , t)

)−1
1|e|<t,

Under the condition that kn,ε (en, t) ≥ 0, for almost all t ∈ [0, T ] .
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The fact that the two systems are indeed equivalent follow from the same arguments as those in [4, Theorem
2]. Step 2. Thus, solvability of the Riccati backward stochastic equation reduces to the solvability of the

previous system or, again, to the solvability (in SN
+ ) of the following equation

·
p (t) = p (t) a+ a∗p (t)−Π+ p (t)

∫

E

[
b (θ) r−1

t (θ) b∗ (θ)
]
ν (dθ) p (t) , for t ∈ [t0, T ] , p (T ) = εI.

by setting, for a fixed en (and t > t0 := |en|)

a := A∗
(
γ|en|

)
− λ

(
γ|en|

) [ 1
2I +

∫
E
C∗
(
γ|en|, θ

)
Q
(
γ|en|, dθ

)

−ε
∫
E

(
C∗
(
γ|en|, θ

)
+ I
) (

εI + kn+1,ε (en ⊕ (t, θ) , t)
)−1

Q
(
γ|en|, dθ

)
]
,

Π := B
(
γ|en|

)
+ ε

∫

E

(
εI + kn+1,ε (en ⊕ (t, θ) , t)

)−1
kn+1,ε (en ⊕ (t, θ) , t)Q

(
γ|en|, dθ

)

b (θ) := C∗
(
γ|en|, θ

)
+ I, rt (θ) :=

(
εI + kn+1,ε (en ⊕ (t, θ) , t)

)
and ν (dθ) = λ

(
γ|en|

)
Q
(
γ|en|, dθ

)

Existence and uniqueness for this equation is standard. Indeed, one notes that Π ≥ 0 and r ≫ 0 (provided
that kn+1,ε ≥ 0). If E reduces to a singletone, then this is the classical equation for deterministic control
problems (see [28, Chapter 6, Equation 2.34]). The existence and uniqueness is guaranteed by [28, Chapter
6, Corollary 2.10]. For the general case, one assumes that E is given by the standard basis of Rp and works
with

b =
(√

ν (e1)b
(
e1
)
, ...,

√
ν (ep)b (ep)

)
and

rt :=




rt
(
e1
)

0 ... 0
0 rt

(
e2
)

... 0
... ... ... ...
0 0 ... rt (e

p)


 ≥ εI ≫ 0.

The proof is complete by descending recurrence over n ≤ M.

3.2 First Application: Null-Controllability Metric(s)

Proposition 8 A necessary and sufficient condition for exact null-controllability of (1) with initial mode
γ0 ∈ E at time T > 0 is that the pseudonorm

(14) R
N ∋ y 7−→ p (y) , where p2 (y) := inf

v∈L2(q;RN )
E
0,γ0

[∫ T

0

∣∣∣∣Π(kerB∗(Γγ0
t ))⊥ (Y y,v

t )

∣∣∣∣
2

dt

]

be a norm on R
N .

Proof. It is clear that the application p has non-negative values. Homogeneity is a consequence of the
equality Y ay,av

· = aY y,v
· , for all y ∈ R

N , all a ∈ R and all v ∈ L2
(
q;RN

)
(due to the linearity of (9)).

To prove the subadditivity, one simply notes Y y1+y2,v
1+v2

· = Y y1,v
1

· + Y y2,v
2

· , for all y1, y2 ∈ R
N and all

v1, v2 ∈ L2
(
q;RN

)
. It follows that

p (y1 + y2) ≤

(
E
0,γ0

[∫ T

0

∣∣∣∣Π(kerB∗(Γγ0
t ))

⊥

(
Y y1+y2,v

1+v2

t

)∣∣∣∣
2

dt

]) 1
2

≤

(
E
0,γ0

[∫ T

0

∣∣∣∣Π(kerB∗(Γγ0
t ))

⊥

(
Y y1,v

1

t

)∣∣∣∣
2

dt

]) 1
2

+

(
E
0,γ0

[∫ T

0

∣∣∣∣Π(kerB∗(Γγ0
t ))

⊥

(
Y y2,v

2

t

)∣∣∣∣
2

dt

]) 1
2

,

for all v1, v2 ∈ L2
(
q;RN

)
. The conclusion follows by taking infimum over such control processes. It follows

that p is a pseudonorm (independently of the fact that the system is approximately null-controllable).
Necessity follows from Proposition 3 and sufficiency from the equivalence of norms on R

N by applying
Proposition 3.

Using the form of the Riccati BSDE (12), one infers the following explicit condition.
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Corollary 9 A necessary and sufficient condition for exact null-controllability of (1) with initial mode γ0 ∈
E at time T > 0 is that the positive-semidefinite matrix k0 := inf

ε>0
Kε

0 , where, for every ε > 0, Kε is the

unique solution of the Riccati equation (12) for B := BB∗ be positive definite. In this case, the metric p
given in (14) is induced by k0 i.e.

p (y) =
√
〈k0y, y〉, for all y ∈ R

N .

Proof. This result is quite classical (see, e.g. [27] for the Brownian-noise case). For our readers’ sake, we
sketch the proof. Let us fix, for the time being ε > 0. Then, according to Theorem 7, the Riccati equation
(12) admits a unique solution. A simple application of Itô’s formula (cf. [18, Chapter II, Section 5, Theorem
5.1]) to 〈Kε

t Y
y,v
t , Y y,v

t 〉 on [0, T ] yields

E
0,γ0

[∫ T

0

∣∣∣∣Π[Ker(B∗(Γγ0
t ))]

⊥Y y,v
t

∣∣∣∣
2

dt

]

= 〈Kε
0y, y〉 − εE0,γ0

[∫ T

0

|ut|
2 dt

]
+ E

0,γ0



∫ T

0

∣∣∣∣∣
(εI +Kε

t +Hε
t (θ))

− 1
2 ft (θ)Y

y,v
t−

− (εI +Kε
t +Hε

t (θ))
1
2 vt (θ)

∣∣∣∣∣

2

dt


 .

One easily notes that inf
v∈L2(q;RN )

E
0,γ0

[
∫ T

0

∣∣∣∣Π[Ker(B∗(Γγ0
t ))]

⊥Y y,v
t

∣∣∣∣
2

dt

]
= lim inf

ε→0
〈Kε

0y, y〉 and the conclusion

follows.

3.3 Non-equivalence Between Exact and Approximate Null-Controllability

The following example presents a switching system which is approximately null-controllable without being
exactly null-controllable.

Example 10 We consider a two-dimensional state space and a one-dimensional control space. Moreover,
we consider the mode to switch randomly between three states (for simplicity, E =

{
e1, e2, e3

}
is taken to

be the standard basis of R3). The transition measure is given by Q :=




0 1 0
0 0 1
0 1 0


 . The coefficients are

given by

A
(
e1
)
= A :=

(
0 0
1 0

)
, A (γ) := 02×2, if γ 6= e1, B :=

(
1
0

)
, C (γ) := 02×2.

a) Approximate null-controllability

With the definition (11), one easily establishes VM,n
γ =

{
kerB∗, if γ 6= e1,
{0} , if γ = e1.

, for every M ≥ 1 and every

0 ≤ n ≤ M. It follows that the system is null-controllable if and only if γ0 = e1.
b) Limit of the Riccati equations in the approximate null-controllable case (initial mode γ0 = e1).
Quid est for the controllability metric ? In this case, we recall that the limit of the solutions of the Riccati
equations is given by

p2 (y) := inf
v∈L2(q;RN )

E
0,γ0

[∫ T

0

|B∗Y y,v
t |

2
dt

]
, where dY y,v

t =

∫

E

vt (θ) q̃ (dt, dθ)−A∗ (Γγ0

t )Y y,v
t dt, Y y,v

0 = y ∈ R
2.

Starting from y :=

(
0
1

)
, with the feedback control process vεt :=

(
−

(
1 0
0 0

)
Yt +

(
0

e2ε−1
−eε+1+ε

1t∈[ε,2ε]

))
1t≤T1 ,

one gets
〈
Y y,v
t ,

(
1
0

)〉
=

[(
1− et

)
1t≤ε +

[
1− et +

(
t− ε+ 1− et−ε

) e2ε − 1

−eε + 1 + ε

]
1ε≤t≤2ε

]
1t≤T1 .

One easily notes that 0 ≥

〈
Y y,v
t ,

(
1
0

)〉
≥ cε := −2

(
e2ε − 1

)
. Then, by taking infimum over ε > 0, it

follows that p2
(

0
1

)
= 0 and it cannot induce a norm. As consequence, by invoking Corollary 9, the system

fails to be (exactly) null-controllable.
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Remark 11 Of course, a direct proof of null-controllability can also be given based on the eigenvector

(
0
1

)
.

Absence of null-controllability is obvious for γ0 6= e1 (the system is not even approximately null-controllable).
In the case γ0 = e1, we reason by contradiction. Let us assume that, for some admissible control process u,

the system is exactly controllable at time T starting from x0 =

(
0
1

)
. Then, prior to the first jump time,

Xx0,u
t =

(
1 0
t 1

)(
0
1

)
+

∫ t

0

(
1 0

t− s 1

)(
us

0

)
ds =

( ∫ t

0 usds

1 +
∫ t

0 (t− s)usds

)
.

Since, on [0, T1) , u is deterministic and square integrable, there exists T > t0 > 0 such that 1+
∫ t

0
(t− s)usds >

1
2 , for every t ≤ t0 (consequence of the absolute continuity). Hence, on T1 ≤ t0, one gets

〈
Xx0,u

T1−
,

(
0
1

)〉
>

1
2 . Second, one notes that X

x0,u
T1−

= Xx0,u
T1

and d

〈
Xt,

(
0
1

)〉
= 0 for t ≥ T1 to conclude that

〈
Xx0,u

T ,

(
0
1

)〉
>

1
2 , on T1 ≤ t0. Since P (T1 ≤ t0) = 1−e−t0 > 0, it follows that u cannot lead to 0 with full probability. There-
fore, although it is approximately null-controllable for some initial modes, the switch system is never exactly
null-controllable.

3.4 Exact Null-Controllability vs. Approximate (Full) Controllability

It has been shown in [15] that, in general, approximate controllability is strictly stronger than approximate
null-controllability. In the light of the previous example, it is then natural to ask oneself whether the condition
on p (given by (14)) being a metric implies approximate controllability of the initial system. The answer
is negative. We begin with an example of a system governed by an off/on mode which is approximately
null-controllable iff the initial mode is set off and is never approximately controllable. We show that, for this
system, the Riccati equations give a controllability metric (iff the initial mode is set off).

Example 12 We consider a two-dimensional state space and a one-dimensional control space. Moreover,
we consider the mode to switch randomly between inactive 0 and active 1 (i.e. E = {0, 1}). The coefficients
are given by

A (γ) = A :=

(
0 0
1 0

)
, B :=

(
1
0

)
, C (γ, 1− γ) :=

(
−1 0
γ −1

)
.

a) Approximate null-controllability
One easily establishes VM,n

γ = span {γe2} , for every M ≥ 1 and every 0 ≤ n ≤ M. It follows that the system
is null-controllable if and only if γ0 = 0.
b) Approximate controllability (initial mode γ0 = 0)

One easily checks that Yt :=

(
0
Γ0
t

)
, Zt (·) =

(
0

(−1)
Γ0
t−

)
, for 0 ≤ t ≤ T satisfies the BSDE (8) with final

data YT =

(
0
Γ0
T

)
. Since this solution stays in kerB∗ and it is not trivially zero, it follows that the system

is (never) approximately controllable.
c) Riccati equations in the approximate null-controllable case (initial mode γ0 = 0)
One easily notes that the Riccati equations lead to

dk0,ε (0, t) =

[
k0,ε (0, t)

(
0 1
0 0

)
+

(
0 0
1 0

)
k0,ε (0, t)−

(
1 0
0 0

)
+ k0,ε (0, t)

]
dt

+

[
k̂1,ε (0, 0, t, 1)

(
εI + k̂1,ε (0, 0, t, 1)

)−1

k̂1,ε (0, 0, t, 1)− k̂1,ε (0, 0, t, 1)

]
dt, t ∈ [0, T ] .

Since k̂n+1,ε (0, 0, t, 1) ≥ 0, this solution is at least equal to the one given by Kt :=

(
a (t) b (t)
b (t) c (t)

)
, where

a (t) := 1− et−T , b (t) := (T + 1− t) et−T − 1 and c (t) := 2−
(
1 + (T + 1− t)

2
)
et−T . Hence, K0 is positive

definite (for every T > 0) and so is lim inf
ε→0+

K0,ε
0 (to prove this, one simply studies the sign of the function

T 7→
(
1− e−T

) [
2−

(
2 + T 2 + 2T

)
e−T

]
−
[
(T + 1) e−T − 1

]2
on R

∗
+).
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Remark 13 The reader may want to note that in the case presented in the previous example, the system
is approximately null-controllable if and only if it is (exactly) null-controllable. To give an explicit control
leading from x0 to 0 for the initial setting γ0 = 0, one proceeds as follows. Prior to the first jump, the system
is a deterministic one and given by

dΦx0,u
1

t =
(
(A− C (0, 1))Φx0,u

1

t +Bu1
t

)
dt, Φx0,u

1

0 = x0 ∈ R
2.

Since Kalman’s condition is satisfied for this dterministic system, it is exactly null-controllable at time T > 0.
An explicit control is obtained by considering the (deterministic) controllability Gramian GT , respectively the
induced (open-loop) control process u1 given by

GT :=

∫ T

0

e(A−C(0,1))(T−s)BB∗e(A−C(0,1))∗(T−s)ds, u1 (t) := −B∗e(A−C(0,1))∗(T−t)G−1
T e(A−C(0,1))∗Tx01t≤T .

We obtain a stochastic control by setting up (t) = 0, i.e. we take null-control after the first jumping time.

Then, it is obvious that, on T1 ≥ T, Xx0,u
T = Φx0,u

1

T = 0. On T1 < T, Xx0,u
T1

= 0 and the conclusion follows.

Finally, one is entitled to ask whether approximate null-controllability implies exact null-controllability.
The answer is, again, negative proving that approximate controllability and exact null-controllability are,
in general, completely different properties. To illustrate this, let us take, once again, a glance at the first
example.

Example 14 We consider a two-dimensional state space and a one-dimensional control space. Moreover,
we consider the mode to switch randomly between three states (for simplicity, E = {e1, e2, e3} is taken to

be the standard basis of R3). The transition measure is given by Q :=




0 1 0
0 0 1
0 1 0


 . The coefficients are

given by

A (e1) = A :=

(
0 0
1 0

)
, A (γ) := 02×2, if γ 6= e1, B :=

(
1
0

)
, C (γ) := 02×2

As we have seen before (in Example 10), this system is never exactly null-controllable. We assume the system
to only jump once. We consider a solution of

dY y,v
t =

∫

E

vt (θ) q̃ (dt, dθ)−A∗ (Γγ0

t )Y y,v
t dt, Y y,v

0 = y ∈ R
N

that belongs to kerB∗, P0,e1 − a.s. Due to the approximate null-controllability, it follows that y = 0. Prior to

the first jump, v is given by a deterministic function v1 =

(
v1,1

v1,2

)
and Y y,v

t coincides with the deterministic

solution of dΦv1

t =
(
−v1t −A∗Φv1

t

)
dt, Φv1

0 = 0. Since Φv1

t ∈ kerB∗ = span

{(
0
1

)}
(for all t ∈ [0, T ]) one

has, for Leb−almost all t ∈ [0, T ] , −v1,1t =

〈
Φv1

t ,

(
0
1

)〉
. Hence, at the first jumping time, one has

0 =

〈
Y y,v
T1

,

(
1
0

)〉
=

〈
Φv

T1
,

(
1
0

)〉
−

〈
Φv1

T1
,

(
0
1

)〉
= −

〈
Φv1

T1
,

(
0
1

)〉
.

One deduces that

〈
Φv1

t ,

(
0
1

)〉
= 0 and v1,1t = 0, Leb-almost surely on [0, T ] . Then the derivative of

〈
Φv1

t ,

(
0
1

)〉
is null i.e. v1,2t = 0, Leb-almost surely on [0, T ]. As a consequence, for all (due to right

continuity) t ∈ [0, T1] , Y
y,v
t = 0, P0,e1-almost surely. Since the process is no longer allowed to jump after

T1, it follows that the equality actually holds on [0, T ] and the initial system (1) is approximately controllable
(cf. Theorem 2).
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