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Abstract—Mathematical modelling of infectious diseases often
uses simulation models in order to explore transmission mech-
anisms and to plan potential management strategies to control
the epidemics. However, bridging the gap between the conceptual
model of epidemiology and its simulation on computer can lead to
some issues related to the lack of expressiveness of implemented
models and their reusability and adaptability to new circum-
stances due to detail computer instructions in General-purpose
Programming Languages (GPLs). In this paper, we propose
to develop a Domain Specific Language (DSL) for expressively
specifying mathematical models of epidemiology and to construct
a flexible simulation environment for investigating them. We then
use our proposed approach to experiment the measles model in
different epidemiological aspects. Our platform is also validated
through statistical comparisons between time series generated
and theoretical expectations, consequently keeping the link with
literature on mathematical epidemiology.

Keywords—epidemiological modelling, compartmental model,
domain-specific language

I. INTRODUCTION

Mathematical modelling is a powerful method for studying
complex systems that is commonly used in many scientific dis-
ciplines. It is widely used to carry out researches on modelling
infectious diseases in order to study the mechanisms of trans-
mission [1], explore characteristics of epidemics [2], predict
the future course of an outbreak and evaluate strategies to find
a best control-program [3]. The first mathematical model of
epidemiology was proposed by Daniel Bernoulli in 1766 to
defend the practice of inoculation against smallpox [4]. The
major contribution to modern mathematical epidemiology was
carried out by Kermack and McKendrick who had formulated
a compartmental model based on relatively simple assumptions
on the rates of flow between different classes categorised
by epidemiological status [5]. Epidemiological models largely
rely on this so-called SIR framework that basically considers
individuals who are Susceptible to pathogen (status S), then
can be infected, assumed Infectious (state I), that can spread
infection and Recovery (status R) who are immunised and
cannot become infected again. From this initial configuration,
an infinity of other status could be added in order to represent
different transmission cycles to make more complicated com-
partmental structures such as SEIR or SEIS models [6], noting

that the E (Exposed) class indicates the individuals in the latent
period who are infected but not yet infectious. The transition
of status between compartments is represented mathematically
as derivatives of compartment size with respect to time [5].
Thus, SIR models are formulated as differential equations. In
this paper, we consider mathematical models of epidemiology
based on ordinary differential equations (ODEs).

While the mathematical modelling focuses on establishing
a conceptual model, the computational modelling helps im-
plement such model as a simulation program. Computational
models give out numerical results that are often used to
investigate the evolutionary dynamics, estimate parameters
and/or compare the effectiveness of different potential control-
programs. Firstly, an epidemiological model can be simulated
as deterministic in which an ODE solver method such as
Runge-Kutta [7] could be used. While the deterministic ap-
proach is especially useful to understand the average dynamics
without chance, shifting to a stochastic approach, e.g., through
Gillespie algorithms [8], is known to be more realistic [1] and
can significantly impact the dynamics of infectious diseases,
particularly on their seasonality [1]. Finally, an individual-
based implementation is sometimes required to reach a more
detailed level in which individuals could interact with each
other to transmit infection [9].

One of the problems of modelling is bridging the gap
between conceptual models and their computer simulation. In
fact, going from a conceptual model to a computational one
requires modellers to have programming skills. Moreover, the
model might be harder to understand and to validate, whithout
being overwhelmed by the underlying implementation details.
An implemented model is otherwise often tailored to a specific
purpose and/or a particular disease and may contain some
assumptions concealed within its implementation. Therefore,
it is probably difficult to be reused or to adapt to various
situations.

Domain Specific Languages (DSLs) address such diffi-
culties by separating two concerns of modelling, specifica-
tion (conceptual model) and implementation (computational
model). As opposed to General-purpose Programming lan-
guages (GPLs), DSLs are higher-level languages that provide
a more expressive syntax based on abstractions and notations



representing directly the concepts of studied domain [10].
Because of making the implementation details transparent, they
increase the readability of the code and facilitate the reuse of
domain knowledge and the communication between developers
and domain experts [11].

In this paper, we present a DSL that is being developed
for modelling mathematical models of epidemiology, together
with a simulation platform targeted to study such models. To
illustrate the practical usage of our modelling language, we
investigate a typical epidemiological model of measles, then,
vary this model by changing its specification. Our approach
is also carefully validated through statistical comparisons be-
tween the simulation results and the theoretical expectations.

II. DESIGN OF THE KENDRICK MODELLING LANGUAGE

Following the language application development proce-
dures recommended by Parr, T. [12], our modelling language
KENDRICK design consists of two parts: the first part pro-
vides domain concepts adapted for mathematical modelling of
epidemiological models as well as the concrete syntax of the
language; the second one aims at establishing a set of semantic
operations which either execute a simulation on the specified
model or generate its C/C++ version. Figure 1 shows the
overview of KENDRICK and the simulation platform around
it.

A. Main concepts of KENDRICK

KENDRICK is based on five core concepts: epidemiologi-
cal model, population, compartment, parameter and equation.
Figure 2 represents the abstract syntax of KENDRICK (also
called language meta-model) in which the relationship be-
tween concepts is described using UML (Unified Modelling
Language). This meta-model has been carefully designed to
avoid depending on semantic module. It is thus possible to
use different semantic modules for different tasks.

1) Epidemiological model: This is the fundamental concept
of the language (KEMODEL' class) which links to other
concepts of domain to complete the representation of a whole
mathematical model of epidemiology.

It defines other concepts of the domain as instance variables
and provides methods for specifying such concepts as well as
semantic operations for translating the model into a running
simulation or a C/C++ version that allows more performance.

2) Population: KEPOPULATION class describes the struc-
ture of host individuals over which the disease is studied. The
individuals of population are categorised into compartments
according to their epidemiological status. During the execution
of simulation, at each time step, the population records the size
of each compartment and the status of all individuals.

3) Compartment: A KECompartment is considered as a
sub-population in which all individuals have the same epi-
demiological status. Each compartment is characterised by a
label (epidemiological status) and a number of individuals.

4) Equation: KEEQUATION instance represents ordinary
differential equation. Equations are textually specified and
parsed by a built-in ODE parser.

5) Parameter: KEPARAMETER are used in an epidemio-
logical model and could be specified as an expression® of other
parameters. Its value is estimated at run-time.

KENDRICK is implemented as an embedded Domain-
Specific Language in Smalltalk, a dynamic object-oriented
programming language. Its concrete syntax is then a com-
bination of Smalltalk expressions. Table I shows concrete
syntax of our modelling language. The concept Compartment
is specified through Population in order to highlight the whole-
part relationship between them.

B. Semantic module

The semantic module takes instances of the language meta-
model as an input and gives out results [12]. A language,
hence, could have many semantic modules, depending on
what we want to do with the model. As mentioned above,
KENDRICK’s semantic modules perform two tasks: simula-
tion in three different modes (deterministic, stochastic and
individual-based) and GPL code generation. Figure 3 details
the semantic transformations that are done at the moment.

The modellers can switch between the simulation modes
by indicating the algorithm used. At the moment, the platform
supports the RK4 method [7] for deterministically resolv-
ing ODEs. The stochastic simulation converts the ODEs of
the model to events and using Gillespie’s direct method or
Gillespie’s explicit tau-leap method [1] to generate stochastic
model. The platform also formulates a stochastic individual-
based model, reaching event-driven stochasticity at individ-
ual level [1], [9]. It is possible to include more simulators
in the platform by extending the KESimulator class and
implementing new algorithm. The code generator transforms
KENDRICK model towards a variety of other platform-specific
models by using the Visitor Pattern (KEVISITOR class). In
the next section of this paper, we will clarify the usage of
KENDRICK language and verify the running simulation of an
epidemiological model on measles epidemic.

III. CASE STUDY AND VALIDATION

In this section, we choose a well-known childhood infec-
tious disease as an example to figure out the different steps
from specifying the conceptual model to running a simulation,
using our modelling language KENDRICK. At the end of this
section, we will validate the results produced by our platform.

A. Experimenting the measles model using KENDRICK

The most appropriate model representing measles epi-
demics is the SEIR with demography model [13] in which
individuals are categorised in four classes: first, all the newborn
individuals are assumed in Susceptible (S) class at birth rate p,
then enter in Exposed (E) class who are infected but not yet
infectious with transmission rate 3, become Infectious (I) after
a latent period given by 1/0, and finally change to Recovery
(R) after an infectious period 1/v. N = S+ E + 1+ R.
The SEIR system described above can be expressed by the

'KENDRICK classes are prefixed with KE

2By default, the expression is nil that means no expression
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Fig. 1. Overview of KENDRICK modelling and simulation platform. Epidemiologists express their conceptual models with KENDRICK language. The
KENDRICK model is then passed into the semantic module in order to either perform a simulation or generate a version of model in C/C++.
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TABLE 1.

CONCRETE SYNTAX FOR SPECIFYING KENDRICK CONCEPTS

Concepts DSL Syntax

model :=
model population:
model addEquation:
model
model
model
model

model

addParameter:
addParameter:
addParameter:
addParameter:

KEModel new.
[a population]
[an equation]

[a parameter]
[name] value: [value]
#beta value: 520

[name] expression: [an expression]

population :=
population
population
population

opulation
pop at:

at:

compartments:
[status]
#S put:

KEPopulation new.

#(S I R)
put: [number]
99999

‘[variable
‘St o=

. name]
equation

= [expression]’parseAsAnEquation

-beta * S * I - gamma * I’parseAsAnEquation

parameter :=
parameter name:
parameter name:
example:

anExpression :=
parameterl name:
parameter2 name:

parameter

KEParameter new.
[name]
[name] expression:

value: [value]

[an expression]

‘exp (-d * alpha)’parseAsAnExpression
#alpha value:
#gamma expression:

0.005
anExpression

following set of ordinary differential equations:

48 = uN —BSI—pS
48 = BSI—0oFE—uE
(1)
%{ = oF—~yl—ul
%? = I —uR

Using the concrete syntax shown in Table I, we wrote this
model with KENDRICK as:

|model |
model := KEModel new.
model population compartments: #(S E I R).
model population

at: #S put: 99999;

at: #E put: 0;

at: #I put: 1;

at: #R put: 0.
model addParameter: #beta value: 0.0000214.
model addParameter: #gamma value: 0.143.
model addParameter: #sigma value: 0.125.
model addParameter: #mu value: 0.0000351.
model addParameter: #N value: 100000.
model addEquation:

(" S:t=muxN-betaxSxI-mux*S’
parseAsAnEquation) .
addEquation:
("E:t=beta*xS*I-sigma*E-muxE’
parseAsAnEquation) .
addEquation:
("I:t=sigmaxE-gammaxI-muxI’
parseAsAnEquation) .
addEquation:
("R:t=gammaxI-muxR’
parseAsAnEquation) .
run: #RK4 from: 0 to:
plot: #(I S E R)

model

model

model

model 01.

model

100 step: O.

The measles epidemics is investigated over a population of

de+04  Be+04 Be+Dd4  le+05
! | I
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Fig. 4. Modelling results of measles model specified in KENDRICK: S =
99999, E =0,1 =1, R=0, 8 = 0.0000214, 1/v = 7 days, 1/o = 8
days, i = 1/(78 % 365) in day—', N = 100000. The graph shows the
deterministic evolutionary dynamics of the model using KENDRICK language.

100000 individuals. The model parameters are taken from
the literature [1], [13]. Here, we take the basic reproductive
Ry = 15 meaning that each infectious individual can infect 15
susceptible on average during the infectious period 1/y = 7
days. From Ry, the infection rate of model is produced by
B8 = Ro * vy/N. In Figure 4, we plot the deterministic
evolutionary dynamics of the model specified in KENDRICK.

Now, we would like to see the impact of vaccination on the
measles by vaccinating the population at birth [1]. We have to
change the equations of S and R as follows:

model addEquation:
(" S:t=muxNx (1-p) ~betaxSxI-mux*S’
parseAsAnEquation) .

model addEquation:
("R:t=muxNxp+gammax*I-muxR’
parseAsAnEquation) .

Figure 5 shows the epidemic cycles over 100 years in which
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Fig. 5. Infectious dynamics of the measles with vaccination control: S =
99999, E=0,I=1, R=0, 3=0.00782, 1/y = 7/365, 1/0 = 8/365,
pw=1/78in year—1, N = 100000. The black curve shows the deterministic
dynamics of infectious in which the population is vaccinated at 70% at birth.
The gray curve shows the result with no vaccination. The Y-axis has been
log-transformed for readability.

TABLE II. RESULTS OF THE KOLMOGOROV-SMIRNOV TEST FOR THE
MEASLES MODEL USING KENDRICK LANGUAGE
Epidemics properties P values
Peak of epidemics 0.8762
Time at peak of epidemics  0.2471
Epidemics duration 0.5246

the number of epidemics decreases in the case of having vac-
cination. In short, with this example, we want to demonstrate
that with KENDRICK, the modellers could easily vary their
model in different ways with a few operations.

B. Validating the modelling language and the platform

We aim here to validate our language in order to suggest
that a model executed through KENDRICK language will give
identical results to those produced by other well-established
platforms used by epidemiologists. We have compared the
measles model implemented in KENDRICK and a Matlab pro-
gram [14] with identical initial values and parameters through
the RK4 method. The simulation results (Figure 4) show that
KENDRICK produces identical results to those produced by the
script written in Matlab.

We then compare the dynamics of the deterministic model
and the ones of stochastic model in order to show that these
dynamics are similar in two cases (Figure 6), suggesting that
our implementation of the stochastic simulation is correct.
Finally, in order to validate our implementation of Individual-
Based simulation, we compare it with the stochastic simulation
outputs in identical configuration. To validate the full process,
we apply this validation procedure on the generated code
C/C++ of the model. Given that the stochastic and Individual-
Based simulation have been executed 150 times, we have
applied a Kolmogorov-Smirnov test to explore statistical dif-
ference between the distribution generated by the two versions
of the model for some global properties of the epidemics: (i)
the epidemic peak (in term of infectious population size), (ii)
the time at the epidemic peak, (iii) the epidemic duration [9].
Table II shows the test results of the measles model, concluding
that these distributions are statistically indistinguishable (all

40000
|

—— deterministic
stochastic

Infectious
10000 20000 30000
L 1

0
|
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0 20 40 60 80 100

Time (days)

Fig. 6. Comparison between the dynamics of deterministic and stochastic
model. The black curve shows the result of deterministic simulation, seeming
to be superimposed on the stochastic dynamics (gray curves).

the P — values > 0.05). Consequently, we believe that our
modelling language and simulation platform give expected
results.

IV. RELATED WORK AND DISCUSSIONS

Recently, DSLs were introduced in the context of bioin-
formatics [15]-[17], but only a few of them focused on
epidemiological modelling [18], [19]. Ronald [18] is a DSL
for studying the interactions between malaria infections and
drug treatments but seems not to be developed anymore.

Using a functional reactive programming framework, the
work of Schneider and al. [19] is the closest related to our work
but their goal is only to specify agent-based epidemiological
models while we are targeting multiple representations and
simulations modes. From the epidemiological point of view,
the agent-based models attract attention of modellers because
of the ability to describe a wide range of details.

Our works also support this kind of modelling but is more
generic. Instead of specifying all agent states and how agents
switch between them (also called transitions), we formulate
an agent-based model from the mathematical representation
meaning that all transitions would be automatically generated,
increasing the readability of models and allowing alternatives
methods to study them.

It may be argued that Mathematical Modelling Languages
(MMLs) such as Matlab [14], Scilab [20] or Modelica [21] are
more suitable for implementing models based on ODEs. While
such software make deterministic simulation easily doable,
stochastic, and in a greater extent individual-based / agent-
based simulation requires a significant amount of programming
effort. KENDRICK is developed to offer modellers a more
accessible way to specify their conceptual models, in the terms
of providing a simple and compact syntax and freeing them
from arcane programming details. Unlike MMLSs, KENDRICK
use a model-based engineering approach, that allows the
transformation and execution of models in various forms.

An alternative to DSLs are graphical modeling tools like
the Spatiotemporal Epidemiological Modeler (STEM) [22]
that allows epidemiologists to easily build models but are



usually closed tools. STEM is based on a workflow that is not
necessarily the one that is used by epidemiologists. Having
a textual language like KENDRICK is also a guaranty for the
reproducibility of experiments.

When constructing the KENDRICK modelling language, we
aim at taking advantage of the concepts which are closer to the
epidemiological domain in order to increase the expressiveness
of the language. However, as an embedded language, the mod-
ellers may be unfamiliar to the host programming language
(Smalltalk) syntax, though, does not spend many times to
overcome these difficulties because of the declarative nature
of this language.

Finally, together with the extensibility of the language, the
ability of modelling more complex situations such as multi-
hosts, multi-pathogens, etc. in which a large amount of equa-
tions are considered would pose performance challenges to the
simulation platform. Part of such problem could be resolved
by using code generation. Code generator from DSLs to GPLs
could be optimised quite easily and tailored to a variety of
semantic operations suitable to the modelling purposes.

V. CONCLUSION

In this paper, we introduce a modelling language and
simulation platform to specify and investigate epidemiological
models where dynamics are expressed as ODEs. We also
highlighted our motivations to develop such language and
justify its usage in practice through a typical epidemiological
model. In this modelling approach, the mathematical models
of epidemiology are specified and varied in a descriptive
way that encourages the modellers to be able to focus on
their conceptual models. Otherwise, our proposed modelling
language, KENDRICK, is easy to use because it lets modellers
use ODEs but it is also versatile as it lets them choose among
different kinds of simulations: deterministic, stochastic and
individual-based.

For the future, we aim to model various concerns of
epidemiology: spatial spreading, mobility, risks that deals with
heterogeneous populations, evaluation of control strategies,
visualisation, etc ... We intend to develop DSLs adapting to
different usages on top of the basic infrastructure that we
already built. Such a system should allow the composition of
the DSLs in an uniform manner, without modifying the core
system.

Although more work should be accomplish in order to
provide a complete modelling and simulation platform, we
believe that our approach is a promising initiative to contribute
to the modern modelling of epidemiology.

KENDRICK platform is available as an open source soft-
ware under the MIT licence: https://github.com/UMMISCO/
Kendrick.
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