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SPECTRUM OF LARGE RANDOM MARKOV CHAINS:

HEAVY-TAILED WEIGHTS ON THE ORIENTED COMPLETE GRAPH

CH. BORDENAVE, P. CAPUTO, D. CHAFAÏ, AND D. PIRAS

Abstract. We consider the random Markov matrix obtained by assigning i.i.d. non-
negative weights to each edge of the complete oriented graph. In this study, the weights
have unbounded first moment and belong to the domain of attraction of an alpha-stable
law. We prove that as the dimension tends to infinity, the empirical measure of the
singular values tends to a probability measure which depends only on alpha, characterized
as the expected value of the spectral measure at the root of a weighted random tree. The
latter is a generalized two-stage version of the Poisson weighted infinite tree (PWIT)
introduced by David Aldous. Under an additional smoothness assumption, we show that
the empirical measure of the eigenvalues tends to a non-degenerate isotropic probability
measure depending only on alpha and supported on the unit disc of the complex plane.
We conjecture that the limiting support is actually formed by a strictly smaller disc.
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1. Introduction

A natural way to construct a random n× n Markov matrix is to assign i.i.d. (indepen-
dent and identically distributed) non-negative weights Xi,j with a given law L to each
ordered pair (i, j), i, j = 1, . . . , n, and then consider the stochastic matrix M obtained by
normalizing each row with the corresponding row sum:

Mi,j :=
Xi,j

ρi
where ρi :=

n∑

j=1

Xi,j . (1.1)
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If ρi = 0 for some i, it is understood that Mi,i = 1 and Mi,j = 0 for all j 6= i. The
random matrix M has independent rows but non-independent columns. The eigenvalues
of M , that is the complex roots of det(M − z), are denoted by λ1, . . . , λn. Since M is
a stochastic matrix, one has λ1 = 1 and |λj | 6 1, j = 2, . . . , n. If the symmetry of the
weights Xi,j = Xj,i is imposed, then the resulting Markov chain is reversible with respect
to the row sum measure ρi, and has real spectrum. Such reversible models have been
studied in [4, 5]. Here we consider the case where Xi,j and Xj,i are independent. In this
case the Markov chain is non-reversible and has complex eigenvalues.

If L has finite second moment, it was shown in [7] that the spectrum is asymptotically
uniformly distributed in the disc of radius σ/

√
n, where σ2 denotes the variance of L, i.e.

1

n

n∑

k=1

δ
λk

√
n
σ2

 
n→∞

U , (1.2)

where U is the uniform law on the unit disc D = {z ∈ C : |z| 6 1} and  denotes
the weak convergence of probability measures with respect to continuous and bounded
test functions. Similar results were recently obtained for discrete matrices with given row
sums [15], for the ensemble of uniformly random doubly stochastic matrices [12, 14] and
for random matrices with exchangeable entries [1].

In this paper we consider the infinite variance case. We shall actually restrict our
attention to the particularly interesting case where the law L of the entries has infinite
first moment. Our main results can be formulated as follows. We assume that for some
α ∈ (0, 1), the random variables Xi,j are i.i.d. copies of a random variable x satisfying the
assumptions below:

(H1) x is a non-negative random variable such that

c := lim
t→∞

tα P(x > t) > 0. (1.3)

(H2) x has a bounded probability density function.

It is well known that a random variable satisfying (H1) is in the domain of attraction of an

α-stable law. An example of random variable satisfying both (H1) and (H2) is x = U−1/α,
where U is any bounded non-negative random variable with continuous probability density
ϕ on [0,∞) such that ϕ(0) > 0.

We recall that for every fixed i, the ordered rearrangement of the random row vector
{Mi,j, j = 1, . . . , n} converges weakly to the Poisson-Dirichlet distribution with parameter
α ∈ (0, 1); see [16], [5, Lem. 2.4]. Thus, one expects that the distribution of eigenvalues of
M converges to a nontrivial probability measure on the unit disc D without any further
rescaling. This is what we prove in Theorem 1.2 below. The proof, following the “objective
method” philosophy [3], will be based on the construction of an infinite random tree that
can be identified as a suitable local limit of the random matrix M .

As usual for the non Hermitian setting, the analysis of the eigenvalues starts with the
understanding of the asymptotic behavior of the singular values of M − z, for z ∈ C. Here
and below, if no confusion arises, we write z for the diagonal matrix zI. Consider the
singular values sk,z, k = 1, . . . , n, that is the eigenvalues of

√
(M − z)(M − z)∗, and write

νM,z for the associated empirical distribution:

νM,z :=
1

n

n∑

k=1

δsk,z
. (1.4)

Theorem 1.1 (Singular values). If (H1) holds, then for each z ∈ C there exists a proba-
bility measure να,z on [0,∞) depending only on α and |z| such that almost surely

νM,z  
n→∞

να,z. (1.5)
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For any z ∈ C the measure να,z has unbounded support and satisfies, for all λ > 0,
∫ ∞

0
eλsνα,z(ds) < ∞. (1.6)

The proof of Theorem 1.1 is based on the local convergence of the 2n × 2n Hermitian
matrix

Bz :=

(
0 M − z

M⊤ − z̄ 0

)
(1.7)

to the self-adjoint operator associated to a rooted random weighted infinite tree. In par-
ticular, the measure να,z will be interpreted as the expected value of the spectral measure
associated to this random rooted tree. While this line of reasoning is entirely parallel to
the arguments introduced in [6], an important difference here is that the resulting tree is
the outcome of a branching process where two distinct offspring distributions alternate at
each generation; see Section 2 below. In contrast with [6], the row sum normalization in M
introduces dependencies in the random weights of the limiting tree, making the recursive
distributional equation characterizing the spectral measure harder to analyze; see Section
3.4 below.

Note that in contrast with the eigenvalues, the distribution of the singular values of M
has unbounded support. On the other hand, unlike the case of singular values of i.i.d.
heavy tailed matrices [6], it has finite exponential moments.

Next, we turn to the empirical distribution of the eigenvalues of M :

µM :=
1

n

n∑

k=1

δλk
. (1.8)

Theorem 1.2 (Eigenvalues). If (H1) and (H2) hold then there exists a probability measure
µα on the unit disc D, depending only on α, such that almost surely

µM  
n→∞

µα. (1.9)

Moreover the probability measure µα is isotropic and non-degenerate.

The proof of Theorem 1.2 is based on Girko’s Hermitization method [13], that is we
use logarithmic potentials together with the convergence of the singular values of M − z
expressed by Theorem 1.1; see [10] for a survey of the method. A crucial point of this
approach is the uniform integrability of the logarithmic function for the measures νM,z, as
n → ∞. Two key facts are needed to establish this property. The first step is the proof
that for almost all z ∈ C the smallest singular value of M − z is bounded below by an
inverse polynomial of n with high probability; see Theorem 4.2 below. This estimate uses
the assumption (H2). The second step is an adaptation of the Tao and Vu analysis [19] of
the singular values in the bulk. These steps are approached by a combination of methods
introduced in [6] and [7]. In both cases, however, the present setting requires a nontrivial
extension of the known arguments.

We refer to Figure 1 for simulation plots of the spectrum of M .

Remark 1.3 (Edge behavior: conjectures). The pictures in Figure 1 prompt the conjecture
that the spectral measure µα is supported on a disc Dα := {z ∈ C : |z| 6 rα} for some
rα ∈ (0, 1), where rα → 1 as α → 0 and rα → 0 as α → 1. A closer look at simulations
actually suggests an even stronger conjecture, namely that with high probability, except for
the eigenvalue λ1 = 1, the Markov matrix M has a spectral radius strictly less than 1:

max{|λ2|, . . . , |λn|} 6 rα , (1.10)

for some constant rα ∈ (0, 1) as above. Heuristic arguments seem to suggest that rα ∼√
1 − α. A somewhat related question is the long time behavior of the Markov chain with

transition matrix M . This question is addressed in [9]; see also [8] for related recent
progress concerning sparse random directed graphs.
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Figure 1. Histogram of the modulus of the spectrum of a single simulation
of M in dimension n = 30000 and with tail index α equal to 0.2, 0.5, and
0.9 respectively, from top to bottom. The simulation uses x = U−1/α,
where U is uniform in [0, 1].
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A remark concerning the case where the variable x satisfies (H1) with α ∈ (1, 2):
in analogy with results from [5, 6] we expect that in this case the rescaled eigenvalues
λ′
k := n1−1/αλk satisfy

1

n

n∑

k=1

δλ′
k
 
n→∞

µ′
α , (1.11)

where µ′
α is the isotropic probability measure with unbounded support on C, associated

to the i.i.d. matrix X; see [6, Th. 1.2]. The case α = 1 should require a logarithmic
correction.

The rest of this article is organized as follows. In Section 2 we obtain some preliminary
properties of the model and describe the alternate Poisson weighted tree that will be used
in the proof of Theorem 1.1. The latter is given in Section 3. Finally, in Section 4 we
prove Theorem 1.2.

2. Local convergence to the alternate Poisson weighted tree

The key conceptual step is to associate to our matrix M a limiting random weighted
tree. We follow what is by now a well established strategy; see [2, 3, 11, 5]. We start
with some facts on convergence to Poisson point processes for sequences of heavy tailed
random variables; see e.g. [18] for more background.

2.1. Convergence of rows and columns of the Markov matrix. If 0 6 x1 6 x2 6 · · ·
is distributed as the Poisson point process with intensity 1 on [0,∞), then

ξi = x
−1/α
i , (2.1)

is distributed as the Poisson point process with intensity φ(t) = αt−α−1 on [0,∞). In this
case we say that the ranked vector {ξi} has law PPP(α). Moreover, for α ∈ (0, 1), the
variable S =

∑∞
i=1 ξi has the one sided α-stable law, with Laplace transform

E[exp (−θS)] = exp (−Γ(1 − α)θα) , θ > 0. (2.2)

The law of the normalized ranked vector

(ζ1, ζ2, . . . ) := S−1(ξ1, ξ2, · · · ), (2.3)

is called the Poisson-Dirichlet law with index α; see [16] for a detailed account. We shall
refer to it as PD(α). The next lemma summarizes the key convergence results for the
rows of the matrix M . We recall that here convergence in distribution of a ranked vector
coincides with weak convergence, for every fixed k ∈ N, of the joint law of the first k
maxima of the vector. We write [n] for the set {1, . . . , n}.

Lemma 2.1 (Poisson Point Processes and Poisson Dirichlet distributions). Let Xi,j, i, j ∈
[n] be i.i.d. copies of a random variable x satisfying (H1). Define ρi =

∑n
j=1Xi,j and

Mi,j = ρ−1
i Xi,j. Set an := (c n)1/α, where c is as in (1.3). Then

1. The ranked rearrangement of {a−1
n X1,j , j ∈ [n]} converges in distribution to {ξi} which

is a Poisson Point Process PPP(α);
2. The random variable a−1

n ρ1 converges in distribution to S given in (2.2);
3. The ranked rearrangement of {M1,j , j ∈ [n]} converges in distribution to {ζi} which

follows the Poisson-Dirichlet law PD(α).

The above lemma is well known; we refer e.g. to [5, Lem. 2.4] for a proof. We turn to
column vectors. Here the convergence result is less immediate. We start with an auxiliary
lemma. While Lemma 2.1 does not require the full strength of the assumption (H1), the
usual regular variation assumption being sufficient [5], below we do use (H1) in a more
stringent way.
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Lemma 2.2. In the setting of Lemma 2.1, for all fixed t > 0 one has

lim
n→∞

nP
(
X1,1 >

t
1+t ρ1

)
= γ t−α, (2.4)

where γ is the constant

γ = γ(α) :=
1

Γ(1 + α)Γ(1 − α)
.

Proof. For u > 0, write P(x > u) = L(u)u−α, for some function L(u) such that L(u) → c,
u → ∞, as in (1.3). Denote by µn the law of the variable a−1

n ρ̂1, where ρ̂1 :=
∑n
i=2X1,i.

Since X1,1 >
t

1+t ρ1 is equivalent to X1,1 > tρ̂1, by the independence of X1,1 and ρ̂1 one
has

nP
(
X1,1 >

t
1+t ρ1

)
= nP (X1,1 > tρ̂1) = c−1t−α

∫ ∞

0
s−αL(ants)µn(ds). (2.5)

From Lemma 2.1 we know that µn converges weakly to µ, the law of S in (2.2). We are
going to prove that for any t > 0:

lim
n→∞

c−1
∫ ∞

0
s−αL(ants)µn(ds) =

∫ ∞

0
s−αµ(ds). (2.6)

Notice that (2.6) proves (2.4) since by direct computation, using (2.2) and αΓ(α) =
Γ(1 + α),

∫ ∞

0
s−αµ(ds) =

1

Γ(α)

∫ ∞

0
dxxα−1

∫ ∞

0
e−xsµ(ds)

=
1

Γ(α)

∫ ∞

0
dxxα−1e−xαΓ(1−α) = γ.

To prove (2.6), fix ε > 0 and start by observing that

lim
n→∞

∫ ∞

ε
s−αL(ants)µn(ds) = c

∫ ∞

ε
s−αµ(ds), (2.7)

Indeed, |L(ants) − c| → 0 as n → ∞, uniformly in s > ε. Also,
∫∞
ε s−αµn(ds) →∫∞

ε s−αµ(ds) by weak convergence. This implies (2.7).
Next, we show that for any constant K > 0,

lim
n→∞

∫ Ka−1
n

0
s−αL(ants)µn(ds) = 0. (2.8)

The obvious bound L(u) 6 uα, u > 0, yields L(ants) 6 cs
αtαn. Therefore,

∫ Ka−1
n

0
s−αL(ants)µn(ds) 6 c tαn

∫ Ka−1
n

0
µn(ds). (2.9)

Now,
∫Ka−1

n

0 µn(ds) = P(ρ̂1 6 K), and ρ̂1 > maxi=2,...,nX1,i, so that

∫ Ka−1
n

0
µn(ds) 6 P(x 6 K)n, (2.10)

which decays exponentially in n for any fixed K > 0. This, together with (2.9), implies
(2.8).

Finally, consider the integral
∫ ε

Ka−1
n

s−αL(ants)µn(ds). (2.11)

Since s > K/an, (1.3) shows that L(ants) 6 2c if K = K(t) is large enough. Therefore
(2.11) is bounded by

2c

∫ ε

Ka−1
n

s−αµn(ds) 6 2c

∫ ε

Ka−1
n

s−αµn(ds).
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Thus, the proof of (2.6) is complete once we show

lim
ε→0

lim sup
n→∞

∫ ε

Ka−1
n

s−αµn(ds) = 0 . (2.12)

From (H1) and [6, Lem. 3.5], there exists η > 0, p ∈ (0, 1) such that x dominates
stochastically the product ηDS whereD is a Bernoulli(p) variable independent of S defined

in (2.2). Thus a−1
n ρ̂1 stochastically dominates Ŝn := a−1

n (D1S1+· · ·Dn−1Sn−1) where {Di}
and {Si} are independent, Di are i.i.d. copies of D, Si are i.i.d. copies of S. If µ̂n denotes

the law of Ŝn, then µ̂n =
∑n−1
k=0 p(k, n)νk where p(k, n) =

(n−1
k

)
pk(1 − p)n−1−k, and νk is

the law of ηa−1
n (S1 + · · · + Sk). By stability S1 + · · · + Sk has the same law of k1/αS, so

that νk is the law of η(k/cn)1/αS. Let E be the event that D1 + · · · +Dn−1 > pn/2. We
estimate

∫ ε

Ka−1
n

s−αµn(ds) 6 (K/an)−α
P(Ec) +

n−1∑

k=pn/2

p(k, n)

∫ ε

Ka−1
n

s−ανk(ds). (2.13)

P(Ec) decays to zero exponentially in n from the Chernoff bound. Thus the first term
above vanishes in the limit n → ∞. We now consider the second term. For any k ∈
[pn/2, n − 1] one has that νk is the law of λS, for a constant λ = η(k/cn)1/α such that
λ ∈ [a, b] for some constants 0 < a < b < ∞. Then, uniformly in k ∈ [pn/2, n − 1],

∫ ε

Ka−1
n

s−ανk(ds) 6 a
−α
∫ ε/a

0
x−αµ(dx).

Since
∫ ε

0 x
−αµ(dx) → 0 as ε → 0, (2.13) implies (2.12). This ends the proof of (2.6). �

We can now state the main results concerning convergence of columns of M .

Lemma 2.3 (Ranked rearrangements). In the setting of Lemma 2.1, let X̃j,1, j ∈ [n]
denote the ranked rearrangement of {Xj,1, j ∈ [n]}, write π = πn for the permutation of

[n] such that X̃i,1 = Xπ(i),1 for all i ∈ [n] (use e.g. lexicographic order to break ties if

necessary), and define M̂j,1 := Mπ(j),1.

1. For any k ∈ N, (M̂1,1, . . . , M̂k,1) converges in distribution to (ω̂1, . . . , ω̂k), defined by

ω̂i :=
ξi

ξi + Si
, (2.14)

where {ξi} is the sequence in (2.1) with law PPP(α), and {Si} is an independent se-
quence of i.i.d. copies of the random variable S in (2.2).

2. The ranked rearrangement of {Mj,1, j ∈ [n]} converges in distribution to the ranked
rearrangement of {ω̂i}. The latter, in turn has the same law of the ranked sequence

ωi :=
ξi

ξi + q
, (2.15)

with {ξi} as above, and q is the constant q = γ−1/α = (Γ(1 + α)Γ(1 − α))1/α.

Proof. Define ρ̂j :=
∑n
i=2Xj,i, so that

Mj,1 =
Xj,1

Xj,1 + ρ̂j
. (2.16)

It follows that

M̂j,1 =
Xπ(j),1

Xπ(j),1 + ρ̂π(j)
.

Since {Xπ(j),ℓ, ℓ 6= 1, j ∈ [n]} are independent of {Xπ(j),1, j ∈ [n]}, parts 1 and 2 of Lemma

2.1 imply convergence in distribution of (M̂1,1, . . . , M̂k,1) to (ω̂1, . . . , ω̂k) for any fixed k.
Note that these sequences are not necessarily ranked.
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To prove part 2, for any ℓ, k ∈ [n], ℓ < k, let Eℓ,k(n) denote the event that the largest ℓ

values of {Mj,1, j ∈ [n]} are not included in the sequence (M̂1,1, . . . , M̂k,1), and call pℓ,k(n)
its probability. Below, we observe that for any fixed ℓ ∈ N,

lim
k→∞

lim sup
n→∞

pℓ,k(n) = 0. (2.17)

Once (2.17) is available, then it is not difficult to see that the largest ℓ values of {Mj,1, j ∈
[n]} and the largest ℓ values of {M̂j,1, j ∈ [n]} have the same limit in distribution, for any
fixed ℓ. It follows from part 1 that the ranked rearrangement of {Mj,1, j ∈ [n]} converges
in distribution to the ranked rearrangement of {ω̂i}.

To prove (2.17), we observe that the event Eℓ,k(n) implies that there exists j∗ ∈ [n] such
that Mj∗,1 is larger than the ℓ-th maximum of {Mπ(i),1, i = 1, . . . , k} and Xj∗,1 < Xπ(k),1.
In particular, there must be j∗ ∈ [n] and i∗ ∈ {1, . . . , ℓ} such that Mj∗,1 > Mπ(i∗),1 and
Xj∗,1 < Xπ(k),1. Therefore, see (2.16), one must have

ρ̂j∗
< Xj∗,1 max

i=1,...,ℓ

ρ̂π(i)

Xπ(i),1
.

From part 1 of the lemma it follows that maxi=1,...,ℓ
ρ̂π(i)

Xπ(i),1
converges in distribution to

maxi=1,...,ℓ
Si

ξi
, and therefore, for all fixed ℓ ∈ N:

lim
t→∞

lim sup
n→∞

P

(
max
i=1,...,ℓ

ρ̂π(i)

Xπ(i),1
> t

)
= 0.

Thus, it suffices to prove that for any t > 0:

lim
k→∞

lim sup
n→∞

P

(
∃j∗ ∈ [n] : ρ̂j∗

< tXj∗,1 and Xj∗,1 < Xπ(k),1

)
= 0. (2.18)

From Lemma 2.1, for any ε > 0,

lim
n→∞

P(Xπ(k),1 > εan) = lim
k→∞

P(ξk > ε) = 0.

Thus, using a union bound, to prove (2.18) we can restrict ourselves to the proof that for
any fixed t > 0:

lim
ε→0

lim sup
n→∞

nP (ρ̂1 < tX1,1 < εan) = 0. (2.19)

However, as in (2.7) we have

nP (ρ̂1 < tX1,1 < εan) 6 c−1tα
∫ ε

0
s−αL(t−1ans)µn(ds). (2.20)

From the estimates (2.8) and (2.12) one obtains (2.19). This concludes the proof of (2.17).
It remains to prove that the ranked values of the limiting sequence have the same law

of {ωi} in (2.15). To this end, define Wj := Xj,1/ρ̂j , so that

Mj,1 =
Xj,1

Xj,1 + ρ̂j
=

1

1 + 1
Wj

. (2.21)

The Wj are i.i.d. random variables. From Lemma 2.2 we know that, as n → ∞,

nP(W1 > t) → (qt)−α , t > 0. (2.22)

Then, by a well known criterion, see [18, Th. 5.3], the ranked rearrangement of {q Wj, j ∈
[n]} converges in distribution to {ξi} with law PPP(α), and from (2.21) it follows that
the ranked rearrangement of (Mj,1, j = 1, . . . , n) converges in distribution to {ωi} as
claimed. �
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2.2. The alternate Poisson weighted tree. Here we define the limiting random rooted
tree to be associated to the matrix M . We start with some standard notation. The vertex
set V of the tree is deterministic, and it is defined as the countable set of all points k

of the form k = (k1, . . . , km) for some m ∈ N and ki ∈ N, for all i = 1, . . . ,m, together
with the root vertex ∅. If k = (k1, . . . , km) ∈ V , and j ∈ N, we write (k, j) or simply
kj for the vertex (k1, . . . , km, j) ∈ V . The interpretation is that kj is the j-th child of
vertex k. Thus, if k = ∅ is the root, then ∅j or simply j denotes the j-th vertex in the
first generation. Note that for any k ∈ V , k 6= ∅, there is a unique pair (vk, ik), with
vk ∈ V , and ik ∈ N, such that k = vk ik. The vertex vk is called the parent of k. If
k = (k1, . . . , km) for some m ∈ N, we write d(k) := m, and say that k belongs to the m-th
generation, or equivalently that k is at distance m from the root.

Let ξ(k) = {ξ(k)
i }, k ∈ V , denote independent copies of the Poisson process {ξi} with

law PPP(α), as in (2.1). We can now define a random rooted tree T0 as the undirected
weighted tree with vertex set V , with root at ∅, with edges connecting vertices k,k′ ∈ V
if and only if k′ = kj or k = k′j for some j ∈ N, and with edges {k,kj} carrying the

weight ξ
(k)
j . We often use the notation

T0(k,kj) = T0(kj,k) = ξ
(k)
j , (2.23)

for the weight along the undirected edge {k,kj}.

Next, let us define Sk =
∑∞
i=1 ξ

(k)
i . Clearly, Sk, k ∈ V are independent copies of the

one sided random variable with law (2.2). Let us modify the tree T0 as follows. We say
that k ∈ V is even (respectively odd) if d(k) is even (respectively odd). The root counts
as an even vertex. Let T+ denote the tree with the same vertex set and edge set as T0 but
with weights

T̂+(k,kj) = T̂+(kj,k) = ζ̂
(k)
j 1{k even} + ω̂

(k)
j 1{k odd}, (2.24)

where

ζ̂
(k)
j :=

ξ
(k)
j

ξ
(vk)
ik

+ Sk

, ω̂
(k)
j :=

ξ
(k)
j

ξ
(k)
j + Skj

. (2.25)

As before, in (2.25) the pair (vk, ik) is defined by the relation k = (vk, ik), and we use the

convention that if k = ∅, then ξ
(vk)
ik

= 0. In particular, the weights of the edges from the

root to the first generation have the law PD(α) as in (2.3). We remark that with these
definitions one has

ζ̂
(k)
j = (1 − ω̂

(vk)
ik

)
ξ

(k)
j

Sk

. (2.26)

Also, remark that the weights {ω̂(k)
j , j ∈ N} are independent of all weights of the form

T̂+(v,vi) for any v such that d(v) < d(k). In particular, the randomness starts afresh at
every odd generation.

For any k ∈ V one has ζ̂
(k)
j > ζ̂

(k)
j+1. On the other hand the values ω̂

(k)
j , j ∈ N are not

necessarily ranked. As in Lemma 2.3 we may consider the ranked rearrangement of the

weights {ω̂(k)
j }. Proceeding top to bottom from the root one can then define a new tree

T+ isomorphic to T̂+ and such that all weights are ranked in the sense that

T+(k,kj) > T+(k,k(j + 1)) , k ∈ V, j ∈ N.

In a similar fashion, we may define the weighted rooted tree

T̂−(k,kj) = T̂−(kj,k) = ζ̂
(k)
j 1{k odd} + ω̂

(k)
j 1{k even}, (2.27)
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where ζ̂
(k)
j and ω̂

(k)
j are defined by (2.25). Then, by taking ranked rearrangements one

defines the tree T− such that

T−(k,kj) > T−(k,k(j + 1)) , k ∈ V, j ∈ N.

2.3. Adjacency operators on trees. Consider the Hilbert space ℓ2(V ) of square inte-
grable sequences ϕ : V 7→ C, with the scalar product defined by

〈ϕ,ϕ′〉 =
∑

k∈V

ϕ(k)ϕ′(k).

The indicator functions 1k defined by 1k(k′) = δk,k′ form an orthonormal basis. The
weights (2.23) produce almost surely a densely defined symmetric operator T0 acting on
ℓ2(V ) by the formula

〈1k,T01k′〉 :=





T0(k,kj) if k′ = kj

T0(k′,k′j) if k = k′j

0 if k 6∼ k′

(2.28)

where k 6∼ k′ indicates that (k,k′) is not an edge of the tree, that is k′ 6= kj and k 6= k′j
for all j ∈ N. In the same way, using the matrix elements (2.24) and (2.27) we define

the operators T̂+ and T̂− respectively, together with their ranked versions T+ and T−. All
the operators defined above have dense domain D, defined as the set of finitely supported
vectors, and are symmetric in ℓ2(V ). With a slight abuse of notation we identify them with
their closure. It is crucial for our purposes that these operators are actually self-adjoint;
see e.g. [17] for background on self-adjointness of a symmetric unbounded operator.

Lemma 2.4. The operators T0, T̂±, and T± are almost surely self-adjoint.

Proof. Self-adjointness of T0 is shown in [5, Prop. A.2]. To prove the other statements

we may adapt the same argument. Let us consider the case of T̂+, the others being very
similar. Notice that for any even vertex k one has

∑

v∈V

T̂+(k,v) = 1. (2.29)

On the other hand, for k odd and κ > 0, define the variables

τκ(k) = inf
{
t > 0 :

∞∑

j=t+1

ω
(k)
j 6 κ

}
, (2.30)

where {ω(k)
j , j ∈ N} denotes the ranked rearrangement of {ω̂(k)

j , j ∈ N}. For any κ > 0,

the random variables {τκ(k), k odd} are independent and identically distributed. Thus,
the very same proof of [5, Prop. A.2] applies, provided we prove that for fixed k odd, one
has Eτκ(k) < ∞ for all κ > 0 and Eτκ(k) → 0, as κ → ∞. Now, by Lemma 2.3, τκ(k)

has the same law of the first t > 0 such that
∑∞
j=t+1

ξj

ξj+q 6 κ; see (2.15). In particular, it

is stochastically dominated by the random variable

τ̄κ := inf
{
t > 0 :

∞∑

j=t+1

ξj 6 qκ
}
,

which satisfies Eτ̄κ < ∞ and Eτ̄κ → 0, κ → ∞, by [5, Lem. A.4]. �
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2.4. The unfolding map. Fix a vertex i0 ∈ [n] and two integers b, h ∈ N. Let Vb,h ⊂ V
denote the set of k ∈ V of the form k = (k1, . . . , kℓ), where ki ∈ {1, . . . , b}, and ℓ 6 h,
together with the root vertex ∅. That is, Vb,h is the finite subset obtained from V by
considering only the first b children of each node, and stopping at the h-th generation. As
usual if k,k′ ∈ Vb,h we write k ∼ k′ iff k′ = kj for k = k′j for some j. We now define
a map φ+ : Vb,h → [n] (respectively φ− : Vb,h → [n]) revealing the alternating ranked
rearrangements of rows and columns of the matrix X starting with the row labeled i0
(respectively, starting with the column labeled i0). The map

φ+ : Vb,h → [n],

is defined as follows. Start with φ+(∅) := i0. Let Xi0,π(j), j = 1, . . . , b, denote the first b
terms of the ranked rearrangement of the row (Xi0,j, j ∈ [n], j 6= i0) (as usual we break ties
using the lexicographic ordering if necessary). Set φ+(j) := π(j), j = 1, . . . , b. Thus far we
have defined the map φ+ on the root vertex and the first generation vertices. To uncover
the second generation, set I = {i0}, and let Xπ1(j),π(1), j = 1, . . . , b, denote the first b terms
of the ranked rearrangement of the column (Xj,π(1), j ∈ [n], j /∈ I), and set φ+(1j) := π1(j),
j = 1, . . . , b. Rename I = {i0, π1(1), . . . , π1(b)}, let Xπ2(j),π(2), j = 1, . . . , b denote the
first b terms of the ranked rearrangement of the column (Xj,π(2), j ∈ [n], j /∈ I), and
set φ+(2j) := π2(j), j = 1, . . . , b. Repeating this procedure for the columns labeled
π(3), . . . , π(b) one completes the definition of φ+ for second generation of Vb,h. To complete
the definition of the map φ+ we proceed recursively (redefining at each step the set I so
that all rows revealed so far are excluded from the ranking) in the same way, with the
rule that if we are revealing the m-th generation, then we look at rankings of the rows
labeled by the vertices revealed in the (m − 1)-th generation if m is odd, and rankings
of the columns labeled by the vertices revealed in the (m− 1)-th generation if m is even.
This ends the definition of φ+. To define the map φ− : Vb,h → [n] we proceed in the exact
same way, with the role of rows and columns exchanged. Equivalently one may define φ−

as the map φ+ obtained by replacing X with X⊤.

Example 2.5. Let us give the explicit values of φ± in a simple example. Suppose n = 5
and consider the realization

X =




0.1 3.2 2.1 4 0.2
0 1.2 3.3 3.4 1.7

0.4 10.3 0.1 2 3
0.2 3.1 1.67 5 11
8 4.7 1.2 1.98 2



. (2.31)

Suppose i0 = 3 so that φ±(∅) = 3. The highest value in row 3 is 10.3 corresponding to
column 2, thus φ+(1) = 2. The second highest value in row 3 is 3 corresponding to column
5, thus φ+(2) = 5. The two highest values in column 2 are 4.7 and 3.2 corresponding to
row 5 and row 1 respectively, thus φ+(11) = 5 and φ+(12) = 1. Next, if we eliminate row
1 and row 5, the two highest values in column 5 are 11 and 1.7 corresponding to row 4
and row 2 respectively, thus φ+(21) = 4 and φ+(22) = 2. On the other hand, scanning
first columns and then rows gives the map φ− depicted below.

k ∅ 1 2 11 12 21 22
φ+(k) 3 2 5 5 1 4 2
φ−(k) 3 2 1 4 5 2 1

(2.32)

We now go back to the general setting. To link our original matrix X with the limiting
tree T0 we need a further step, namely bipartization. Let A denote the 2n× 2n bipartite
symmetric matrix

A =

(
0 X
X⊤ 0

)
. (2.33)
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∅1 211

12 21

22
310.34.7

3.2

3.1

1.22

0.2

11

1.7

Figure 2. The network A2,2
+,5 corresponding to the matrix X in Example

2.5. If the bended edges are removed, then one obtains the network Ã2,2
+,5

used in the proof of Lemma 2.6.

For any k ∈ Vb,h, set

ψ+(k) :=

{
φ+(k) k even

φ+(k) + n k odd
and ψ−(k) :=

{
φ−(k) k odd

φ−(k) + n k even
(2.34)

The above defines two injective maps ψ± : Vb,h 7→ [2n]. A network is a collection of ver-
tices together with undirected weighted edges between them. Consider the finite random

network Ab,h±,n with vertex set Vb,h and with weighted edge between vertices u,v ∈ Vb,h

defined by a−1
n Au,v, where u := ψ±(u) and v := ψ±(v). Notice that the network Ab,h±,n has

a fixed number of vertices but the value of edge weights depends on n. See Figure 2 for
an explanatory example. At any finite n the network can well have cycles, but these tend
to disappear as n → ∞ as the next lemma shows. Weak convergence of finite random
networks is defined as weak convergence of the joint law of edge weights in the natural
way.

Lemma 2.6 (Convergence of i.i.d. networks to trees). The random networks Ab,h+,n and

Ab,h−,n both converge weakly, as n → ∞, to the restriction of the random tree T0 to the
vertex set Vb,h, for any fixed b, h ∈ N, and for any choice of the initial vertex i0.

Proof. By symmetry, Ab,h+,n and Ab,h−,n have the same law, thus it is sufficient to prove the

statement for Ab,h+,n only. Let Ãb,h+,n denote the sub-network obtained from Ab,h+,n by giving
weight zero to all edges of the form {u,v} such that u 6∼ v. See Figure 2 for an example.
Then, by construction, and using repeatedly part 1 of Lemma 2.1 one has that the sequence

Ãb,h+,n converges weakly to the restriction of T0 to the vertex set Vb,h. To prove the desired

convergence then it suffices to prove that the discarded weights in Ab,h+,n converge to zero
in probability. This can be checked by a stochastic domination argument as already done
in [5, Prop. 2.6]. �

Next, we turn to our matrix M with normalized rows. Let B denote the 2n × 2n
bipartite symmetric matrix

B =

(
0 M
M⊤ 0

)
. (2.35)

Let ψ± denote the same maps defined in (2.34), and consider the networks Bb,h
±,n defined

by the vertex set Vb,h as above but with a weighted edge between any pair of vertices
u,v ∈ Vb,h defined by Bu,v, where u := ψ±(k) and v := ψ±(v). Note that we do not
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require any rescaling now. Also note that in contrast with the case of the matrix A, the

law of the finite networks Bb,h
+,n and Bb,h

−,n do not coincide.

Lemma 2.7 (Convergence of Markov networks to trees). The random network Bb,h
±,n con-

verges weakly, as n → ∞, to the restriction of the random tree T̂± to the vertex set Vb,h,
for any fixed b, h ∈ N, and for any choice of the initial vertex i0.

Proof. As in the proof of Lemma 2.6 we identify a modified network B̃b,h
±,n which is easily

seen to converge to the desired limit by an application of Lemma 2.3 and then prove

that the difference between Bb,h
±,n and B̃b,h

+,n vanishes in probability. Let us start with Bb,h
+,n.

Consider the modified network B̃b,h
+,n obtained from Bb,h

+,n by giving weight zero to any edge
of the form {u,v} such that u 6∼ v. Now, a recursive application Lemma 2.3 implies that

the network B̃b,h
+,n converges weakly, as n → ∞, to the restriction of the random tree T̂+ to

the vertex set Vb,h. There is a delicate point here due to the fact that while rows of M are
independent, the columns are not. The dependence stems from the normalizing sums ρu,
but with a little care it can be shown to be negligible in the limit. We carry out the details

below for the first two generations of the tree. Notice that once the convergence of B̃b,h
+,n

is established, one can conclude by the same stochastic domination argument mentioned
in the proof of Lemma 2.6 above.

Let us check the convergence of B̃b,h
+,n in more detail. For simplicity of exposition we

take b = h = 2. Here the network consists of 7 vertices, namely the ∅, 1, 2, 11, 12, 21, 22.
Let Gn denote the network B̃2,2

+,n, and let Gn(u,v) denote the weight of edge {u,v}. Then
by definition

Gn(∅, 1) = Xi0,π(1)/ρi0 ,

Gn(∅, 2) = Xi0,π(2)/ρi0 ,

Gn(1, 11) = Xπ1(1),π(1)/ρπ1(1),

Gn(1, 12) = Xπ1(2),π(1)/ρπ1(2),

Gn(2, 21) = Xπ2(1),π(2)/ρπ2(1),

Gn(2, 22) = Xπ2(2),π(2)/ρπ2(2).

All other edges have weight zero. Set ρ′
i := ρi − Xi,π(1), i ∈ [n], and define a new

network G′
n such that G′

n coincides with Gn except that on edges {2, 21} and {2, 22} one
has G′

n(2, 21) = Xπ2(1),π(2)/ρ
′
π2(1) and Gn(2, 22) = Xπ2(2),π(2)/ρ

′
π2(2). Then there are no

dependencies anymore and an application of Lemma 2.3 yields the desired convergence for
the network G′

n. It remains to show that Gn(2, 21) −G′
n(2, 21) and Gn(2, 22) −G′

n(2, 22)
converge to zero in probability. However, this follows from the fact that a−1

n Xπ2(j),π(1) → 0
in probability for j = 1, 2.

�

2.5. Operator convergence. We recall a notion of local convergence that we already
used in [5, 6]. Let D denote the dense subspace of finitely supported vectors in ℓ2(V ).
Given a sequence of bounded self-adjoint operators Tn, a self-adjoint operator T such that
D is a core for T , and a sequence of vertices un ∈ V , we write (Tn,un) → (T ,∅) if there
exists a sequence of bijections σn : V 7→ V such that σn(∅) = un for all n and such that

σ−1
n Tnσnϕ → T ϕ , n → ∞, (2.36)

in ℓ2(V ), for any ϕ ∈ D. With slight abuse of notation, above we have used the symbol
σn to indicate both the bijection on V and the isometry acting on ℓ2(V ) induced via
σn1v = 1σn(v). In Section 3.1 below, the convergence of self-adjoint operators defined
above will be used to derive convergence of the corresponding spectral measures.
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Given the matrix A in (2.33), we define the operator Tn(X) as follows. As usual, let
j ∈ N denote the elements of V belonging to the first generation. Then, set

〈1i, Tn(X)1j〉 := Ai,j116i,j62n , i, j ∈ N , (2.37)

and 〈1u, Tn(X)1v〉 = 0 for all u,v ∈ V that are not both in the first generation. By
linearity, for every fixed n, (2.37) defines a random bounded self-adjoint operator Tn(X)
on ℓ2(V ). Similarly, we define the random bounded self-adjoint operators Tn(M) by

〈1i, Tn(M)1j〉 := Bi,j116i,j62n , i, j ∈ N , (2.38)

for all i, j ∈ N, and 〈1u, Tn(M)1v〉 = 0 for all u,v ∈ V that are not both in the first
generation, where B is the matrix in (2.35).

Theorem 2.8. It is possible to realize the random operators Tn(X), T±
n (M) and T0, T̂±,T±

on the same probability space in such a way that the following holds almost surely, for all
i0 ∈ N, as n → ∞:

1) (Tn(X), i0) → (T0,∅);

2) (Tn(M), i0) → (T̂+,∅) and (Tn(M), i0 + n) → (T̂−,∅).
3) (Tn(M), i0) → (T+,∅) and (Tn(M), i0 + n) → (T−,∅).

Proof. We proceed as in [6, Th. 2.10]. By Lemma 2.6 and Skorokhod’s representation
theorem one can realize the operators Tn(X) and T0 on the same probability space in such
a way that for all b, h ∈ N, for all u,v ∈ Vb,h as n → ∞, almost surely

〈1ψ+(u), Tn(X)1ψ+(v)〉 → 〈1u,T01v〉, (2.39)

where the injective map ψ+ : Vb,h 7→ [2n] depends on b, h, and n. Thus, by a diagonal
extraction, one can find a sequence of bijective maps σn : V 7→ V such that σn(∅) = i0,
the fixed initial index, and almost surely

〈1σn(u), Tn(X)1σn(v)〉 → 〈1u,T01v〉. (2.40)

Thus, (2.40) expresses the convergence σ−1
n Tn(X)σn → T0, in the usual sense of weak con-

vergence of operators on a Hilbert space. To turn this into the required strong convergence
in (2.36) it is then sufficient to prove almost sure uniform (in n) square-integrability of
the vector {〈1u, σ

−1
n Tn(X)σn1v〉, u ∈ V } for any fixed v ∈ V . The latter can be obtained

as in [6, Th. 2.10]. This ends the proof of part 1.
To prove part 2, we proceed in a similar way. By Lemma 2.7 and Skorokhod’s rep-

resentation theorem one has that for all b, h ∈ N, for all u,v ∈ Vb,h as n → ∞, almost
surely

〈1ψ+(u), Tn(M)1ψ+(v)〉 → 〈1u, T̂+1v〉. (2.41)

As above one can find a sequence of bijective maps σn : V 7→ V such that σn(∅) = i0, and
almost surely

〈1σn(u), Tn(M)1σn(v)〉 → 〈1u, T̂+1v〉. (2.42)

Now, (2.42) proves that σ−1
n Tn(M)σn → T̂+ weakly. The same integrability as above

applies here and strong convergence follows. To prove that (Tn(X), i0 + n) → (T̂−,∅), we
repeat the steps above, recalling that now ψ−(∅) = i0 + n and therefore the bijection σn
satisfies σn(∅) = i0 + n.

To prove part 3, observe that from the argument in the proof of Lemma 2.3 we know
that there are bijections ηb′,h : Vb′,h 7→ Vb′,h such that, as b′ → ∞, for any fixed b, h ∈ N,

the restriction of η−1
b′,hT̂±ηb′,h to Vb,h converges to the restriction of T± to Vb,h. One can

then repeat the argument in (2.40) and (2.42) with ψ± replaced by the composed map
ψ± ◦ ηb′,h with b′ = b′(n) a sequence with b′(n) → ∞ as n → ∞. �
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3. Convergence of singular values

Here we prove Theorem 1.1. We shall need the following extension of Theorem 2.8. For
any z ∈ C, let A(z) and B(z) denote the matrices (cf. (2.33) and (2.35))

A(z) =

(
0 X − z

X⊤ − z̄ 0

)
, B(z) =

(
0 M − z

M⊤ − z̄ 0

)
. (3.1)

Let also Tn(X, z) and Tn(M,z) denote the associated adjacency operators defined as in
(2.37) and (2.38) respectively with A replaced by A(z) and B by B(z). To describe the
local convergence of these new networks we proceed as follows. Let us start with A(z). We
define the limiting tree T0(z) recursively. Consider the previously defined tree T0 rooted at
∅. Call T 1(z) the new tree obtained by appending an outgoing directed edge with weight
−z (respectively −z̄) to every even vertex (respectively, odd vertex) of the tree, including
the root. Thus T 1

0 (z) is a tree with pending nodes (leaves) at the endpoints of the added
directed edges. Next take i.i.d. copies of T0 and append one of them to each pending node
in T 1

0 (z). Now, call T 2
0 (z) the tree obtained by appending an outgoing directed edge with

weight −z (respectively −z̄) to every new even vertex (respectively, odd vertex) of the
tree, where new means that it was not a vertex of T 1

0 (z) (the leaves of T 1
0 (z) do not count

as new). Next take i.i.d. copies of T0 and append one of them to each pending node in
T 2

0 (z). Recursively, we then construct trees T k
0 (z), k = 1, 2, . . . . Repeating ad libitum

this procedure yields the random tree that we call T0(z).

The trees T̂±(z) are defined in a similar way. For T̂+(z), we start with T̂+ and produce
the tree T 1

+(z) by appending an outgoing directed edge with weight −z (respectively −z̄)
to every even vertex (respectively, odd vertex) of the tree, including the root. Then we

append i.i.d. copies of T̂+ (respectively T̂−) to every even (respectively odd) pending
node, and we proceed recursively as above. Here a leaf is even (respectively odd) if it is
the endpoint of a directed edge emanating from an odd (respectively even) vertex. To

define T̂−(z) we proceed exactly as above with the role of even and odd interchanged. If

instead we use T±, the ranked versions of T̂±, we obtain trees that we will call T±(z).
All the above defined trees naturally define, via adjacency, linear operators on the

Hilbert space ℓ2(V ). To ensure the symmetry we use the convention that when there is a
directed edge (k,k′) with weight z there is also the opposite edge (k′,k) with weight z̄.
The following theorem is a direct generalization of Lemma 2.4 and Theorem 2.8. We omit
the details of the proof.

Theorem 3.1. It is possible to realize the random operators Tn(X, z), T±
n (M,z) and T0(z),

T̂±(z), T±(z) on the same probability space in such a way that the following holds almost
surely, for all fixed z ∈ C, i0 ∈ N, as n → ∞:

1) The operators T0(z), T̂±(z),T±(z) are self-adjoint;
2) (Tn(X, z), i0) → (T0(z),∅);

3) (Tn(M,z), i0) → (T̂+(z),∅) and (Tn(M,z), i0 + n) → (T̂−(z),∅).
4) (Tn(M,z), i0) → (T+(z),∅) and (Tn(M,z), i0 + n) → (T−(z),∅).

3.1. The spectral measure. For every z ∈ C, let µ
(z)
± denote the spectral measure at

the root of the self-adjoint operator T̂±(z). This is the unique probability measure on R

such that for every η ∈ C+ := {w ∈ C : Im(w) > 0}:

〈δ∅, (T̂±(z) − η)−1δ∅〉 = m
µ

(z)
±

(η) =

∫
µ

(z)
± (dx)

x− η
, (3.2)

where (T̂±(z) − η)−1 denotes the resolvent of T̂±(z) at η ∈ C+, and for any probability
measure µ on R we let mµ : C+ 7→ C+ denote the Cauchy-Stieltjes transform defined by∫ µ(dx)

x−η . With these notation, m
µ

(z)
±

(η) is a bounded random variable for each η ∈ C+.
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From elementary spectral theory we know that for each fixed n ∈ N one has

1

2n

2n∑

i=1

〈δi, (Tn(M,z) − η)−1δi〉 = tr[(Tn(M,z) − η)−1] = m
µ

(M,z)
n

(η), (3.3)

where µ
(M,z)
n denotes the empirical spectral distribution of Tn(M,z), i.e.

µ(M,z)
n =

1

2n

2n∑

i=1

δλi,z
, (3.4)

if λi,z > λi+1,z are the ranked eigenvalues of B(z) from (3.1). Moreover, it is well known

that µ
(M,z)
n is symmetric on R and the singular values si,z of M − z satisfy si,z = λi,z,

i = 1, . . . , n.
From [17, Th. VIII.25(a)], see also [5, Th. 2.2], it is known that the local convergence

(Tn(M,z), i0) → (T̂+(z),∅) and (Tn(M,z), i0 +n) → (T̂−(z),∅) expressed in Theorem 3.1
implies convergence of resolvents, i.e. almost surely

〈δ∅, (T̂+(z) − η)−1δ∅〉 = lim
n→∞

〈δ1, (Tn(M,z) − η)−1δ1〉 (3.5)

〈δ∅, (T̂−(z) − η)−1δ∅〉 = lim
n→∞

〈δ1+n, (Tn(M,z) − η)−1δ1+n〉 (3.6)

In particular, the above convergence holds in distributions. Since the random variables
are bounded, one has convergence of the expected values. Thus, using linearity and
exchangeability in (3.3), it follows that for any η ∈ C+

m
Eµ

(M,z)
n

(η) = Em
µ

(M,z)
n

(η)

= 1
2E〈δ1, (Tn(M,z) − η)−1δ1〉 + 1

2E〈δ1+n, (Tn(M,z) − η)−1δ1+n〉
→ 1

2Emµ
(z)
+

(η) + 1
2Emµ

(z)
−

(η) = mµ̄(z)(η) , n → ∞ , (3.7)

where µ̄(z) denotes the probability measure

µ̄(z) = 1
2Eµ

(z)
+ + 1

2Eµ
(z)
− . (3.8)

3.2. Proof of Theorem 1.1. From (3.7) we know that

m
Eµ

(M,z)
n

(η) → mµ̄(z)(η),

for all η ∈ C+. It is well known that convergence of the Cauchy-Stieltjes transform implies

weak convergence. Therefore Eµ
(M,z)
n  µ̄(z) as n → ∞. Since M has independent rows,

thanks to the general concentration result in [6, Lem. C.2], it follows that µ
(M,z)
n  µ̄(z)

as n → ∞, almost surely. Finally, as observed after (3.4), νM,z is the image of µ
(M,z)
n

under reflection. Letting να,z denote the image of µ̄(z) under reflection, we have proved
that νM,z  να,z as n → ∞, almost surely, for each z ∈ C. That να,z depends on z ∈ C

only through the absolute value |z|, and has bounded exponential moments is shown in
Lemma 3.2 below. Unbounded support is proven in Lemma 3.3. This will complete the
proof of Theorem 1.1. In Section 3.4 we shall discuss the recursive distributional equations

satisfied by the Cauchy-Stieltjes transforms µ
(z)
± (η).

3.3. Properties of the singular values distribution. Here we use estimates on mo-
ments of να,z to prove that all exponential moments of να,z are finite, that να,z depends
on z ∈ C only through the absolute value |z|, and that the support of να,z is unbounded.

Lemma 3.2 (Singular values moments). For any λ > 0 and any z ∈ C, α ∈ (0, 1),
∫ ∞

0
eλtνα,z(dt) < ∞. (3.9)

Moreover να,z = να,w for all z,w ∈ C such that |z| = |w|.
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Proof. Define the moments

mn =

∫ ∞

0
xnνα,z(dx).

For n even, we have

mn =

∫ ∞

−∞
xnµ̄(z)(dx) =

1

2
E〈δ∅, T̂+(z)nδ∅〉 +

1

2
E〈δ∅, T̂+(z)nδ∅〉. (3.10)

Let Γk denote the set of all paths of length n = 2k on the tree which start and end at the
root. Let also w±(γ) denote the weight of one path γ ∈ Γk, so that

E〈δ∅, T̂±(z)2kδ∅〉 =
∑

γ∈Γk

E[w±(γ)].

The weight w±(γ) can be written as the product

T̂±(∅, γ1)T̂±(γ1, γ2) · · · T̂±(γn−1,∅), (3.11)

where γ1, . . . , γn−1 denote the ordered vertices visited by the path after leaving ∅ and
before returning to ∅, and for simplicity we have omitted the explicit dependency on z
from our notation.

We are going to prove that for any k ∈ N,

m2k 6 22kC(z, k) , C(z, k) := E

[
(|z|2 + (1 ∨ Ψ))k

]
, (3.12)

where Ψ :=
∑∞
j=1 ω

2
j , and {ωj} is defined in (2.15).

Once (3.12) is established we may write
∫ ∞

0
eλtνα,z(dt) 6 2

∫ ∞

0
cosh(λt)να,z(dt)

= 2
∞∑

k=0

λ2km2k

(2k)!
6 2

∞∑

k=0

(2λ)2kC(z, k)

(2k)!
.

From the definition of C(z, k) one has C(z, k) 6 C(z, 2k) and therefore
∞∑

k=0

(2λ)2kC(z, k)

(2k)!
6 E

[
cosh(2λ(|z|2 + (1 ∨ Ψ))

]
6 e2λ(1+|z|2)

E

[
e2λ
∑

k
ωk

]
,

where we use cosh(t) 6 et, t > 0, and (1 ∨ Ψ) 6 1 +
∑
k ωk. On the other hand, from

Campbell’s formula we have, for any λ ∈ R:

E

[
e2λ
∑

k
ωk

]
= exp

(∫ ∞

0

(
e

2λ t
t+q − 1

) α dt
t1+α

)
< ∞,

which proves (3.9).
It remains to prove (3.12). To illustrate the computation, let us first consider the cases

n = 2, 4 in detail. When n = 2,

∑

γ∈Γ1

E[w+(γ)] = |z|2 +
∞∑

k=1

E[ζ2
k ] ,

∑

γ∈Γ1

E[w−(γ)] = |z|2 +
∞∑

k=1

E[ω2
k],

where {ζk}, {ωk} are defined in (2.3) and (2.15) respectively. Since 0 6 ζk, ωk 6 1,∑
k ζk = 1 and E[Ψ] 6

∑
k E[ωk] = 1, it follows that
∑

γ∈Γ2

E[w±(γ)] 6 |z|2 + E[1 ∨ Ψ] = C(z, 1).

If n = 4 we can partition the paths in Γ2 into two families: the ones that reach distance
2 from the root, say Γ2

2, and the ones that do not, say Γ1
2. The first term gives

∑

γ∈Γ2
2

E[w+(γ)] = |z|2
∞∑

j=1

E

[
ω2
j

]
+ |z|2

∞∑

k=1

E

[
ζ2
k

]
+

∞∑

k,j=1

E

[
ζ2
kω

2
j

]
,
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where {ζk}, {ωk} are independent, and

∑

γ∈Γ2
2

E[w−(γ)] = |z|2
∞∑

j=1

E

[
ζ2
j

]
+ |z|2

∞∑

k=1

E

[
ω2
k

]
+

∞∑

k,j=1

E



(

ξk

ξk+Sk

)2
(

ξ
(k)
j

ξk+Sk

)2

 ,

where {ξk}, {ξ(k)
j } are independent processes with laws PPP(α), and Sk =

∑∞
j=1 ξ

(k)
j ; see

(2.25). In particular, using ξ
(k)
j /(ξk + Sk) 6 ξ

(k)
j /Sk, one has

∑

γ∈Γ2
2

E[w±(γ)] 6 1 + 2|z|2 6 C(z, 2).

The second family of paths contributes

∑

γ∈Γ1
2

E[w+(γ)] = |z|4 + 2|z|2
∞∑

k

E[ζ2
k ] +

∞∑

k,j=1

E[ζ2
kζ

2
j ],

∑

γ∈Γ1
2

E[w−(γ)] = |z|4 + 2|z|2
∞∑

k

E[ω2
k] +

∞∑

k,j=1

E[ω2
kω

2
j ].

Using again 0 6 ζk, ωk 6 1,
∑

γ∈Γ1
2

E[w±(γ)] 6 E

[
(|z|2 + (1 ∨ Ψ))2

]
= C(z, 2).

To estimate the general case n = 2k, let Dk denote the set of Dick paths of length 2k,
i.e. the set of all Z+ paths staring at 0 and ending at 0 after 2k steps. In particular,

|Dk| = 1
k+1

(2k
k

)
. The set Γk can be partitioned according to the distance from the root at

each step. This is encoded by a single element of Dk, with the natural correspondence:
say Γηk, where η = (0, η1, . . . , η2k−1, 0) ∈ Dk, is the set of all paths γ ∈ Γk such that after
j steps, γ has distance ηj from the root, for all j = 1, . . . , 2k − 1. Then

∑

γ∈Γk

E[w±(γ)] =
∑

η∈Dk

∑

γ∈Γη

k

E[w±(γ)].

For a fixed η, we can write the path γ ∈ Γηk as γ = (∅, γ1, . . . , γ2k−1,∅) where γi is the
label of the vertex after i steps, so that γi is at distance ηi from the root. Now consider
the set of indexes i1, . . . , iℓ such that ηim = max{η1, . . . , η2k−1}. Reasoning as above we
can write

∑

γi1
...,γiℓ

E[w±(γ)] 6 E[w±(γ r (γi1 , . . . , γiℓ))]C(z, ℓ),

where we use the notation γr(γi1, . . . , γiℓ) for the path γ once the vertices γi1 . . . , γiℓ have
been removed. Notice that this is now a path of length 2k − 2ℓ. Then we may proceed
by recursion. Using C(z, ℓ)C(z,m) 6 C(z, ℓ+m), which follows by Hölder inequality, we
obtain

∑

γ∈Γη

k

E[w±(γ)] 6 C(z, k),

for every fixed η ∈ Dk. In conclusion this proves

m2k 6 |Dk|C(z, k) . (3.13)

This ends the proof of (3.9).
To show the last assertion in the lemma, notice that it suffices to show that µ̄(z) = µ̄(w),

for all z,w ∈ C with |z| = |w|. Clearly, odd moments of µ̄(z) are equal to zero. Since µ̄(z)

has finite exponential moments, it is uniquely determined by the numbers mn, n even, as
in (3.10); see e.g. [17] for sufficient conditions in the classical moments problem. From
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the expression of the path weights w±(γ) in (3.11), we see that each edge weight u of the
tree appears only through the value |u|2. Therefore, the moments mn do not change if we
replace z by w with |z| = |w|. �

Lemma 3.3 (Support). For any z ∈ C, α ∈ (0, 1), the support of να,z is unbounded.

Proof. It suffices to show m
1/k
2k → ∞, k → ∞, where mn is defined in (3.10). Notice that

m2k >
1

2

∑

γ∈Γk

E[w−(γ)] >
1

2
E[Ψk],

where the bound is obtained by restricting to paths that are always at distance at most
1 from the root and we write Ψ =

∑∞
j=1 ω

2
j as before. Now, Ψ is an unbounded random

variable, and P(Ψ > t) > 0 for all t > 0. Indeed, a simple estimate on P(Ψ > t) can be
obtained by observing: for any n > 1, Ψ > nω2

n, and ω2
n > (1+q)−2 if ξn = qωn/(1−ωn) >

1; from (2.1) one has that the event ξn > 1 has probability at least e−1/n! so that for all
n ∈ N,

P(Ψ > n(1 − q)−2) >
1

e n!
.

Therefore m2k >
1
2 P(Ψ > t) tk, and lim infk→∞m

1/k
2k > t. Letting t → ∞ proves the

claim. �

3.4. Recursive distributional equations. Let us first recall some important formulas
for resolvents on a tree. Let A denote a self-adjoint operator defined by a weighted tree
via adjacency; see Section 2.3. In particular, we write A(u,v) = A(v,u) for the complex
valued weight of the directed edge (u,v) if v = uj or u = vj for some j ∈ N and
A(u,v) = 0 otherwise. For η ∈ C+, we let

Rη = 〈δ∅, (A − η)−1δ∅〉
denote the resolvent’s diagonal entry at the root. Let also uj = A(∅, j) denote the weight
from the root to the j-th child. If we remove the j-th edge from the root, i.e. the edge
with weight uj, we are left with two disconnected weighted trees, one rooted at ∅ and one

rooted at j. Let Āj and Aj denote the associated self-adjoint operators respectively. For

any η ∈ C+, we let R̄ηj and Rηj denote the corresponding resolvent’s diagonal entries at

the respective roots. We refer to [5, Th. 4.1] for a proof of the following lemma.

Lemma 3.4 (Resolvent recursion). For any η ∈ C+ the resolvents entries Rη, R̄ηj and Rηj
satisfy the following relations. For any j ∈ N

Rη =
R̄ηj

1 − |uj |2R̄ηjR
η
j

. (3.14)

Moreover,

Rη = −

η +

∞∑

j=1

|uj |2Rηj




−1

. (3.15)

We are interested in the law of the random variable

h(±)(η, z) := 〈δ∅, (T̂±(z) − η)−1δ∅〉 (3.16)

It is convenient to introduce also the modified tree T̄±(z) defined as the connected com-

ponent at the root obtained from the tree T̂±(z) after the removal of the edge with weight
−z emanating from the root. Note that this tree still depends on z since all remaining
children of the root have an edge with weight −z emanating from them, and so on; see
the definition of T̂±(z) after (3.1). Set

h̄(±)(η, z) := 〈δ∅, (T̄±(z) − η)−1δ∅〉 (3.17)
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Proposition 3.5 (Recursive distributional equations). For any η ∈ C+, z ∈ C, the ran-

dom variables h(±) := h(±)(η, z) and h̄(±) := h̄(±)(η, z) satisfy the following distributional
equations:

h(−) d
=

h̄(−)

1 − |z|2h̄(−)h̄(+)
, h(+) d

=
h̄(+)

1 − |z|2h̄(−)h̄(+)
, (3.18)

where h̄(−), h̄(+) are taken independent. Moreover, if ψ(x) := −(η + x)−1, then

h̄(+) d
= ψ

(
∞∑

k=1

ζ2
kh

(−)
k

)
, (3.19)

and (h(−), h̄(−)) satisfy the system of distributional equations

h̄(−) d
= ψ




∞∑

k=1

( ξk

ξk+Sk
)2 ψ


|z|2h̄(−) +

∞∑

j=1

(
ξ

(k)
j

ξk+Sk
)2h

(−)
j




 (3.20)

h(−) d
=

h̄(−)

1 − |z|2h̄(−)ψ
(∑∞

k=1 ζ
2
kh

(−)
k

) ,

where {h(−)
k }, h̄(−) are independent such that {h(−)

k } are i.i.d. copies of h(−), and

{ξk, k ∈ N}, {ξ(k)
j , j ∈ N}k∈N, {ζk, k ∈ N}

are independent processes with laws PPP(α), PPP(α), and PD(α), respectively.

Proof. In the setting of Lemma 3.4 above, with A given by T̂±(z), we may identify Rη with

h(±)(η, z) and R̄ηj with h̄(±)(η, z), if j represents the child associated with the weight −z
emanating from the root. Notice also that in this case one has that Rηj is an independent

copy of the random variable h̄(∓)(η, z). Thus from (3.14) one finds the distributional
identities (3.18).

Next, observe that from (3.15) one has

h̄(+)(η, z) = −
(
η +

∞∑

k=1

ζ2
kh

(−)
k (η, z)

)−1

(3.21)

where {ζk} has law PD(α), while {h(−)
k (η, z), k ∈ N} is a set of i.i.d. copies of h(−)(η, z),

independent of {ζk}. This proves (3.19).
Finally, again by (3.15) one has

h̄(−)(η, z) = −
(
η +

∞∑

k=1

( ξk

ξk+Sk
)2h

(+)
k (ξk, η, z)

)−1

(3.22)

where {ξk} has law PPP(α), Sk =
∑∞
j=1 ξ

(k)
j where {ξ(k)

j , j ∈ N}k∈N are all i.i.d. processes

with law PPP(α), and h
(+)
k (ξk, η, z) is the resolvent entry associated to the sub-tree rooted

at vertex k obtained from the tree T̄−(z) by deleting the root ∅ and all its descendants

except for k. We remark that in (3.22), given {ξk}, the variables {h(+)
k (ξk, η, z), k ∈ N}

are independent but their law depends on {ξk} in a non trivial way. We can however apply
one more time the tree recursion (3.15) and obtain, for each k ∈ N:

h
(+)
k (ξk, η, z) = −


η + |z|2h̄(−)

0 (η, z) +
∞∑

j=1

(
ξ

(k)
j

ξk+Sk
)2h

(−)
j (η, z)




−1

, (3.23)

where h̄
(−)
0 (η, z) and h

(−)
j (η, z), j ∈ N, are independent copies of h̄(−)(η, z) and h(−)(η, z)

respectively. Using (3.18)–(3.23), one obtains the system of distributional equations (3.20).
�
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In principle, the system (3.20) should determine the law of h(−) and, via (3.18)-(3.19),

also the law of h(+). However, we do not have a proof of the uniqueness of the solutions
to these distributional equations.

We remark that in the special case z = 0, one has h̄(−)(η, 0) = h(−)(η, 0) and the above
equations reduce to the following recursive distributional equation:

h(−) d
= ψ




∞∑

k=1

( ξk

ξk+Sk
)2 ψ




∞∑

j=1

(
ξ

(k)
j

ξk+Sk
)2h

(−)
k




 , (3.24)

where {h(−)
k } and {ξk}, {ξ(k)

j } are as above. Once we have the law of h(−)(η, 0), then

h(+)(η, 0) is determined by the equation (3.21) which, in the case z = 0, becomes

h(+) d
= ψ

(
∞∑

k=1

ζ2
kh

(−)
k

)
. (3.25)

4. Convergence of eigenvalues

Here we prove Theorem 1.2. Once the convergence of singular values in Theorem 1.1
has been obtained, we may follow the well known Hermitization strategy, see e.g. [19] and
[10], which allows one to prove µM µα as n → ∞, for some probability measure µα by
showing the uniform integrability of the function R ∋ x 7→ | log(x)| with respect to the
family of measures νM−z. More precisely, we shall establish the following lemma.

Lemma 4.1. For any a > 0, z ∈ C, there exists b > 0 such that for all n ∈ N:

P

(
supp(νM−z) 6⊂ [n−b, nb]

)
6 n−a. (4.1)

Moreover, for any ε > 0, for a.a. z ∈ C

lim
δ→0

lim sup
n

P

(∫

Kc
δ

| log(x)|νM−z(dx) > ε

)
= 0, (4.2)

where Kδ = [δ, δ−1].

From (4.2) and Theorem 1.1, as shown in [10, Lem. 4.3], one has that µM µα in
probability, where µα is the probability measure on C that satisfies

Uµα(z) = −
∫ ∞

0
log(x)να,z(dx), (4.3)

for almost all z ∈ C. Here, for any probability measure µ on C, the function

Uµ(z) = −
∫

C

log |w − z|µ(dw) ,

denotes the logarithmic potential.
To improve the above convergence to the desired statement that µM µα a.s. (almost

surely), we argue as follows. As in [10, Lem. 4.3], it suffices to show that UµM
(z) con-

verges almost surely. In particular, since the above facts show that UµM
(z) → Uµα(z) in

probability, it is now sufficient to prove that for a.a. z ∈ C there exists a deterministic
sequence Ln such that, almost surely,

lim
n→∞

(UµM
(z) − Ln) = 0.

By (4.1), and the Borel-Cantelli lemma, there exists b > 0 such that, almost surely

supp(νM−z) ⊂ [n−b, nb],
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if n is large enough. If fn(x) := 1x∈[n−b,nb] log(x), then a.s. for every n large enough one
has the identity

UµM
(z) = − 1

n

n∑

i=1

log |λi − z| = −
∫ ∞

0
log(s)νM−z(ds) = −

∫ ∞

0
fn(s)νM−z(ds).

Since the total variation norm of fn is O(log n) the concentration inequality of [6, Lem. C.2]
shows that

P (|UµM
(z) − EUµM

(z)| > ε) 6 2 e−c ε n (logn)−2
,

for some constant c > 0. Therefore, the conclusion follows from the Borel-Cantelli lemma
letting Ln = E[UµM

(z)].
The above argument completes the proof of the almost sure converge µM  µα as

n → ∞, where µα is a probability measure on the unit disc of radius 1 that depends only
on α ∈ (0, 1). From the identity (4.3), and the fact that να,z depends radially on z ∈ C

one infers that µα is a radially symmetric measure. Moreover, the finiteness of Uµα(0)
implies that µα is not a Dirac mass at the origin. Similarly, one can observe that µα is
not concentrated on the unit circle |z| = 1. Indeed, by an inequality of Weyl, see e.g. [6,
Lem. B.5], the eigenvalues of M satisfy

∫

C

|λ|2µM(dλ) 6

∫ ∞

0
x2νM (dx).

Passing to the limit n → ∞, one has
∫

C

|z|2µα(dz) 6

∫ ∞

0
x2να,0(dx) = m2 < 1,

where the strict bound m2 < 1 follows by direct computations as in Lemma 3.2. This ends
the proof of Theorem 1.2 assuming the validity of Lemma 4.1. The rest of this section is
concerned with the proof of Lemma 4.1.

4.1. Extreme singular values. Here we prove the first part of Lemma 4.1. Let s1,z >

· · · > sn,z denote the singular values of M − z. We start with a simple upper bound on
s1,z. Notice that

∫ ∞

0
x2νM−z(dx) =

1

n

n∑

i,j=1

|Mi,j − zδi,j |2

6
2

n

n∑

i,j=1

M2
i,j + 2|z|2 6 2(1 + |z|2), (4.4)

where we use
∑
jM

2
i,j 6

∑
jMi,j = 1. This implies the deterministic bound

s2
1,z 6 2n(1 + |z|2).

Thus (4.1) follows from the lower bound on sn,z given in Theorem 4.2 below. Notice that
M − z is not invertible at z = 1, i.e. sn,1 = 0. Because of the different scaling, in [7,

Th. 1.4] it was sufficient to prove a lower bound on sn,z for all z = O(n−1/2). In our
setting instead, we need to establish a similar bound for all z 6= 1.

Theorem 4.2. Assume (H2). Let sn,z denote the smallest singular value of M − z. For
any δ ∈ (0, 1), and a > 0, there exists b = b(a, δ) > 0 such that if z ∈ C satisfies |z−1| > δ,
and |z| 6 δ−1, then for n ≫ 1 one has

P(sn,z 6 n
−b) 6 n−a. (4.5)

Proof. Fix a > 0 and z ∈ C with |1 − z| > δ, |z| < δ−1. We write M = DX, where
D = diag(ρ−1

1 , ..., ρ−1
n ). Thus, M − z = DY where Y = X − zD−1, and

sn,z > sn(Y )
(

max
i=1,...,n

ρi
)−1

, (4.6)
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with sn(Y ) denoting the smallest singular value of Y . Since ρi 6 nmaxj Xi,j one has, for
any β > 0

P

(
max
i=1,...,n

ρi > nβ
)
6 n2

P(x > nβ−1) 6 n2−α(β−2),

for all n large enough. Taking β sufficiently large ensures that n2−α(β−2) 6 n−a. From
(4.6) then we see that it suffices to prove that there exists b > 0 such that

P

(
sn(Y ) 6 n−b

)
6 n−a (4.7)

A repetition of the argument in [7, Th. 1.4] now shows that for all u > 0:

P (sn(Y ) 6 u) 6 3BKn u , (4.8)

where B is the uniform bound on the probability density of the random variable x, which
is available thanks to the assumption (H2), and Kn is the inverse of the smallest singular
value of the n× n matrix

Az := 1n − z




1 0 ·· 0
...

...
...

1 0 ·· 0


 .

Direct calculations, see e.g. [7, Lem. C.3], show that Kn satisfies

K2
n =

1 + (n− 1)|z|2 + |1 − z|2 +
√

(1 + (n− 1)|z|2 + |1 − z|2)2 − 4|1 − z|2
2|1 − z|2 . (4.9)

Equation (4.9) can be easily estimated to obtain e.g.

K2
n 6

1 + (n − 1)|z|2 + |1 − z|2
|1 − z|2

6 1 +
1 + |z|2(n− 1)

δ2
6 1 + δ−2 + δ−4n. (4.10)

Using (4.10), (4.7) follows by taking u = n−b for b = b(a, δ) large enough in (4.8). �

4.2. Moderately small singular values. Here we prove (4.2), which will conclude the
proof of Lemma 4.1. In view of the bound (4.4), and using | log(x)| 6 x−p for all sufficiently
small x > 0, if p > 0, we see that (4.2) follows if we prove

lim sup
n

E

(
1Gn

∫ ∞

0
x−pνM−z(dx)

)
< ∞, (4.11)

for some p > 0 and some sequence of events Gn such that P(Gn) → 1, n → ∞. To prove
(4.11), we shall follow very closely the strategy introduced in [6, Sec. 3]; see also [10,
Sec. 6].

The following statement can be established with a straightforward adaptation of [6,

Prop. 3.7]. Set an = (cn)1/α as in Lemma 2.1.

Lemma 4.3 (Distance to sub-space). Assume (H1) and (H2) and take 0 < γ < α/4. Let
R1 be the first row of the matrix an(M − z). There exists a constant C > 0 and an event
E such that for any d-dimensional subspace W of Cn with d 6 n− n1−γ , one has

E

[
dist−2(R1,W )1E

]
6 C(n− d)−2/α and P(Ec) 6 Cn−(1−2γ)/α .

Next, we prove (4.11). Fix i > 2n1−γ , and let A be the matrix of the first n− i/2 rows
of an(M − z) and let ϑ1 > · · · > ϑn−i/2 denote its singular values. By the negative second
moment identity of Tao and Vu [20, Lem. A4],

ϑ−2
1 + · · · + ϑ−2

n−i/2 = δ−2
1 + · · · δ−2

n−i/2,
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where δj is defined as the euclidean distance dist(Rj , R−j), where Rj is the j-th row of
A and R−j is the span of all other rows of A. On the other hand by Cauchy interlacing

lemma, sn−i,z > ϑn−i/an, and therefore s−2
n−i,z 6

2a2
n

i

∑n−i/2
j=n−i ϑ

−2
j . This implies

i s−2
n−i,z 6 2a2

n

n−i/2∑

j=1

δ−2
j . (4.12)

Reasoning as in [6, Prop. 3.3] one has that the event F that δj > n(1−2γ)/α for all j =

1, . . . , n− i/2 has probability at least 1 − e−nδ
for some δ > 0.

Taking expectation in (4.12), we get

E

[
is−2
n−i,z1F

]
6 2a2

nnE
[
δ−2

1 1F

]
, (4.13)

Moreover, if E denotes the event from Lemma 4.3, then since R−1 has dimension d <
n− i/2 6 n− n1−γ , we see that

E[δ−2
1 1E ] 6 C i−2/α. (4.14)

From (4.14) it follows that

E

[
δ−2

1 1F

]
6 C i−2/α + E

[
δ−2

1 1F∩Ec

]

6 C i−2/α + n−2(1−2γ)/α
P(Ec) 6 C i−2/α + n−3(1−2γ)/α ,

where we use the bound δ1 > n(1−2γ)/α on F and the bound on P(Ec) from Lemma 4.3.

If γ < 1/6, then 3(1 − 2γ)/α > 2/α and therefore n−3(1−2γ)/α 6 i−2/α. From (4.13) and

recalling that an = (cn)1/α one then obtains

E

[
s−2
n−i,z1F

]
6 C ′

(
n

i

)(1+2/α)

, (4.15)

for some new constant C ′ > 0.
From (4.15) one can prove (4.11) as follows. Define the event Gn := F ∩ {sn,z > n−b}

for some b > 0. From the above facts and from Theorem 4.2, we can choose b so that
P(Gn) → 1. One has, for 0 < p 6 2

E

(
1Gn

∫ ∞

0
x−pνM−z(dx)

)
=

1

n

⌊2n1−γ ⌋∑

i=0

E[s−p
n−i,z1Gn ] +

1

n

n−1∑

i=⌊2n1−γ⌋+1

E[s−p
n−i,z1Gn ]

6 2nbpn−γ +
1

n

n−1∑

i=⌊2n1−γ ⌋+1

E[s−2
n−i,z1F ]p/2 6 2nbpn−γ +

C

n

n∑

i=1

(
n

i

) p
2

(1+2/α)

,

for some new constant C > 0. If γ ∈ (0, 1/6) is fixed, and b > 0 is given, then we choose p
such that p < γ/b and p < 2α(2 + α) so that the above expression is uniformly bounded.
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