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CANCELLATION FOR SURFACES REVISITED

H. FLENNER, S. KALIMAN, AND M. ZAIDENBERG

Abstract. The celebrated Zariski Cancellation Problem asks as to when the exis-

tence of an isomorphism X × An ≅ X ′ × An for (affine) algebraic varieties X and X ′

implies that X ≅ X ′. In this paper we provide a criterion for cancellation by the

affine line (that is, n = 1) in the case where X is a normal affine surface admitting

an A1-fibration X → B with no multiple fiber over a smooth affine curve B. For two

such surfaces X → B, X ′ → B we give a criterion as to when the cylinders X × A1,

X ′ × A1 are isomorphic over B. The latter criterion is expressed in terms of linear

equivalence of certain divisors on the Danielewski-Fieseler quotient of X over B. It

occurs that the cancellation by the affine line holds if and only if X → B is a line

bundle, and, for a normal such X, if and only if X → B is a cyclic quotient of a line

bundle (an orbifold line bundle). If X does not admit any A1-fibration over an affine

base then the cancellation by the affine line is known to hold for X by a result of

Bandman and Makar-Limanov.

If the cancellation does not hold then X deforms in a non-isotrivial family of A1-

fibered surfaces Xλ → B with cylinders Xλ×A1 isomorphic over B. We construct such

versal deformation families with affine bases, and the coarse moduli spaces provided B

does not admit nonconstant invertible functions. Each of these coarse moduli spaces

has infinite number of irreducible components of growing dimensions; each component

is an affine variety with quotient singularities. Finally, we analize from our viewpoint

the examples of non-cancellation constructed by Danielewski ([17]), tom Dieck ([68]),

Wilkens ([69]), Masuda and Miyanishi ([54]), e.a.
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Introduction

Let X and Y be algebraic varieties over a field k. The celebrated Zariski Cancellation
Problem, in its most general form, asks under which circumstances the existence of a
biregular (resp., birational) isomorphism X × An ≅ Y × An implies that X ≅ Y , where
An stands for the affine n-space over k. In this and the subsequent papers we are
interested in the biregular cancellation problem, hence the symbol ‘≅’ stands for a
biregular isomorphism. We say that X is a Zariski factor if, whenever Y is an algebraic
variety, X ×An ≅ Y ×An implies X ≅ Y for any n ∈ N. We say that X is a strong Zariski
factor if any isomorphism Φ∶X × An → Y × An fits in a commutative diagram

X × An
Φ- Y × An

X
? ≅

ϕ
- Y
?
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where the vertical arrows are the canonical projections. This property is usually called
a strong cancellation. We say that X is a Zariski 1-factor if X × A1 ≅ Y × A1 implies
that X ≅ Y , and a strong Zariski 1-factor if the strong cancellation holds for X with
n = 1. The latter implies that the cylinder structure on X ×A1 is unique, see [50, Thm.
2.18].

By a theorem of Abhyankar, Heinzer and Eakin ([1, Thm. 6.5]) any affine curve C
is a Zariski factor, and if C /≅ A1 then C is a strong Zariski factor. More generally,
by the Iitaka-Fujita Theorem ([44]) any algebraic variety of non-negative log-Kodaira
dimension is a strong Zariski factor. Due to a theorem by Bandman and Makar-
Limanov ([9, Lem. 2]1) the following holds.

Theorem 0.1 (Bandman and Makar-Limanov). The affine varieties which do not
admit any effective Ga-action are strong Zariski 1-factors.

There are examples of smooth rational affine surfaces of negative log-Kodaira dimen-
sion which are A1-fibered over P1 and do not admit any effective Ga-action, and so, are
strong Zariski 1-factors, see [9, Ex. 3], [41, 3.7]. Some of these affine surfaces are not
Zariski 2-factors, see [23, 24].

In this paper we concentrate on the Zariski Cancellation Problem for normal affine
surfaces over an algebraically closed field k of characteristic zero. From Theorem 0.1
one can deduce the following criteria.

Corollary 0.2. A normal affine surface X is a strong Zariski 1-factor if and only if
it does not admit any effective Ga-action, if and only if it is not fibered over a smooth
affine curve C with general fibers isomorphic to the affine line A1.

See, e.g., [50, Thm. 2.18] for the first part and [28, Lem. 1.6] for the second.
Recall (see e.g., [28]) that a parabolic Gm-surface is a normal affine surface X

equipped with an A1-fibration π∶X → C over a smooth affine curve C and with an
effective Gm-action along the fibers of π. Any fiber of π on such a surface X is isomor-
phic to A1. There is exactly one singular point of X in each multiple fiber of π and
no further singularities. Any singular point x ∈ X is a cyclic quotient singularity. If a
parabolic Gm-surface X → C is smooth then this is a line bundle over C. Any parabolic
Gm-surface admits an effective Ga-action along the fibers of π ([29, Thm. 3.12]).

By the celebrated Miyanishi-Sugie-Fujita Theorem ([57, 35]; see also [56, Ch. 3,
Thm. 2.3.1]) the affine plane A2 is a Zariski factor. An analogous result holds for the
parabolic Gm-surfaces. Moreover, the following criterion holds.

Theorem 0.3. For a normal affine surface X equipped with an A1-fibration X → C
over a smooth affine curve C the following conditions are equivalent:

(i) X is a Zariski factor;
(ii) X is a Zariski 1-factor;

(iii) X is a parabolic Gm-surface.

The implication (i)⇒(ii) is immediate; see Theorem 7.24 for (ii)⇒(iii) and Theorem
6.7 for (iii)⇒(i).

From Theorems 0.1 and 0.3 one can deduce the following characterization.

Corollary 0.4. A normal affine surface X is a Zariski 1-factor if and only if either
X does not admit any effective Ga-action, or X is a parabolic Gm-surface.

1Cf. [18]; see [13, Thm. 3.1] for the positive characteristic case.
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The Danielewski surfaces

Xm = {zmt − u2 − 1 = 0} ⊂ A3, m ∈ N ,

are examples of non-Zariski 1-factors ([17, 26]). Being pairwise non-homeomorphic
([26]) these surfaces have isomorphic cylinders: Xm × A1 ≅ Xm′ × A1 ∀m,m′ ∈ N. For
non-Zariski 1-factors we consider the following problem.

0.5. Problem. Given an affine algebraic variety X, describe the moduli space Cm(X)
of isomorphism classes of the affine algebraic varieties Y such that X × Am ≅ Y × Am.
Study the behavior of Cm(X) upon deformation of X.

Note that X is a Zariski 1-factor if and only if C1(X) = {X}. There is no example of
an affine non-Zariski 1-factor X for which the moduli space C1(X) were known. For the
first Danielewski surface X1 the moduli space C1(X1) has infinite number of irreducible
components. In [69] and [54, Thm. 2.8] this sequence is extended to a family of surfaces
in A3 with similar properties. These examples show that C1(X1) possesses an infinite
number of components which are infinite dimensional ind-varieties.

We show that in a majority of cases a normal affine surface A1-fibered over an affine
curve deforms in a large family of such surfaces with isomorphic cylinders; see Theo-
rems 5.7 and 5.9. Moreover, the deformation space contains infinitely many connected
components of growing dimensions.

Let π∶X → B be an A1-fibered surface over a smooth affine curve B. If π has only
reduced fibers then we call such a surface a generalized Danielewski-Fieseler surface, or
a GDF surface for short. To a GDF surface π∶X → B one associates a non-separated
one-dimensional scheme DF(π) called the Danielewski-Fieseler quotient along with
a surjective morphism DF(π) → B and an anti-effective divisor tp .div(π) on DF(π)
called the type divisor (see Definitions 7.3 and 7.4). In Section 9 we prove the following
theorem.

Theorem 0.6. Let π∶X → B and π′∶X ′ → B be GDF surfaces. Then the cylin-
ders X × A1 and X ′ × A1 are isomorphic over B if and only if there exists an iso-

morphism τ ∶DF(π) ≅BÐ→ DF(π′) defined over B such that the divisors tp .div(π) and
τ∗(tp .div(π′)) on DF(π) are linearly equivalent.

The next corollary follows immediately by using a suitable base change.

Corollary 0.7. An isomorphism ϕ∶X × A1 ≅Ð→ X ′ × A1 which sends the fibers of X ×
A1 → B to fibers of X ′ × A1 → B does exist if and only if there exists an isomorphism

τ ∶DF(π) ≅Ð→ DF(π′) such that tp .div(π) ∼ τ∗(tp .div(π′)).

Remarks 0.8. 1. Notice that if B /≅ A1 then any isomorphism of cylinders X ×A1 ≅Ð→
X ′×A1 sends the fibers to fibers inducing an automorphism of B, cf., e.g., Lemma 6.10.

2. It is worth to mention also the following facts. Consider a pair (B̆ → B, D̆) where

D̆ is an anti-effective divisor on a one-dimensional scheme B̆ equipped with a surjective
morphism B̆ → B. Then there exists a GDF surface π∶X → B such that DF(π) =B B̆
and tp .div(π) = D̆. Given a pair (B̆ → B, D̆) the corresponding GDF surfaces X
can vary in non-isotrivial families. However, due to Theorem 0.6 the cylinders over
these surfaces are all isomorphic over B. Moreover, up to an isomorphism over B these
cylinders depend only on the class of D̆ in the Picard group Pic(B̆). The variation of
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D̆ within its class adds, in general, extra discrete parameters to the isomorphsim type
of the corresponding GDF surface X, see Lemma 7.15 and Corollary 7.16.

Using Theorem 0.6 we provide in Section 9.2 a new proof of a result of Bandman and
Makar-Limanov which gives a sufficient condition for almost flexibility of the cylinder
over an A1-fibered surface, see Theorem 9.6.

In the concluding Section 10 we construct a coarse moduli space of marked GDF
surfaces with a given base B and a given graph divisor provided B does not admit
nonconstant invertible functions, see Theorem 10.3. The cylinders over these surfaces
are all isomorphic over B. A simple Example 10.18 shows that without our restriction,
the coarse moduli space of such surfaces does not exist, in general. The irreducible
components of the moduli space of GDF surfaces with a given cylinder have unbounded
dimensions. This resolves the first part of Problem 0.5; notice that the “isomorphism
over B” can be replaced by “isomorphism” if B /≅ A1.

The proofs of the main results exploit the affine modifications ([47]), in particular,
the Asanuma modification ([6]) and the flexibility techniques of [2], in particular, the
interpolation by automorphisms. As an illustration, in Section 8 we analyze from
our viewpoint the examples of non-cancellation due to Danielewski ([17]), Fieseler
([26]), Wilkens ([69]), tom Dieck ([68]), Miyanishi–Masuda ([54]), and the examples of
Danielewski-Fieseler surfaces due to Dubouloz and Poloni ([25], [61]).

Remark 0.9. The results of the paper were reported by the third author on the
conference ”Complex analyses and dynamical systems - VII” (Nahariya, Israel, May
10–15, 2015), on a seminar at the Bar Ilan University (Ramat Gan, Israel, May 24,
2015), and in the lecture course ”Affine algebraic surfaces and the Zariski cancellation
problem” at the University of Rome Tor Vergata (September–November, 2015; see the
program in [71]). When this paper was written the third author assisted at the lecture
course by Adrien Dubouloz on the cancellation problem for affine surfaces in the 39th
Autumn School in Algebraic Geometry (Lukecin, Poland, September 19–24, 2016). In
this course Adrien Dubouloz advertised a result on non-cancellation for smooth A1-
fibered affine surfaces similar to our one (see, in particular, Theorem 1.2 below and
Theorem 0.3 in the case of smooth surfaces), and indicated nice ideas of proofs done by
completely different methods. He also posed the question whether the non-degenerate
affine toric surfaces are Zariski 1-factors. This had been answered affirmatively by our
Theorem 0.3.

1. Generalities

1.1. Cancellation and the Makar-Limanov invariant. The special automorphism
group SAutX of an affine variety X is the subgroup of the group AutX generated by
all its Ga-subgroups ([2]). The Makar-Limanov invariant ML(X) is the subring of
invariants of the action of SAutX on OX(X). The SAutX-orbits are locally closed
in X ([2]). The complexity κ of the action of SAutX on X is the codimension of its
general orbit, or, which is the same, the transcendence degree of the ring ML(X) ([2]).
We design this integer κ as the Makar-Limanov complexity of X, and we say that X
belongs to the class (MLκ).

By the Miyanishi-Sugie Theorem ([57], [56, Ch. 2, Thm. 2.1.1, Ch. 3, Lem. 1.3.1 and
Thm. 1.3.2]) a normal affine surface X with k̄(X) = −∞ contains a cylinder, that is,
a principal Zariski open subset U of the form U ≅ C × A1 where C is a smooth affine
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curve. It possesses as well an A1-fibration µ∶X → B over a smooth curve B which
extends the first projection U → C of the cylinder. If B is affine then X admits an
effective action of the additive group Ga = Ga(k) along the rulings of µ.

Conversely, suppose that there is an effective Ga-action on X. Then the algebra
of invariants OX(X)Ga is finitely generated and normal ([26, Lem. 1.1]). Hence B =
SpecOX(X)Ga is a smooth affine curve and the morphism µ∶X → B induced by the
inclusion OX(X)Ga ↪ OX(X) defines an A1-fibration (an affine ruling) on X. Such an
A1-fibration is trivial over a Zariski open subset of B. It extends the first projection of
a principal cylinder on X. If an A1-fibration on a surface X over an affine base is unique
(non-unique, respectively) then X is of class (ML1) (of class (ML0), respectively). It is
of class (ML2) if X does not admit any A1-fibration over an affine curve. In the latter
case X still could admit an A1-fibration over a projective curve. It does admit such a
fibration if and only if k̄(X) = −∞.

The cancellation problem is closely related to the problem on stability of the Makar-
Limanov invariant upon passing to a cylinder. The latter is discussed, e.g., in [7]–[9]
and [12]-[14]. Suppose, for instance, that ML(X) = OX(X). Then by [13, Thm. 3.1]
(cf. also [18]), ML(X ×A1) = OX(X). This means that the cylinder structure on X ×A1

is unique. Hence an affine variety X which does not admit any effective Ga-action is
a Zariski 1-factor. In particular, any smooth, affine surface of class (ML2) is a Zariski
1-factor. Therefore, in the future we restrict to surfaces of classes (ML0) and (ML1).

In the Danielewski example, X1 ∈ (ML0) whereas Xm ∈ (ML1) for m ≥ 2. Thus,
the Makar-Limanov complexity is not an invariant of cancellation (see also [22] for an
example of the Koras-Russell cubic threefold). By contrast, the Euler characteristic,
the Picard number (for a rational variety), the log-plurigenera, and the log-irregularity
are cancellation invariants, see, e.g., Iitaka’s Lemma in [56, Ch. 2, Lem. 1.15.1] and
[35, (9.9)].

1.2. Non-cancellation and Gizatullin surfaces. Let X be a smooth affine surface.
Recall ([39]) that SAutX acts on X with an open orbit if and only if X ∈ ML0. In
the latter case X is a Gizatullin surface, i.e., a normal affine surface completable by a
chain of smooth rational curves and different from A1 × (A1 ∖ {0}). Furthermore, the
group SAut(X × A1) also acts with an open orbit on the cylinder X × A1. Thus, the
Makar-Limanov invariant ML(X × A1) is trivial: ML(X × A1) = ML(X) = k.

The following conjecture is inspired by [9, §4, Thm. 1] and the unpublished notes
[10] kindly offered to one of us by the authors.

Conjecture 1.1. Let X be a normal affine surface such that the group SAut(X ×A1)
acts with an open orbit in X × A1. Then C1(X) contains (the class of) a Gizatullin
surface.

Due to [9, Thm. 1] (see also an alternative proof in Part II) this conjecture is true
for the Danielewski-Fieseler surfaces, that is, for the A1-fibered surfaces π∶X → A1 with
a unique degenerated fiber, provided this fiber is reduced.

1.3. The Danielewski–Fieseler construction. The Danielewski–Fieseler examples
of non-cancellation exploit the properties of the Danielewski–Fieseler quotient. Assume
that the Ga-action on X is free. Then the geometric orbit space X/Ga is a non-
separated pre-variety (an algebraic space) obtained by gluing together several copies
of B ∶= SpecOX(X)Ga along a common Zariski open subset. The morphism µ can be
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factorized into X →X/Ga → B. An ingenious observation by Danielewski is as follows.
Consider two non-isomorphic smooth affine Ga-surfaces X and Y with free Ga-actions
and with the same Danielewski–Fieseler quotient F = X/Ga = Y /Ga. Then the affine
threefold W = X ×F Y carries two induced free Ga-actions. Moreover, W carries two
different structures of principal Ga-bundles (torsors) over X and over Y , respectively.
Since X and Y are affine varieties, by Serre’s Theorem ([65]) both these bundles are
trivial, and so, X × A1 ≅ W ≅ Y × A1. This is exactly what happens for two different
Danielewski surfaces X = Xm and Y = Xm′ , m ≠ m′, and in other classical examples,
see Section 8. The question arises as to how universal is the Danielewski-Fieseler
construction. More precisely,

Question. Let X and Y be non-isomorphic smooth affine surfaces with isomorphic
cylinders X × A1 ≅ Y × A1. Assume that both X and Y possess free Ga-actions. Do
there exist A1-fibrations on X and on Y over the same affine base and with the same
Danielewski–Fieseler quotient?

Recall ([19, Def. 0.1]) that a Danielewski-Fieseler surface is a smooth affine surface
X equipped with an A1-fibration µ∶X → A1 which represents a (trivial) line bundle over
A1 ∖ {0} and such that the divisor µ∗(0) is reduced. Such a surface admits a free Ga-
action along the µ-fibers if and only if it is isomorphic to a surface in A3 with equation
xy−p(z) = 0 where p ∈ k[z] has simple roots ([19, Cor. 4.13]). Theorem 5.7 below deals,
more generally, with normal affine surfaces A1-fibered over affine curves and such that
any fiber of the A1-fibration is reduced. Abusing the language we abbreviate these as
GDF-surfaces, see Definition 2.1. The Danielewski trick does not work for them, in
general, because such a surface does not need to admit a free Ga-action. However, we
show (see Theorems 5.7 and 7.17)

Theorem 1.2. A GDF-surface is a Zariski 1-factor if and only if it is the total space
of a line bundle.

The proof involves affine modifications, in particular, the Asanuma modification.

1.4. Affine modifications. Most of the known examples of non-cancellable affine
surfaces exploit the Danielewski–Fieseler quotient, see, e.g., [54, 69]. By contrast, in
this paper we use an alternative construction of non-cancellation due to T. Asanuma
([6]). Recall first the notion of an affine modification (see [47]).

Definition 1.3 (Affine modification). Let X = SpecA be a normal affine variety where
A = OX(X) is the structure ring of X. Let further I ⊂ A be an ideal, and let f ∈ I, f ≠ 0.
Consider the Rees algebra A[tI] = ⊕n≥0 tnIn with I0 = A where t is an independent
variable. Consider further the quotient A′ = A[tI]/(1−tf) by the principal ideal of A[tI]
generated by 1−tf . The affine variety X ′ = SpecA′ is called the affine modification of X
along the divisor D = f∗(0) with the center I. The inclusion A↪ A′ induces a birational
morphism %∶X ′ →X which contracts the exceptional divisor E = (f ○ %)−1(0) on X ′ to
the center V(I) ⊂X. In fact, any birational morphism of affine varieties X ′ →X is an
affine modification ([47, Thm. 1.1]).

Remarks 1.4. 1. If I = (a1, . . . ,al) where ai ∈ A, i = 1, . . . , l then A′ = A[I/f] =
A[a1/f, . . . ,al/f].

2. Assume that f ∈ I1 ⊂ I where I1 is an ideal of A. Letting A1 = A[I1/f] one obtains
the equality A′ = A1[I2/f] where I2 is the ideal generated by I in A1. The inclusion
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A ↪ A1 ↪ A′ leads to a factorization of the morphism X ′ → X into a composition
of affine modifications, that is, birational morphisms of affine varieties X ′ → X1 → X
where X1 = specA1 (cf. also [47, Prop. 1.2] for a different kind of factorization).

3. Geometrically speaking, the variety X ′ = SpecA′ is obtained via blowing up
X = SpecA at the ideal I ⊂ A and deleting a certain transform of the divisor D on X ′,
see [47] for details. However, in general V(I) might have components of codimension
1 which are then also components of the divisor f∗(0). These components survive the
modification. Thus, it is worth to distinguish between a geometric affine modification
and an algebraic one.

Indeed, given a birational morphism of affine varieties σ∶X ′ → X with exceptional
divisor E ⊂ X ′ and center C = σ∗(E) of codimension at least 2, the divisor D of the
associated modification can be defined as the closure of X ∖ σ(X ′) in X. However,
this D is not necessarily a principal divisor. So, in order to represent σ∶X ′ →X via an
affine modification one needs to find a principal divisor on X with support containing
D. Thus, although the data (D,C) is uniquely defined for σ, there are many different
affine modifications which induce the same birational morphism σ∶X ′ → X (cf. [21]
and also Remark 2.23 for the case of A1-fibered affine surfaces).

The following lemma will be used on several occasions. It generalizes [47, Cor. 2.2]
with a similar proof.

Lemma 1.5. Let X ′ → X and Y ′ → Y be affine modifications along principal divisors
DX = div fX and DY = div fY with centers IX and IY , respectively, where fX ∈ IX ∖{0}
and fY ∈ IY ∖ {0}. If an isomorphism ϕ∶X ≅Ð→ Y sends fY to fX (hence, DX to DY )

and IY onto IX then ϕ admits a lift to an isomorphism ϕ′∶X ′ ≅Ð→ Y ′.

We need also the following version of this lemma.

Lemma 1.6. Let X and Y be affine varieties, and let σ∶X → Y be an affine modifi-
cation along a principal divisor D = f∗(0) in Y with center an ideal I ⊂ OY (Y ) where
f ∈ I ∖ {0}. Let α ∈ AutY be such that α(f) = f and both α, α−1 induce the identity
on the sth infinitesimal neighborhood of D for some s ≥ 1, that is,

α ≡ id mod f s and α−1 ≡ id mod f s .

Then α can be lifted to an automorphism α̃ ∈ AutX such that

(1) α̃ ≡ id mod f s−1 and α̃−1 ≡ id mod f s−1 .

Proof. Let A = OY (Y ) and A′ = OX(X) = A[a1/f, . . . ,al/f] where a1, . . . ,al are gen-
erators of I. One has α∗(ai) − ai ∈ (f s), that is, α∗(ai) = ai + f sbi for some bi ∈ A,
i = 1, . . . , l. Extending α∗ to an automorphism of the fraction field FracA one has
α∗(ai/f) = ai/f + f s−1bi, i = 1, . . . , l. Thus, α∗(A′) ⊂ A′ and, similarly, (α−1)∗(A′) ⊂ A′.
So, α̃∗ ∶= α∗∣A′ ∈ AutA′ yields an automorphism α̃ of X verifying (1). �

It is easily seen that the affine modification of the linear space An with center in
a linear subspace of codimension ≥ 2 and with divisor a hyperplane is isomorphic to
An. Similarly, certain affine Asanuma modifications of a cylinder give again a cylinder.
This simple and elegant fact is due to Asanuma ([6]); we follow here [45, Lem. 7.9].

Lemma 1.7. Let X be an affine variety, D = div f a principal effective divisor on X
where f ∈ OX(X) ∖ {0}, and I ⊂ OX(X) an ideal with support contained in D. Let
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X ′ → X be the affine modification of X along D with center I. Consider the cylinder
X = X × A1 = SpecOX(X)[v], the divisor D = D × A1 on X , the ideal Ĩ ⊂ OX (X)
generated by I, and the ideal J = (Ĩ , v) ⊂ A[v] supported on D × {0} ⊂ D. Then the
affine modifications of X along D with center Ĩ and with center J are both isomorphic
to the cylinder X ′ =X ′ × A1.

Proof. The affine modification of X along D with center Ĩ yields the cylinder X ′. Let
a1, . . . ,al ∈ I be generators of I, see 1.3 and 1.4. Then

OX ′(X ′) = OX(X)[a1/f, . . . ,al/f, v] ≅ OX(X)[a1/f, . . . ,al/f, v′/f] = OX ′′(X ′′) ,
where v′ = vf is a new variable, and X ′′ → X is the affine modification of X along D
with center J . This gives the desired isomorphism. �

2. A1-fibered surfaces via affine modifications

2.1. Covering trick and GDF surfaces. Throughout the paper we deal with the
following class of A1-fibered surfaces.

Definition 2.1 (a GDF surface). Let X be a normal affine surface over k. A morphism
π∶X → B onto a smooth affine curve B is called an A1-fibration if the fiber π−1(b) over
a general point b ∈ B is isomorphic to the affine line A1 over k. An A1-fibered surface
π∶X → B is called a generalized Danielewski-Fieseler surface, or a GDF surface for
short, if all the fibers π∗(b), b ∈ B, are reduced. In the case where B = A1 and π−1(0)
is the only reducible fiber of π such surfaces were studied in [19] under the name
Danielewski-Fieseler surfaces.

Any GDF surface is smooth, see, e.g., [19] or Lemma 2.18(b) below.
We say that a GDF surface π∶X → B is marked if a marking z ∈ OB(B) ∖ {0} is

given such that z ○ π ∈ OX(X) vanishes to order one along any degenerate fiber of π.
Abusing notation we often view z as a function on X identifying z and z ○ π. The
components of the divisor z∗(0) will be called special fiber components.

A GDF surface π∶X → B equipped with actions of a finite group G on X and on B
making the morphism π G-equivariant is called a GDF G-surface. Assume that G = µd
is the group of dths roots of unity, and choose a µd-quasi-invariant marking z ∈ OB(B)
of weight 1. Then we say that π∶X → B is a marked GDF µd-surface.

Lemma 2.3 below is well known; for the sake of completeness we indicate a proof.
This lemma says that, starting with a normal affine A1-fibered surface and applying a
suitable cyclic Galois base change, it is possible to obtain a marked GDF µd-surface.
The proof uses the following branched covering construction.

Definition 2.2 (Branched covering construction). Consider a normal affine A1-fibered
surface π′∶Y → C over a smooth affine curve C. Fix a finite set of points p1, . . . , pt ∈ C
such that for any p ∈ C ∖ {p1, . . . , pt} the fiber π′∗(p) is reduced and irreducible. Let
d be the least common multiple of the multiplicities of the components of the divisor

∑t
i=1 π

′∗(pi) on Y . Choose a regular function h ∈ OC(C) with only simple zeros which
vanishes in the points p1, . . . , pt and eventually somewhere else. Letting A1 = spec k[z]
consider the smooth curve B ⊂ C×A1 given by equation zd−h(p) = 0 where (p, z) ∈ C×A1

along with the morphism pr1∶B → C. By abuse of notation we denote the function
z∣B ∈ OB(B) still by z. Let X be the normalization of the cross-product Y ×C B, and
let π∶X → B and ϕ∶X → Y be the induced morphisms.
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Lemma 2.3. In the notation of 2.2 the following holds.

● The cyclic group µd of order d acts naturally on B so that C = B/µd;
● the morphism pr1∶B → C is ramified to order d over the zeros of h. The

function z ∈ OB(B) is a µd-quasi-invariant of weight 1, and div z = pr∗1(divh)
is a reduced effective µd-invariant divisor on B;

● the morphism ϕ∶X → Y of A1-fibrations is a cyclic covering with the Galois
group µd, the reduced branching divisor h∗(0) on Y , and the ramification divisor
z∗(0) on X;

● the µd-equivariant morphism π∶X → B and the marking z ∈ OB(B) define a
structure of a marked GDF µd-surface on X.

Proof. The map νd∶A1 → A1, z ↦ zd, is the quotient morphism of the natural µd-action
on A1. The first three statements follow from the fact that the curve B along with the
morphism z∶B → A1 is obtained using the morphism h∶C → A1 via the base change
νd∶A1 → A1 that fits in the commutative diagram

(2)

X
/µd- Y

B

π

? /µd- C

π′

?

A1

z
?

νd
- A1

h
?

The remaining assertions can be reduced to a simple computation in local charts.
Indeed, let (t, u) be coordinates in a local analytic chart U in Y centered at a smooth
point y ∈ Y which is a general point of a fiber component F over pi of multiplicity n in
the divisor (π′)∗(pi). We may choose t so that h ○ π′∣U = tn and F ∩ U = t∗(0). Then
Y ×C B is given locally in A3 with coordinates (z, t, u) by equation zd − tn = 0 where
n∣d by our choice of d. This is a union of n smooth surface germs {zd/n − ζt = 0} where
ζn = 1, meeting transversely along the line z = t = 0 that projects in Y onto F ∩ U .
Passing to a normalization one gets n smooth disjoint surface germs, say, V1, . . . , Vn
in X over U . The function z ∈ OX(X) gives in each chart Vj a local coordinate such
that ϕ∗(F ) = z∗(0) has multiplicity one in Vj. We leave the further details to the
reader. �

2.4 (Cancellation Problem for surfaces: a reduction). The following reasoning is bor-
rowed in [54, 55, 68]. It occurs that in order to construct (families of) A1-fibered
surfaces with isomorphic cylinders it suffices to construct (families of) A1-fibered GDF
G-surfaces with G-equivariantly isomorphic cylinders.

Suppose that a Galois base change B → C with a Galois group G applied to two
distinct A1-fibered surfaces π′j ∶Yj → C, j = 0,1, yields two A1-fibered GDF G-surfaces
πj ∶Xj → B, j = 0,1, with G-isomorphic over B cylinders X0 ×A1 ≅G,B X1 ×A1 where in
the both cases G acts identically on the second factor A1. Clearly, one has (Xj×A1)/G ≅
Yj × A1, j = 0,1. Passing to the quotients yields an isomorphism over C of cylinders
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Y0 × A1 ≅C Y1 × A1 that fits in the commutative diagram

X0 × A1 ≅G - X1 × A1

@
@
@/G R

@
@
@/G R

Y0 × A1 ≅ - Y1 × A1

B
?

id - B
?

@
@
@/G R

@
@
@/G R

C
?

id - C
?

In the sequel we will concentrate on the following problem. Consider the cylinders
X × A1 and X ′ × A1 over two A1-fibered GDF surfaces π∶X → B and π′∶X ′ → B with
the same smooth affine base B. Suppose that π and π′ are equivariant with respect to
actions of a finite group G on X,X ′, and B. We extend these actions to G-actions on
the cylinders X × A1 and X ′ × A1 identically on the second factor.

Problem 2.5. Find a criterion for two GDF G-surfaces πX ∶X → B and πX′ ∶X ′ → B
over the same base B as to when the cylinders X ×A1 and X ′ ×A1 are G-equivariantly
isomorphic.

In Theorems 5.7, 5.9 and Propositions 7.11 and 7.14 we provide some sufficient con-
ditions in the case where G = µd. Actually, these conditions guarantee the existence of

a G-equivariant isomorphism X ×A1
≅B,GÐ→ X ′×A1 which respects the natural projections

X × A1 → B and X ′ × A1 → B and induces the identity on B.

2.2. Pseudominimal completion and extended divisor.

Definition 2.6 (Pseudominimal resolved completion). Any A1-fibration π∶X → B on
a normal affine surface X over a smooth affine curve B extends to a P1-fibration
π̃ ∶ X̃ → B̄ on a complete surface X̃ over a smooth completion B̄ of B such that
D = X̃ ∖X is a simple normal crossing divisor carrying no singular point of X̃. Let
% ∶ X̄ → X̃ be the minimal resolution of singularities (all of these singularities are
located in X). Abusing notation, we consider D as a divisor in X̄. We call (X̄,D) a
resolved completion of X.

Consider the induced P1-fibration π̄ ∶= π̃ ○ % ∶ X̄ → B̄. There is a unique (horizontal)
component S of D which is a section of π̄, while all the other (vertical) components
of D are fiber components. Let B̄ ∖ B = {c1, . . . , cs}. Contracting subsequently the
(−1)-components of D different from S we may assume in addition that D does not
contain any (−1)-component of a fiber. Such a resolved completion (X̄,D) is called
pseudominimal. Notice that the trivializing completions used regularly in the sequel
(see Definition 2.29) are not necessarily pseudominimal.

Definition 2.7 (Extended divisor). Let (X̄,D) be a resolved completion of X along
with the associate P1-fibration π̄∶ X̄ → B̄, and let b1, . . . , bn be the points of B such that
the fibers π̄∗(bi) over bi in X̄ are degenerate, i.e., are either non-reduced or reducible.
The reduced divisor

(3) Dext =D ∪Λ where Λ =
n

⋃
j=1

π̄−1(bj)
11



is called the extended divisor of (X̄,D), and the weighted dual graph Γext of Dext the
extended graph of (X̄,D). We say that Γext is pseudominimal if the completion (X̄,D)
is. The graph Γext is a rooted tree with the horizontal section S ⊂ D as a root. The
dual graph Γ(D) of the boundary divisor D is a rooted subtree of Γext.

For a subgraph Γ′ of a graph Γ we let Γ ⊖ Γ′ denote the graph obtained from Γ
by deleting the vertices of Γ′ along with all their incident edges of Γ. The connected
components of Γext⊖Γ(D) are called the feathers of Dext. Under the pseudominimality
assumption all the (−1)-components of Λ are among the feather components.

Definition 2.8 (Standard completion). Consider a pseudominimal resolved completion
π̄∶ X̄ → B̄. The fibers π̄−1(ci) where ci ∈ B̄ ∖B, i = 1, . . . , s are reduced and irreducible
0-curves. Performing, if necessary, elementary transformations in one of them we may
assume that also the section S is a 0-curve. Such a completion will be called standard,
cf., e.g., [31, 5.11]. By [31, Lem. 5.12], if two A1-fibrations π∶X → B and π′∶X ′ → B are
isomorphic over B then the corresponding standard extended divisors Dext and D′

ext

and the corresponding (unweighted) extended graphs Γext and Γ′
ext are.

Remark 2.9 (Fiber structure). Recall (see [56, Ch. 3, Lem. 1.4.1 and 1.4.4]) that any
degenerate fiber of π∶X → B is a disjoint union of components isomorphic to A1, any
singular point of X is a cyclic quotient singularity, and two such singular points cannot
belong to the same component. The minimal resolution of a singular point has as
exceptional divisor in X̄ a chain of rational curves without (−1)-component and with
a negative definite intersection form. This chain meets just one other fiber component
at a terminal component of the chain.

Definition 2.10 (Bridges). Any feather F of Dext (see 2.7) is a chain of smooth rational
curves on X̃ with dual graph

Γ(F) ∶ cF0 cF1
. . . cFk .

The subchain R = F ⊖ F0 = F1 + . . . + Fk (if non-empty) contracts to a cyclic quotient
singularity of X. The component F0 called the bridge of F is attached to a unique
component C of D. The bridge F0 is the closure in X̄ of a fiber component F0∖C ≅ A1

of π. Vice versa, for each fiber component F of π the closure F̄ ⊂ X̄ of the proper
transform of F is a bridge of a unique feather. In the case of a smooth surface X one
has k = 0, i.e., any feather F consists in a bridge: F = F0.

2.3. Blowup construction.

Definition 2.11 (Blowup construction). Let π∶X → B be an A1-fibration on a normal
affine surface X over a smooth affine curve B, and let (X̄,D) be a resolved completion
of X along with the associate P1-fibration π̄∶ X̄ → B̄ and with a section ‘at infinity’ S.
In any degenerate fiber π̄∗(bi) on X̄, i = 1, . . . , n, there is a unique component, say, Ci
meeting S. The next fact is well known. For the reader’s convenience we provide a
brief argument.

Lemma 2.12. Let C0 be the component of a reducible fiber π̄−1(b), b ∈ B, such that
C0 ⋅S = 1. Then the rest of the fiber π̄−1(b) ⊖C0 can be blown down to a smooth point.

Proof. Since S ⋅ π̄∗(b) = S ⋅ C0 = 1, C0 has multiplicity 1 in the fiber. We proceed by
induction on the number N of components in the fiber π̄−1(b). The statement is clearly
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true for N = 1. Suppose now that N > 1. Then there exists a (−1)-component E in
the fiber. If E ≠ C0 then contracting E one can use the induction hypothesis. Assume
now that C0 is the only (−1)-component of π̄−1(b). Since C0 has multiplicity 1 it can
be contracted to a smooth point of the resulting fiber sitting on a component, say, C1

of multiplicity 1. By the induction hypothesis after blowing down C0 the rest of the
resulting fiber but C1 can be blown down. Thus there is a (−1)-component of the fiber
π̄−1(b) disjoint from C0. However, the latter contradicts our assumption that C0 is a
unique (−1)-component of the fiber π̄−1(b). �

Performing such a contraction for every i = 1, . . . , n one arrives at a geometrically
minimal ruling (that is, a locally trivial P1-fibration) π̄0∶ X̄0 → B̄. The image S0 ⊂ X̄0

of S is a section of π̄0. Thus X̄ can be obtained starting with a geometrically ruled
surface X̄0 via a sequence of blowups of points

(4) X̄ = X̄m
%̄mÐ→ X̄m−1 Ð→ . . .Ð→ X̄1

%̄1Ð→ X̄0

with centers contained in π̄−1
0 (bi) ∖ S0 ⊂ X̄0, i = 1, . . . , n, and at infinitely near points.

For j = 0, . . . ,m we let π̄j ∶ X̄j → B̄ be the induced P1-fibrations.

Definition 2.13 (Well ordered blowup construction). In the rooted tree Γext with a
root S, the (−1)-vertices on the maximal distance from S are disjoint from S and
mutually disjoint due to Lemma 2.12. Hence the corresponding fiber components can
be simultaneously contracted. Repeating this procedure one arrives finally at a smooth
geometrically ruled surface π̄0∶ X̄0 → B̄ along with a specific sequence (4) of blowups
where every %̄i, i = 1, . . . , n, is a blowup with center in a reduced zero dimensional
subscheme of X̄i−1 ∖ (π̄−1

i−1(B̄ ∖ B) ∪ Sj−1) where Sj is the proper transform on X̄j of
S0 ⊂ X̄0. We call such a sequence (4) a well ordered blowup construction.

The following lemma is a generalization of Theorem 2.1 in [26].

Lemma 2.14. Let π∶X → B be an A1-fibered GDF G-surface where G is a finite
group. Then there is a G-equivariant resolved completion (X̄,D) of X obtained via a
G-equivariant well ordered blowup construction (4).

Proof. By Sumihiro Theorem ([67, Thm. 3]) there exists a G-equivariant projective
completion (X̃, D̃) of X. The minimal resolution of singularities of the pair (X̃, D̃)
is G-equivariant (being unique). In this way we arrive at a G-equivariant smooth
projective completion (X̄,D) of X by a G-invariant simple normal crossing divisor D.
The closures in X̄ of the fibers of π∶X → B form a (nonlinear) G-invariant pencil. Its
base points also admit a G-equivariant resolution. Hence we may assume that X̄ comes
equipped with a G-equivariant P1-fibration π̄∶ X̄ → B̄ along with a G-invariant section
S of π̄.

In particular, the root S of the extended graph Γext of (X̄,D) is fixed by the induced
G-action on Γext. This action stabilizes as well the set of (−1)-vertices on the maximal
distance from S. Therefore, the simultaneous contraction of the corresponding fiber
components is G-equivariant. By recursion one arrives at a G-equivariant well ordered
blowup construction. �

Remarks 2.15. 1. Under a well ordered blowup construction (4) no blowup is done
near the section at infinity S0 of π̄0 neither with center over the points ci ∈ B̄ ∖ B,
i = 1, . . . , k. So, the fibers in X̄i over these points remain reduced and irreducible.
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2. Let a component F of Dext different from S be created by one of the blowups
%̄ν ∶ X̃ν → X̃ν−1 in (4). We claim that then the center Pν of the blowup %̄ν belongs to the
image of D in X̄ν−1. Indeed, otherwise the last (−1)-curve, say, E over Pν would neither
be a bridge of a feather, nor a component of D. Hence E should be a component of a
feather, say, F, different from the bridge component F0. However, the latter contradicts
the minimality of F⊖F0, that is, the minimality of the resolution of singularities of X.

Recall the following notions.

2.16. Let D be a simple normal crossing divisor on a smooth surface Y . A blowup of
Y at a point p ∈D is called outer if p is a smooth point of D and inner if p is a node.

We use the following notation.

Notation 2.17. Given a blowup construction (4) for any j = 0, . . . ,m we let

(5) Dj,ext = Sj ∪∆j ∪Λj ⊂ X̄j where ∆j =
k

⋃
i=1

π̄−1
j (ci) and Λj =

n

⋃
i=1

π̄−1
j (bi) .

The following lemma should be well known. For (b) see, e.g., [19, (2.2)] and the
proof of Proposition 6.3.23 in [32].

Lemma 2.18. Let π∶X → B be a normal affine A1-fibered surface over a smooth affine
curve B. Consider a resolved completion (X̄ = X̄m,D) of X obtained via a well ordered
blowup construction (4) starting with a ruled surface π̄0∶ X̄0 → B̄. Then the following
hold.

(a) π∶X → B is a GDF surface if and only if all the blowups %̄ν in (4), ν = 1, . . . ,m,
are outer (with respect to the divisor D0,ext on X̄0 and its subsequent total trans-
forms Dν,ext on X̄ν).

(b) If π∶X → B is a GDF surface then X is smooth and every feather F of Dext =
Dm,ext consists in a single (−1)-component F0 which is a bridge.

(c) Let π∶X → B be a GDF surface with a pseudominimal resolved completion
(X̄,D), see Definition 2.6. For a fiber component F of π the following are
equivalent:
● F̄ is a leave, that is, an extremal vertex of the rooted tree Γext;
● F̄ is a feather;
● F̄ is a (−1)-vertex of Γext.

Proof. Suppose that for some ν ∈ {1, . . . ,m} the blowup %̄ν is inner. Assume also that
the center Pν ∈ X̄ν−1 of %̄ν lies on the fiber over bi ∈ B and on the image Dν−1,ext of
Dext. Then all the components of the fiber π̄∗(bi) which are born over Pν including the
last (−1)-component, say, F̄ , have multiplicities > 1. Notice that F̄ = F̄0 is a bridge
component of a feather, say, F. Hence F̄ is the closure in X̄ of a component F of the
fiber π∗(bi) ⊂ X. Thus, the fiber π∗(bi) is not reduced. This contradiction shows that
for a GDF surface π∶X → B all the %̄ν , ν = 1, . . . ,m, are outer.

To show the converse suppose that all the %̄ν in (4), ν = 1, . . . ,m are outer. Then all
the resulting degenerate fibers are reduced. Hence π∶X → B is a GDF surface. This
proves (a).

Assume further that a feather F of Dext has more than one component. The compo-
nent of F which appears the last in the blowup construction (4) is the bridge component
F0 of F. Hence F0 results from a blowup %̄ν with center Pν which lies on the component
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F̄1 of F and on the image in X̄ν−1 of a component C of D, see Remark 2.15. Thus,
Pν is a nodal point of the divisor Dν−1,ext on X̄ν−1. It follows that %̄ν is inner. So, the
bridge F̄0 of F has multiplicity > 1 in its fiber.

This proves that for a GDF surface π∶X → B every feather F of Dext consists in
a single bridge component F̄0. Consequently, the surface X is smooth. Furthermore,
assuming that F̄ 2

0 < −1 an outer blowup was done in (4) with center on F0 creating
a new component, say, E of D. The graph distance dist(E,S) in Γext is bigger than
dist(F̄0,E). Hence F̄0 disconnects S and E in D. The latter contradicts the facts that
the affine surface X is connected at infinity, i.e., its boundary divisor D is connected.
Therefore, F̄ 2

0 = −1. This shows (b).
The same argument shows that F̄0 is an extremal vertex (a tip) of Γext different from

S. Conversely, if F̄ is a tip of Γext different from S then F̄ 2 = −1. Indeed, since all
the blowups in (4) are outer then no further blowup was done near F̄ after creating F̄ .
Due to the pseudominimality assumption, F̄ is a feather of Dext. Now (c) follows. �

Definition 2.19 (Fiber trees, levels, and types). Given an SNC completion π̄∶ X̄ → B̄
of a GDF surface π∶X → B and a point b ∈ B the dual graph Γb = Γb(π̄) of the fiber
π̄−1(b) will be called a fiber tree. It depends on the completion chosen. This is a rooted
tree with a root v0 ∈ Γb being the neighbor of S in Γext. We say that a vertex v of Γb
has level l if the tree distance between v and v0 equals l. Thus, the root v0 is a unique
vertex of Γb on level 0. By a height ht(Γb) we mean the highest level of the vertices in
Γb. Remind that the leaves of a rooted tree are its extremal vertices different from the
root. By the type tp(Γb) we mean the sequence of nonnegative integers (n1, n2, . . . , nh)
where h = ht(Γb) and ni is the number of leaves of Γb on level i.

Remark 2.20. The fiber tree Γb is an unweighted tree. However, one can easily
reconstruct the weights. Namely, for a vertex v of weight w(v) and of degree deg(v)
in Γb one has w(v) = −deg(v). In particular, the (−1)-vertices are the tips, and the
(−2)-vertices are the linear ones.

Definition 2.21 (Graph divisor). Let G be the set of all finite weighted rooted trees
contractible to the root which acquires then weight zero. By a graph divisor on a
smooth affine curve B we mean a formal sum

D =
n

∑
i=1

Γibi, where Γi ∈ G .

If all the Γi are chains then we call D a chain divisor. The height of a graph divisor D
is the maximal height of the trees Γi, i = 1, . . . , n.

Let π∶X → B be an A1-fibered surface with a marking z ∈ OB(B) where z∗(0) =
b1 + . . . + bn and with a resolved completion π̄∶ X̄ → B̄. To the corresponding extended
graph Γext we associate a graph divisor D(π) = ∑n

i=1 Γbibi where Γbi is the fiber tree of
the fiber π−1(bi). If π∶X → B is a µd-surface and the marking z is µd-quasi-invariant
then there is an induced µd-action on the graph divisor D(π).
2.4. GDF surfaces via affine modifications. Let X → B be a GDF surface. In
this subsection we describe a recursive procedure which allows to recover X starting
with the product B × A1 via a sequence of fibered modifications, see Corollary 2.27.

Definition 2.22 (Fibered modification). 2 A fibered modification between two A1-
fibered GDF surfaces π∶X → B and π′∶X ′ → B is an affine modification %∶X ′ → X

2Cf. [19, Def. 4.2].
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which consists in blowing up a reduced zero-dimensional subscheme of X and deleting
the proper transform of the union of those fiber components of π which carry centers
of blowups. Thus, % is a birational morphism of B-schemes.

Remark 2.23. Let F be a reduced curve on a smooth affine surface X, let Σ ⊂ F be a
reduced zero dimensional subscheme, and let σ∶X ′ →X be the composition of blowing
up X with the center Σ and deleting the proper transform F ′ of F . We claim that X ′

is again affine, and so, by [47, Thm. 1.1], the birational morphism X ′ →X is an affine
modification.

Indeed, there exists a completion X̄ of X and an ample divisor A on X̄ with support
suppA = X̄ ∖X. Let X̄ ′ be the surface obtained from X̄ by blowing up with center Σ.
Consider on X̄ ′ the proper transforms A′ and F̄ ′ of A and F̄ , respectively, where F̄ is
the closure of F in X̄. By Kleiman ampleness criterion the divisor nA′ + F̄ ′ on X̄ ′ is
ample provided that n is sufficiently large. Hence the surface X ′ = X̄ ′∖ supp (nA′+ F̄ ′)
is affine, as claimed.

In general, F is not a principal divisor on X. To represent σ∶X ′ → X via an affine
modification along a principal divisor let us choose functions f, g ∈ OX(X) such that
f vanishes on F to order 1 and the restriction g∣F vanishes with order 1 on Σ. Let
I ⊂ OX(X) be the ideal generated by f, g, and by the regular functions on X vanishing
on Σ ∪ (V(f) ∖ F ). Then σ∶X ′ → X is the affine modification along the divisor f∗(0)
with the center I.

Let π∶X → B be a GDF surface, F be a fiber component of π, and let f = π∗z where
z ∈ OB(B) has a simple zero at the point π(F ) ∈ B. Then π′ = π ○σ∶X ′ → B is again a
GDF surface and σ∶X ′ →X is a fibered modification. This justifies Definition 2.22.

For a GDF surface π∶X → B one has the following decomposition.

Proposition 2.24. (a) Any GDF surface π∶X → B can be obtained starting with
a line bundle π0∶X0 → B over B via a sequence of fibered modifications

(6) X =Xm
%mÐ→Xm−1 Ð→ . . .Ð→X1

%1Ð→X0 .

This sequence can be extended to the corresponding completions yielding a well
ordered blowup sequence (4).

(b) Suppose, furthermore, that π∶X → B is a GDF G-surface where G is a finite
group. Then (6) can be chosen so that the intermediate surfaces Xν come
equipped with G-actions making the morphisms %ν+1∶Xν+1 →Xν and πν ∶Xν → B
G-equivariant for all ν = 0, . . . ,m − 1.

Proof. (a) To construct (6) we exploit a well ordered blowup construction (4) which
starts with a P1-bundle π̄0∶ X̄0 → B̄ and finishes with a pseudominimal completion
π̄m∶ X̄m → B̄ of π∶X → B.

For any ν = 0, . . . ,m we let Dν,ext (∆ν , Sµ, respectively) be the image on X̄ν of the
extended divisor Dext = Dm,ext (the divisor ∆ = ∆m, the section S = Sm, respectively)
on X̄m = X̄. Let Γν,ext be the weighted dual graph of Dν,ext and Λν,max be the union of
the fiber components of π̄ν ∶ X̄ν → B̄ which correspond to the extremal vertices of Γν,ext

on maximal distance from Sν . Let also Dν be the union of the remaining components
of Dν,ext. Then Λν+1,max is the exceptional divisor of the blowup %̄ν ∶ X̄ν+1 → X̄ν with
center on Λν,max ∖Dν .

Consider the open surface Xν = X̄ν ∖Dν . We claim that Xν is affine and %̄ν(Xν+1) ⊂
Xν . Indeed, the latter follows since %̄ν(Λν+1,max ∖Dν+1) ⊂ Λν,max ∖Dν ⊂ Xν due to the
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above observation. To prove the former we use the Kleiman ampleness criterion (cf.
Remark 2.23). Notice that a fiber component F of Dext has level l if dist(F,S) = l + 1
in Γext. For any ν ≥ l the proper transform of F in X̄ν has the same level l. Choose a
sequence of positive integers

s0 ≫ a0 ≫ a1 ≫ . . .≫ am−1 ≫ 0 .

Let Aν be an effective divisor on X̄ν with support Dν such that al is the multiplicity in
Aν of any fiber component F of Dν of level l, l = 0, . . . , ν−1, and s0 is the multiplicity of
Sν in Aν . Performing elementary transformations in a fiber over a point ci ∈ B̄ ∖B we
may assume that S2

ν > 0. Suppose to the contrary that there is an irreducible curve C
in X̄ν with C ⋅Aν = 0. If C is not a component of Dν,ext then π̄(C) ⊂ B, hence π̄∣C =cst
which gives a contradiction. If C = Sν then clearly C ⋅ Aν > 0 which contradicts our
choice of C and Aν . The same contradiction occurs if C is a fiber component of Dν,ext.
Due to the Kleiman ampleness criterion the divisor Aν with support Dν is ample. Thus
the surface Xν = X̄ν ∖Dν is affine.

Letting now %ν+1 = %̄ν+1∣Xν+1 ∶Xν+1 → Xν , ν = 0, . . . ,m − 1 one obtains a desired
sequence (6) of fibered modifications. This proves (a).

To show (b) it suffices to start with a G-equivariant version of sequence (4) con-
structed in the proof of Lemma 2.14(b). By our construction, %̄ν is G-equivariant and
Dν,ext, Dν , and Xν are G-invariant. Hence %ν+1 = %̄ν+1∣Xν+1 is G-equivariant too for any
ν = 0, . . . ,m − 1. �

The following proposition is an affine analog of the Nagata-Maruyama Theorem on
the projective ruled surfaces ([60]; see also [49]). It allows to replace the line bundle
X0 → B in (6) by the trivial bundle B × A1 → B. For the corresponding completions
this amounts to a stretching which extends feathers by chains of type [[−1,−2, . . . ,−2]]
in D near S, so loosing the pseudominimality property.

Lemma 2.25. Let X be the total space of a line bundle π∶X → B over a smooth affine
curve B. Then the following hold.

(a) X can be obtained starting with the product B × A1 over B via a sequence of
fibered modifications over B,

(7) X = ZM
%MÐ→ ZM−1 Ð→ . . .Ð→ Z1

%1Ð→ Z0 = B × A1

where πi∶Zi → B is the projection of a line bundles and the center of %i belongs
to the exceptional divisor of %i−1 for each i = 0, . . . ,M .

(b) If in addition π∶X → B is a marked GDF µd-surface then for i = 0, . . . ,M the
morphisms %i∶Zi → Zi−1 in (7) and πi∶Zi → B can be chosen to be µd-equivariant
with respect to suitable µd-actions on the surfaces Zi and the given µd-action
on B.

Proof. (a) Under our assumptions X is affine and admits an effective Gm-action along
the fibers of π. This action induces a grading OX(X) = ⊕i≥0 Ai where A0 = OB(B) and
A1 ≠ {0}. If u ∈ A1 then the restriction of u to a general fiber of π yields a coordinate
on this fiber. It follows that ψ = (idB, u)∶X → B × A1 is a birational morphism over
B, hence an affine modification (see [47, Thm. 1.1]). Since ψ is Gm-equivariant its
exceptional divisor E, its center C, and its divisor D are Gm-invariant. Since u is a
Gm-quasi-invariant of weight 1 it vanishes along the zero section Z ⊂ X with order 1.
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Thus, one has u−1(0) = Z ∪ F1 ∪ . . . ∪ Fn where Fi = π−1(bi), bi ∈ B, i = 1, . . . , n. Then

E = F1 ∪ . . . ∪ Fn, C = {b1, . . . , bn} × {0}, and D = {b1, . . . , bn} × A1 ⊂ B × A1 .

So, ψ consists in blowing up a subscheme with support C and deleting the proper
transform of D. Therefore, ψ factorizes through the Gm-equivariant fibered modifica-
tion %1∶Z1 → B×A1 which consists in blowing up the reduced subscheme C and deleting
the proper transform of D. Similarly, the resulting birational morphism of line bundles
X → Z1 over B can be factorized over B into X → Z2 → Z1 where the center of Z2 → Z1

is a reduced subscheme of C. After a finite number of steps we get a Gm-equivariant
resolution of indeterminacies of the inverse birational map ψ−1∶B ×A1 ⇢X, hence also
a desired decomposition of ψ into a sequence (7) of fibered modifications.

(b) Under the assumptions of (b) consider the induced µd-action on Z0 = B × A1

identical on the second factor. In order that ψ = (idB, u)∶X → B×A1 were µd-equivariant
it suffices to choose u ∈ Aµd

1 being a µd-invariant. Since µd acts via automorphisms of
the line bundle π∶X → B it normalizes the Gm-action on X. Hence it induced a
representation of µd via automorphisms of the graded k-algebra OX(X) = ⊕i≥0 Ai. Let

A
(i)
1 = {a ∈ A1 ∣ ζ.a = ζ ia ∀ζ ∈ µd} .

Any element a ∈ A1 belongs to the µd-invariant subspace E spanned by the orbit µd(a).
The finite dimensional representation of µd in E splits into a sum of one-dimensional
representations. Consequently, a can be written as a sum of µd-quasi-invariants. It

follows that A1 = ⊕d−1
i=0 A

(i)
1 .

We claim that there exists a nonzero invariant u ∈ A
(0)
1 = Aµd

1 . Indeed, for some

i ∈ {0, . . . , d − 1} there exists a nonzero µd-quasi-invariant h ∈ A
(i)
1 of weight i. The

marking z ∈ A0 = π∗(OB(B)) is a µd-quasi-invariant of weight 1, see Definition 2.1.
Then u = zd−ih ∈ Aµd

1 as desired.
The resulting birational morphism ψ = (idB, u)∶X → B ×A1 over B is µd-equivariant.

So, this is an affine modification with µd-invariant center C and divisor D.
Hence ψ factorizes through the µd-equivariant fibered modification %1∶Z1 → B × A1

which consists in blowing up B×A1 with center the reduced zero dimensional subscheme
C ⊂ B × {0} and deleting the proper transform of D. By recursion one arrives at a
sequence (7) of µd-equivariant morphisms. �

Remark 2.26. In the notation as in the proof of Lemma 2.25(a) let divu = Z +
∑n
i=1miFi. Then the effective divisor b ∶= m1b1 + . . . + mnbn ∈ Div(B) in this proof

can be replaced by any representative b′ ∈ ∣b∣. Indeed, let b′ = b + div f for a rational
function f on B. Then u′ = uf ∈ A1 ⊂ OX(X) and divu′ = Z + π∗(b′).

Letting in (6) G = µd and extending this sequence on the right by those in (7) with
a suitable new enumeration we arrive at our final sequence of fibered modifications.

Corollary 2.27. (a) Any GDF surface π∶X → B can be obtained starting with a
product X0 = B × A1 via a sequence of fibered modifications

(8) X =Xm
%mÐ→Xm−1 Ð→ . . .Ð→X1

%1Ð→X0 = B × A1

such that the center of %i is contained in the exceptional divisor of %i−1.
(b) Suppose furthermore that π∶X → B is a marked GDF µd-surface. Then any

intermediate surface Xi, i = 0, . . . ,m − 1, comes equipped with the induced µd-
action so that the morphisms %i+1∶Xi+1 →Xi and πi∶Xi → B are µd-equivariant.
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Proof. Let us prove (a) leaving the proof of (b) to the reader. Both (6) and (7) are
chosen well ordered, that is, the center of %i is contained in the exceptional divisor of
%i−1. Let the centers of blowups in (6) and (7) are situated over the points b1, . . . , bn ∈ B
and b′1, . . . , b

′
n′ ∈ B, respectively. Let b = b1 + . . . + bn ∈ Div(B) and b′ = b′1 + . . . + b′n′ ∈

Div(B). The linear system ∣b′∣ is base point free. Hence b′ ∈ ∣b′∣ can be chosen so that
bi ≠ b′j ∀i, j, see Remark 2.26. Then the blowups in (6) and (7) are independent (they
commute, in a sense). So, we may perform the blowups in (6) and (7) at each step
simultaneously so that the resulting sequence (8) will be well ordered. �

Remarks 2.28. 1. The morphisms in (8) can be extended to suitable completions
yielding a sequence of birational morphisms

(9) X̂ = X̂m
%̂mÐ→ X̂m−1 Ð→ . . .Ð→ X̂1

%̂1Ð→ X̂0 = B̄ × P1 ,

where π̂i∶ X̂i → B̄ is a µd-equivariant P1-fibration extending πi∶Xi → B and %̂i∶ X̂i → X̂i−1

is a simultaneous contraction of a µd-invariant union of disjoint (−1)-components of
π̂i-fibers, i = 0, . . . ,m. Inspecting the proof of Lemma 2.25 one can see that certain
irreducible fibers of pr1∶ B̄ × P1 → B̄ are replaced by chains of rational curves with

sequences of weights of type [[−1,−2, . . . ,−2,−1]]. This yields a completion X̂m → B̄ of

Xm → B whose boundary X̂m∖Xm is a simple normal crossings divisor. The section at
infinity B̄ × {∞} of pr1∶ B̄ ×P1 → B̄ gives rise to a section at infinity S of X̂ = X̂m → B̄

with S2 = 0. If the line bundle X̄0 → B̄ in (6) is nontrivial then the completion (X̂, D̂)
is not pseudominimal.

2. It is easily seen that F has level l if and only if it appears for the first time on
the surface Xl (l ≤ m) in (8), see Definition 2.19. Thus, any fiber component F ′ of
πl∶Xl → B has level ≤ l. If π∶X → B is a marked GDF µd-surface then the level function
is µd-invariant. Notice that the center of the blowup %l+1∶Xl+1 → Xl in (8) is situated
on the union of the top level l fiber components in Xl.

Definition 2.29 (Trivializing completions). The completion (X̂, D̂) of a GDF surface
X fitting in (9) and the corresponding graph divisor D(π̂) will be called trivializing.

3. Vector fields and natural coordinates

3.1. Locally nilpotent vertical vector fields.

Lemma 3.1. Let π∶X → B be a marked GDF µd-surface with a marking z ∈ OB(B) ∖
{0}. Then for any l = 0, . . . ,m the surface Xl in (8) admits a locally nilpotent regular µd-
quasi-invariant vertical vector field ∂l of weight l non-vanishing on the fiber components
of the top level l and vanishing on the fiber components of lower levels.

Proof. Consider the locally nilpotent vertical vector field ∂0 = ∂/∂u on X0 = B × A1

where A1 = spec k[u]. Clearly, ∂0 is invariant under the µd-action on B × A1 identical
on the second factor. The µd-equivariant fibered modification %1∶X1 → B × A1 over B
transforms ∂0 into a µd-invariant rational vertical vector field on X1 with pole of order
1 along the fiber components of level 1. By induction, ∂0 lifts to a µd-invariant rational
vertical vector field on Xl with pole of order s on any fiber component of level s where
1 ≤ s ≤ l and no other pole.

Since the marking z ∈ OB(B)∖{0} is µd-quasi-invariant of weight 1 then ∂l ∶= zl∂/∂u
generates a regular locally nilpotent µd-quasi-invariant vertical vector field on Xl of
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weight l non-vanishing on the fiber components of level l and vanishing on the fiber
components of smaller levels. �

3.2. Standard affine charts.

Notation 3.2. Let π∶X → B be a marked GDF µd-surface with a marking z ∈ OB(B)
where z∗(0) = b1 + . . . + bn. For any i = 1, . . . , n consider in B the affine chart Bi =
B ∖ {b1, . . . , bi−1, bi+1, . . . , bn} about the point bi. So, div (z∣Bi) = bi.

Given a surface Xl from (8) we let Fi,1, . . . , Fi,ni be the components of the fiber
π−1
l (bi). Consider the Ga-action Hl on Xl along the fibers of πl generated by the locally

nilpotent vector field ∂l as in Lemma 3.1.

Proposition 3.3. In the notation as above the following hold.

● For any i ∈ {1, . . . , n} and j ∈ {1, . . . , ni} there is a unique standard affine chart
Ui,j ⊃ Fi,j in Xl such that Ui,j ≅Bi Bi ×A1. These standard affine charts (Ui,j)i,j
form a covering of Xl;

● one has Ui,j ∩Ui,j′ = Ui,j ∖ Fi,j = Ui,j′ ∖ Fi,j′ for any 1 ≤ j, j′ ≤ ni;
● the µd-action on Xl induces a µd-action by permutations on the collection (Ui,j);
● Ui,j is invariant under any action of a connected algebraic group on Xl → B

identical on B;
● for any t ≤ l and any fiber component Fi,j on level t the Ht-action is well defined

and free on Ui,j;
● for any l, t ∈ Z with 0 ≤ t < l ≤ m the composition %l,t = %t+1 ○ . . . ○ %l∶Xl → Xt

sends a standard affine chart Ui,j ⊂ Xl on level t isomorphically over Bi to a
standard affine chart in Xt.

Proof. The assertions are evidently true for the product X0 = B ×A1 in (8) with ni = 1

∀i and U
(0)
i,1 = π−1

0 (Bi) = Bi×A1. Suppose by recursion that they hold for a surface Xl−1

in (8) and the collection (U (l−1)
i,j ) of standard affine charts on Xl−1. The µd-equivariant

fibered modification %l∶Xl →Xl−1 in (8) consists in blowing up with center at a union of
µd-orbits situated on special fiber components of the top level l−1 in Xl−1 and deleting
the proper transforms of these fiber components, see Remark 2.28.2. Let F = Fi,j be

one of these components, and let UF = U (l−1)
i,j be the corresponding standard affine chart

in Xl−1. Then the modification %l replaces F with new components, say, F1, . . . , FM
of level l on Xl. The induced fibered modification of UF ≅Bi Bi × A1 results in a GDF
surface over Bi with the only degenerate fiber π−1

l (bi) = ∑M
j=1Fj. Blowing up just one

point, say, xj one replaces F by Fj. Choosing local coordinates (z, u) in UF ≅Bi Bi×A1

so that u(xj) = 0, z(xj) = 0 the latter affine modification consists in passing from
OBi(Bi)[u] to OBi(Bi)[u/z] = OBi(Bi)[u′] where u′ = u/z. This results in a standard

affine chart U
(l)
F,j ≅Bi Bi×A1 in Xl. In total one obtains M such affine charts on Xl over

UF with the intersections as needed. For a fiber component F on Xl−1 which does not

contain any center of the modification %l we let U
(l)
F = %−1

l (U (l−1)
F ). It is easily seen that

the desired conclusions hold for the resulting collection (U (l)
F,j) of standard affine charts

on Xl. We leave the details to the reader. �

3.3. Natural coordinates. Let π∶X → B be again a marked GDF µd-surface with a
marking z ∈ OB(B) where z∗(0) = b1 + . . . + bn.

Definition 3.4 (Natural local coordinates). Fix a component F of a fiber π−1
l (bi) on Xl,

and let UF be the standard affine chart in Xl about F . An isomorphism UF ≅Bi Bi×A1
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provides sections of πl∣UF ∶UF → Bi. Fixing such a section and using the vertical free
Ga-action on UF one obtains a Ga-equivariant isomorphism UF ≅Bi Bi × A1 where Ga

acts on the direct product via translations along the second factor. Fixing a coordinate
u in A1 one gets a coordinate, say, u = uF in UF .

The restriction z∣UF vanishes to order 1 along F and has no further zero. Hence
(z, uF ) yields local coordinates in UF near F . We call these natural coordinates. The
local coordinates (z, uF , v) in the standard affine chart UF ×A1 in the cylinder Xl about
the affine plane F = F × A1 = Spec k[uF , v] are also called natural.

Lemma 3.5. Let π∶X → B be a marked GDF µd-surface, and let Xl be one of the
surfaces in (8). Let Fl be the collection of the components of z∗(0) in Xl on the top
level l. Then there exists a collection (z, uF )F ∈Fl of natural local coordinates such that
(uF )F ∈Fl is a quasi-invariant of µd of weight −l.

Proof. For F ∈ Fl let µe ⊂ µd (where e∣d) be the isotropy subgroup of F . The µe-action
on UF induces a µe-action on Bi×A1 ≅Bi UF (see Notation 3.2). The latter isomorphism
yields a bijection between the sections of πl∣UF ∶UF → Bi and the functions in OBi(Bi).
Choosing an arbitrary such section and averaging over its µe-orbit one obtains a µe-
invariant section, say, ZF . Then ZF can be taken for the zero locus of a coordinate
function uF in UF . Let ∂l be the vertical µd-quasi-invariant vector field on Xl of weight
l constructed in Lemma 3.1. The coordinate function uF ∈ OUF (UF ) with uF ∣ZF = 0
and ∂l(uF ) = 1 is unique. For ζ ∈ µe the ratio ζ.uF /uF does not vanish, hence it is
constant along any πl-fiber. Thus, one has ζ.uF = (π∗l f) ⋅ uF for some f ∈ O×

Bi
(Bi).

From the relations ∂l ○ ζ = ζ l∂l and ∂l(π∗l f) = 0 one deduces that f = ζ−l is a constant,
and so, uF is a µe-quasi-invariant of weight −l.

For any component F ′ in the µd-orbit of F define natural coordinates (z, uF ′) in
UF ′ in such a way that the collection of functions (uF ′) becomes µd-quasi-invariant of
weight −l. Choosing a representative of any µd-orbit on Fl and repeating the same
procedure gives the desired collection of local coordinates. �

Remarks 3.6. 1. If F is a component of z∗(0) on Xl on level l′ < l then the µd-
equivariant morphism %l∶Xl →Xl−1 restricts to an isomorphism on UF . Hence one can
define local coordinates (z, uF ) in UF where F runs over all the components of z∗(0)
in Xl in such a way that for a given l′ ≤ l the collection (uF )F ∈Fl′ is a µe-quasi-invariant
of weight −l′.

In the local coordinates (z, uF ) in UF ⊂ Xl of level l′ ≤ l the vertical vector field ∂l
on Xl constructed in Lemma 3.1 coincides with zl−l′∂/∂uF . In particular, in a top level
chart UF one has ∂l∣U = ∂/∂uF .

2. In the case e = 1 our choice of a µe-invariant section is arbitrary, and the coordinate
uF in the standard affine chart UF is defined up to a factor which is an invertible
function lifted from the base and a shift along the u-axis. Hence for F of the top level
one may consider that uF does not vanish in any center of the blowup %l+1∶Xl+1 → Xl

contained in F .

3.4. Special µd-quasi-invariants. In the sequel we need µd-invariant locally nilpo-
tent derivations on the cylinders over GDF µd-surfaces. To this end we construct on
such surfaces quasi-invariant functions of prescribed weights, see Corollary 3.8 below.
Let us start with the following fact (cf. [46, Lem. 2.12]).
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Lemma 3.7. Suppose we are given a finite group G, a character λ ∈ G∨, an affine G-
variety Y , and a G-invariant closed subscheme Z of Y which is not necessarily reduced.
Let f ∈ OZ(Z) belongs to λ, that is, f ○ g = λ(g) ⋅ f ∀g ∈ G. Then f admits a regular
G-quasi-invariant extension to Y which belongs to λ.

Proof. Letting A = OY (Y ) and B = OZ(Z) the G-action yields graded decompositions
A = ⊕χ∈G∨ Aχ and B = ⊕χ∈G∨ Bχ. The piece Aχ (Bχ, respectively) consists of the G-
quasi-invariants in A (in B, respectively) which belong to the character χ. The closed
embedding Z ↪ Y induces a surjection ϕ ∶ A → B ([43, Thm. III.3.7]). We claim
that ϕ restricts to a surjection ϕ∣Aλ ∶Aλ → Bλ for any λ ∈ G∨. Indeed, any f ∈ Bλ

admits an extension to a regular function f̃ ∈ A such that ϕ(f̃) = f . There is a unique

decomposition f̃ = ∑χ∈G∨ f̃χ. Hence f = ∑χ∈G∨ ϕ(f̃χ). Since f ∈ Bλ the summands ϕ(f̃χ)
with χ ≠ λ vanish, and so, f = ϕ(f̃λ). Hence f̃λ ∈ Aλ is a desired G-quasi-invariant
extension of f which belongs to λ. �

Corollary 3.8. Let π∶X → B be a marked GDF µd-surface, let Xl be one of the
surfaces in (8), and let F′l ⊂ Fl be a µd-invariant set of top level fiber components in Xl.
Consider a µd-quasi-invariant collection of natural local coordinates (z, uF )F ∈Fl as in
Lemma 3.5. Then for any s≫ 1 one can find a µd-quasi-invariant function ũ ∈ OXl(Xl)
of weight −l such that

(i) ũ ≡ uF ′ mod zs near F ′ if F ′ ∈ F′l and
(ii) ũ ≡ 0 mod zs near F ′ otherwise.

Proof. It suffices to apply Lemma 3.7 with Y = Xl, G = µd, Z = (zs)∗(0) being the
sth infinitesimal neighborhood of the union of the special fiber components in Xl,
λ(ζ) = ζ−l for ζ ∈ µd, and the function f ∈ OZ(Z) defined in the affine charts Z ∩ UF ′
via f ∣Z∩UF ′ = uF ′ ∣Z∩UF ′ for F ′ ∈ F′l and f ∣Z∩UF ′ = 0 otherwise. �

3.5. Examples of GDF surfaces of Danielewski type. We start with the classical
Danielewski example.

Example 3.9 (Danielewski surfaces). The Danielewski surface X1 results from the
affine modification %1∶X1 → X0 of the affine plane X0 = A2 = Spec k[z, u] with the
divisor z = 0 and the center I = (z, u2 − 1). This consists in blowing up the points
x1 = (0,1) and x−1 = (0,−1) in A2 and deleting the proper transform of the affine line
z = 0. Letting A0 = OX0(X0) = k[z, u] and A1 = OX1(X1) one has

A1 = A0[(u2 − 1)/z] = k[z, u, t1]/(zt1 − u2 + 1) .
The projections π0∶X0 → B = Spec k[z] and π1∶X1 → B are induced by the inclusions
k[z] ↪ k[z, u] ↪ k[z, u, (u2 − 1)/z]. Thus, X1 is given in A3 with coordinates (z, u, t1)
by equation

zt1 − u2 + 1 = 0 .

The unique reducible fiber π∗1(0) of the GDF surface π1 = z∣X1 ∶X1 → B = A1 consists of
two disjoint affine lines (components of level one)

F1 = {z = 0, u = 1} and F−1 = {z = 0, u = −1} .
The complement X1 ∖ Fj for j ≠ i gives a standard affine chart Ui ≅ A2 about Fi. The
chart U1 can be obtained via the affine modification of X1 along the divisor z∗(0) =
F1 + F−1 with center the ideal V(F1) = (z, u − 1). Thus,

OU1(U1) = A1 [(u − 1)/z] = k[z, u1] where u1 = (u − 1)/z = t1/(u + 1) .
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Similarly, the standard affine chart on X1 about F−1 is

U−1 =X1 ∖ F1 = SpecA1[(u + 1)/z] = Spec k[z, u−1] ≅ A2

where z and u−1 = (u + 1)/z = t1/(u − 1) are natural coordinates in U−1. The locally
nilpotent vertical vector field

∂1 = z∂/∂u + 2u∂/∂t1
on X1 restricts to ∂/∂ui in Ui, i = 1,−1. The phase flow of ∂1 yields a free Ga-action on
X1. It is sent under %1 to the field d%1(∂1) = z∂0 = z∂/∂u on X0.

The second Danielewski surfaceX2 is obtained via the affine modification %2∶X2 →X1

with the divisor z∗(0) onX1 and the center I = (z, t1) ⊂ A1. Thus, %2 consists in blowing
up X1 at the points x1.i = (0, i,0) ∈ Fi, i = 1,−1 (the origins of the affine planes Ui ≅ A2,
i = 1,−1) and deleting the proper transforms of the fiber components F1 and F−1.
Letting t2 = t1/z one obtains

A2 ∶= OX2(X2) = A1[t1/z] = k[z, u, t2]/(z2t2 − u2 + 1) .
Once again, X2 is a GDF surface with a unique reducible fiber z∗(0) consisting of two
components of level 2. Iterating this procedure we arrive at a sequence of Danielewski
surfaces

Xm = Spec k[z, u, tm]/(zmtm − u2 + 1), m = 1,2, . . .

along with a sequence of affine modifications fitting in (8)

%m∶Xm →Xm−1, (z, u, tm) ↦ (z, u, tm−1) where tm−1 = ztm .
The only special fiber z∗(0) in Xm is reduced and consists of two components of level
m. The vector field zm∂/∂u on X0 lifts to the locally nilpotent vertical vector field on
Xm,

∂m = zm∂/∂u + 2u∂/∂tm .
Its phase flow defines a free Ga-action on Xm. The latter action restricts in a standard
affine chart on Xm to the standard Ga-action via shifts in the vertical direction.

The extended divisor Dext,m of a minimal completion π̄∶ X̄m → P1 has dual graph

(10) Γext,0 ∶ c0
F∞

c0
S̄

c0
F̄0

resp., Γext,m ∶ c0
F∞

c0
S̄

c−2

F̄0

F1

F−1

where m ≥ 1 and a box stands for the chain [[−2, . . . ,−2,−1]] of length m so that Fi
ends with the (−1)-feather F̄i of level m, i = 1,−1 (see Example 7.12).

Example 3.10. As an immediate generalization of the preceding example consider the
surface Xm in A3 with equation zmtm−q(u) = 0 where q ∈ k[u] is a polynomial of degree
d ≥ 2 with simple roots. This is a GDF surface with projection π = z∣Xm ∶Xm → A1.
Letting X0 = A2 one has a sequence of affine modifications (8) where %i∶Xi → Xi−1,
(z, u, ti) ↦ (z, u, ti−1 = zti). The vector field zm∂/∂u on X0 = A2 lifts to the locally
nilpotent vertical vector field on Xm,

∂m = zm∂/∂u + q′(u)∂/∂tm
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which generates a free vertical Ga-action on Xm. The dual graph Γext,m of the pseudo-
minimal completion π̄∶ X̄m → P1 differs from the graph in diagram (10) in one aspect:
instead of two contractible chains F1 and F−1, it has d such chains Fj, j = 1, . . . , d of
the same length m which are the branches of the fiber tree Γ0(π̄) in the root F̄0.

Example 3.11 (GDF surfaces given by equations). In A3 with coordinates (z, u, t1)
consider the surface X1 = {zt1−q1(u) = 0} where q = q1 ∈ k[u] is a polynomial of degree
d ≥ 1 with simple roots α1, . . . , αd. The projection π1 = z∣X1 ∶X1 → A1 makes of X1 a
GDF surface with a unique reducible fiber π−1

1 (0) consisting of d components F1, . . . , Fd
on level 1, see Example 3.10 with m = 1. The projection (z, u, t1) ↦ (z, u) represents
X1 as a result of the fibered modification %1∶X1 → X0 = A2 which contracts Fi to the
point Pi = (0, αi) ∈X0, i = 1, . . . , d.

Let further q2 ∈ k[u, t1] be such that, for each i = 1, . . . , d, either q2(αi, t1) ∈ k[t1] has
mi = deg q2(αi, t1) > 0 simple roots βi,1, . . . , βi,mi , or q2(αi, t1) = 0; in the latter case we
let mi = 0. Consider the complete intersection V2 ⊂ A4 given in coordinates (z, u, t1, t2)
by

zt1 − q1(u) = 0, zt2 − q2(u, t1) = 0 .

There is a unique irreducible component X2 of V2 which dominates the z-axis, while
the other components are disjoint affine planes contained in the hyperplane z = 0.
Let Pi,j = (0, αi, βi,j) ∈ Fi. The projection (z, u, t1, t2) ↦ (z, u, t1) defines a fibered

modification σ2∶X2 →X1 along the divisor z∗(0) = ∑d
i=1Fi with a reduced center

⋃
mi=0

Fi ∪ ⋃
mi>0

(Pi,1 + . . . + Pi,mi) .

The projection π2 = z∣X2 ∶X2 → A1 makes of X2 a GDF surface with a unique reduced
fiber over z = 0. One has X2 ∖π−1

2 (0) ≅A1
∗

A1∗ ×A1, that is, π2∶X2 → A1 is a Danielewski-
Fieseler surface as defined in [19]. The fiber π−1

2 (0) ⊂ X2 has d − c2 components Fi of
level 1 and c2 =m1 + ... +md components Fi,j of level 2.

The graph Γ0(π2) is a rooted tree with a root F̄0 of level 0, d vertices F̄1, . . . , F̄d
on level 1, and c2 vertices F̄i,j, i = 1, . . . , d, j = 1, . . . ,mi > 0 on level 2 where F̄i,j is
a neighbor of F̄i. Clearly, any rooted tree Γ of height 3 can be realized as Γ0(π2).
Moreover, any Danielewski-Fieseler surface π∶X → A1 with Γ0(π) ≅ Γ can be obtained
in this way.

The vector field z2∂/∂u on X0 = A2 lifted to X2 extends in A4 to a locally nilpotent
vector field

∂2 = z2 ∂

∂u
+ zq′1(u)

∂

∂t1
+ (z∂q2

∂u
(u, t1) +

∂q2

∂t1
(u, t1))

∂

∂t2
.

The associated vertical Ga-action on X2 is identical on the components Fi of level 1
(which correspond to mi = 0) and is free on the components Fi,j of level 2 and in the
complement X2 ∖ π−1

2 (0).
By a recursive procedure one can realize in this way any Danielewski-Fieseler surface

(cf. [20]). For instance, in the case of the Danielewski surface Xm from Example 3.10
one arrives at a system

zt1 − p(u) = 0, zt2 − t1 = 0, . . . , ztm − tm−1 = 0 ,

which reduces to a single equation zmtm − p(z) = 0 defining the original proper embed-
ding Xm ↪ A3.
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4. Relative flexibility

4.1. Definitions and the main theorem.

Notation 4.1. Let π∶X → B be a GDF surface, and let X = X × A1 be the cylinder
over X. We let

SAutB(X) = ⟨exp(∂) ∣∂ ∈ LND(OX (X)), ∂(z) = 0⟩
be the subgroup of the group Aut(X) generated by the exponentials of locally nilpotent
derivations in LND(X) which are automorphisms of X over B, cf. Section 1.1. For a
component F = F × A1 of z∗(0) in X any ϕ ∈ SAutB(X) stabilizes the standard affine
chart UF × A1 ⊂ X about F with natural coordinates (z, uF , v), see Proposition 3.3
and Definition 3.4. Furthermore, for any such F the restriction ϕ∣UF×A1 preserves the
volume form dz ∧ duF ∧ dv on UF × A1, that is, the Jacobian determinant of ϕ∣UF×A1

equals 1, see [2, Lem. 4.10].

Definition 4.2 (Relative flexibility). We say that the cylinder X =X ×A1 is relatively
flexible (RF, for short) if for any natural s ≥ 1, any collection F of top level components
F = F × A1 of z∗(0) in X , and any collection of pairs of ordered finite subsets ΣF =
{x1, . . . , xM} and Σ′

F = {x′1, . . . , x′M} in F of the same cardinality M =M(F) > 0 where
F runs over F, there exists an automorphism ϕ ∈ SAutB X which satisfies the conditions

(α) ϕ(xν) = x′ν with prescribed volume preserving s-jets at xν , ν = 1, . . . ,M(F)
provided these jets preserve locally the fibers of X → B;

(β) ϕ∣UF×A1 ≡ id mod zs near F = F × A1 for any F ∉ F.

We say that the condition RF(l, s) holds for X if the relative flexibility holds for the
cylinder over the surface Xl in (8) for a given s ≥ 1.

Definition 4.3 (Equivariant relative flexibility). Let π∶X → B be a marked GDF µd-
surface. We let X(k) denote the cylinder X =X×A1 equipped with a product µd-action
where µd acts on the second factor via (ζ, v) ↦ ζkv for all v ∈ A1 and ζ ∈ µd. Assume
that the collection F of fiber components as in Definition 4.2 along with the finite sets
Σ = ⋃F ∈F ΣF and Σ′ = ⋃F ∈F Σ′

F are µd-invariant, and the correspondence ΣF ↦ Σ′
F is

µd-equivariant.
We say that X(k) is µd-relatively flexible if one can choose a µd-equivariant auto-

morphism ϕ ∈ SAutµd,B X as in Definition 4.2 provided that

(α1) the collection of prescribed s-jets is µd-invariant;
(α2) if the stabilizer µe ⊂ µd of F is nontrivial and xν ∈ ΣF is an isolated fixed point

of the µe-action on F then x′ν = xν and the prescribed s-jet at xν is the one of
the identity.

If the cylinder Xl(k) satisfies the above conditions for a given s > 1 then we say that
the µd-equivariant condition RF(l, k, s) holds for X.

The main result of this section is the following

Theorem 4.4. Consider a marked GDF µd-surface π∶X → B along with a trivializing
sequence (8). Then the µd-equivariant condition RF(l,−l, s) holds for X with arbitrary
s ≥ 1 and l ∈ {0, . . . ,m}.

The proof is done in Section 4.3.
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4.2. Transitive group actions on Veronese cones. Let us recall the notion of a
saturated set of locally nilpotent derivations (see [2, Def. 2.1]). For a vector field ∂ on
a variety X and an automorphism g ∈ AutX we let Ad(g)(∂) = dg(∂) ○ g−1.

Definition 4.5 (Saturation). Consider an affine variety X = SpecA over k. A set N
of locally nilpotent regular vector fields on X (that is, of locally nilpotent derivations
of the affine k-algebra A = OX(X)) is called saturated if

(i) for any ∂ ∈ N and a ∈ ker∂ the replica a∂ belongs to N , and
(ii) Ad(g)(∂) ∈ N ∀g ∈ G, ∀∂ ∈ N where G = ⟨exp∂ ∣∂ ∈ N⟩ ⊂ AutA.

Lemma 4.6. Given a set N ⊂ DerA of locally nilpotent derivations satisfying (i)
consider the group G ⊂ AutA as in (ii) generated by exp (N). Then the set of locally
nilpotent derivations

N1 = {Ad(g)(∂) ∣ g ∈ G, ∂ ∈ N}
is saturated and generates the same group G.

Proof. It is not difficult to see that N1 satisfies (i). Let G1 = ⟨exp∂ ∣∂ ∈ N1⟩ be the
group generated by N1. We claim that G1 = G, and so, (ii) follows by the chain rule.
Indeed, an automorphism g ∈ AutX sends a vector field ∂ on X into the vector field ∂′

on X such that ∂′(g(x)) = dg(∂(x)) ∀x ∈X. Hence ∂′ = Ad(g)(∂). On the other hand,
if ∂ is locally nilpotent with the phase flow exp(t∂) ∈ AutX, t ∈ k, then for the phase
flow exp(t∂′) ∈ AutX, t ∈ k, one has exp(t∂′) = g ○ exp(t∂) ○ g−1. Since exp(t∂) ∈ G it
follows that exp(t∂′) ∈ G for any g ∈ G and ∂ ∈ N . Thus exp(t∂′) ∈ G for any ∂′ ∈ N1,
and so, G1 = G, as claimed. �

4.7. Given c, d ∈ N consider the affine plane A2 = Spec k[u, v] equipped with the µd-
action

(11) ζ.(u, v) = (ζ−cu, ζ−cv) ∀ζ ∈ µd .
This action is not effective, in general. However, it restricts to an effective action of the
subgroup µe ⊂ µd where e = d/gcd(c, d). The quotient Ve = A2/µe = A2/µd is a Veronese
cone.

Consider also the locally nilpotent vector fields σ1 = v ∂
∂u and σ2 = u ∂

∂v on A2. The
associated one-parameter groups (u, v) ↦ (u + tv, v) and (u, v) ↦ (u, v + tu), t ∈ k,
generate the standard SL2-action on A2. Notice that σ1 and σ2 are µd-invariant and
the µd-action on A2 commutes with the SL2-action. Hence the SL2-action descends to
the Veronese cone Ve.

Notation 4.8. Given s ≥ 2 consider the µd-invariant replicas

σ1,f = vdsf(vd)σ1 of σ1 and σ2,g = udsg(ud)σ2 of σ2 where f, g ∈ k[t] .
Any vector field σ1,f vanishes modulo vs on the axis v = 0. Hence ϕf ∶= exp(σ1,f)
fixes this axis pointwise along with its infinitesimal neighborhood of order s. Let
ψg = exp(σ2,g). The subgroup

(12) G = ⟨ϕf , ψg ∣ f, g ∈ k[t]⟩ ⊂ SAut(A2)
acts identically on the infinitesimal neighborhood of order s of the origin, is transitive
in A2 ∖ {0̄}, and commutes with the µd-action (11) on A2.

Consider the normal subgroup H ⊲ G of all the automorphisms α ∈ G of the from

(13) α = ϕ1 ⋅ ψ1 ⋅ . . . ⋅ ϕν ⋅ ψν
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where ϕi = ϕfi and ψi = ψgi , i = 1, . . . , ν verifying the condition

(14) ϕ1 ⋅ ϕ2 ⋅ . . . ⋅ ϕν = Id .

Proposition 4.9. With the notation as before, let (O1, . . . ,OM) and (O′
1, . . . ,O

′
M)

be two collections of distinct µd-orbits in A2 with cardOi = cardO′
i for i = 1, . . . ,M .

For every i = 1, . . . ,M choose a representative xi ∈ Oi. In the case e = 1 suppose in
addition that the singletons Oi and O′

i are different from the origin. Then there exists
an automorphism α ∈H such that

(i) α(Oi) = O′
i for i = 1, . . . ,M and

(ii) α has prescribed values of volume-preserving s-jets at the points xi, i = 1, . . . ,M
provided that for e > 1 and Oi = {0̄} for some i ∈ {1, . . . ,M} this prescribed s-jet
at the origin is the s-jet of the identity. 3

Proof. Consider the Veronese cone Ve = A2/µd = Spec k[u, v]µd , and let %∶A2 → Ve be
the quotient morphism. The cone Ve is smooth outside the vertex 0̄ ∈ Ve. Since the
G-action on A2 is transitive in A2∖{0̄} and commutes with the µd-action it descends to
a G-action on Ve transitive in Ve ∖ {0̄}. The µd-invariant locally nilpotent vector fields
σ1,f and σ2,g also descends to Ve. The set N of all these vector fields on Ve satisfies
condition (i) of Definition 4.5. By Lemma 4.6 the group G ⊂ AutVe is generated as
well by a saturated set N1 of locally nilpotent vector fields on the cone Ve. Therefore
one can apply Theorems 2.2 and 4.14 from [2].

Suppose first that {0̄} is not among the Oi’s. By [2, Thm. 2.2], G acts infinitely
transitively in Ve ∖ {0̄}. It follows that there exists α ∈ G which sends the points
yi = %(Oi) ∈ Ve into the points y′i = %(O′

i), i = 1, . . . ,M . Acting in A2 this α transforms
the orbit Oi into O′

i for every i = 1, . . . ,M . Thus α verifies (i).
By [2, Thm. 4.14] one can find α ∈ G verifying (i) with a prescribed volume-preserving

s-jet at each point yi = %(Oi) ∈ Ve, i = 1, . . . ,M . Since % is a local isomorphism near
a chosen point xi ∈ Oi over yi and near its image α(xi) ∈ O′

i one may prescribe a
volume-preserving s-jet of α at xi with the given zero term α(xi).

If e ≥ 2 and, say, O1 = {0̄} then also O′
1 = {0̄}. Indeed, any µe-orbit different from {0̄}

contains e > 1 points. Since σ1,f , σ2,g ≡ 0 mod (u, v)s for any f, g ∈ k[t], see Notation
4.8, one has α ≡ id mod (u, v)s for any α ∈ G. Thus automatically α(0̄) = 0̄ and,
moreover, the s-jet at the origin of any α ∈ G is the one of the identity map.

In the case e = 1 one has Ve = A2 and every orbit Oi and O′
i is a singleton different

from {0̄} by assumption. Then the argument in the proof works without change.
It remains to find such an automorphism in the subgroup H. Due to the infinite

transitivity of G in Ve ∖ {0̄} one can find β ∈ G such that for every i = 1, . . . ,M the
image β(%(O′

i)) is located in the line v = 0 in Ve. By the preceding there exists α ∈ G
such that α ○ β(%(Oi)) = β(%(O′

i)) for all i = 1, . . . ,M where α has prescribed volume
preserving s-jets at these points. Since β is volume-preserving (see [2, Lemma 4.10])
one can find α1 = β−1 ○ α ○ β∶%(Oi) ↦ %(O′

i) with prescribed volume preserving r-jets
at the points yi = %(Oi), i = 1, . . . ,M .

Decomposing α as in (13) consider the automorphism ϕ0 = (ϕ1 ⋅ . . . ⋅ ϕν)−1 ∈ G.
Since ϕ0 ⋅ ϕ1 ⋅ . . . ⋅ ϕν = id replacing ϕ1 by ϕ0 ○ ϕ1 one obtains an automorphism α′ =
ϕ0 ⋅α ∈H. The s-jet of α′ at each point β(%(Oi)) is the same as the one of α. Indeed,

3Instead of prescribing the value of an s-jet in a single point of a µe-orbit one might prescribe a
µe-invariant collection of s-jets at the points of the orbit.
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ϕ0(β(%(O′
i))) = β(%(O′

i)) since β(%(O′
i)) ⊂ {v = 0}, and ϕ0 is identical on the sth

infinitesimal neighborhood of this line. Since the subgroup H ⊲ G is normal one has
α′1 = β−1 ○ α ○ β ∈ H where α′1∶%(Oi) ↦ %(O′

i) and α′1 has prescribed volume preserving
s-jets at the points %(Oi), i = 1, . . . ,M . Thus, α′1 ∈H satisfies both (i) and (ii). �

4.3. Relatively transitive group actions on cylinders.

Notation 4.10. Let π∶X → B be a marked GDF µd-surface, and let Xl be one of the
surfaces in (8). We fix quasi-invariant natural coordinates in the standard affine charts
UF in Xl so that the conventions of Lemma 3.5 and Remark 3.6.2 are fulfilled.

Fix also a µd-invariant collection F of top level fiber components in Xl. For F ∈ F let
F0 be the µd-orbit of F in Xl. For s ≥ 2 let ũ = ũ(F0) ∈ OXl(Xl) be a µd-quasi-invariant
function of weight −l which verifies conditions (i) and (ii) of Corollary 3.8. Let ∂l be
the µd-quasi-invariant vertical vector field of weight l on Xl as in Lemma 3.1. Given
f, g ∈ k[t] consider the µd-invariant locally nilpotent derivations of the algebra OXl(Xl),
(15) σ̃1,f = vds+1f(vd)∂l and σ̃2,g = ũds+1g(ũd)∂/∂v .
Letting F run over F the corresponding automorphisms

ϕ̃f = exp(σ̃1,f) and ψ̃g = exp(σ̃2,g)
in SAutµd,B Xl(−l) generate a subgroup

(16) GF = ⟨ϕ̃f , ψ̃g ∣ f, g ∈ k[t]⟩ ⊂ SAutµd,B Xl(−l)
contained in the centralizer of the cyclic group induced by the µd-action on Xl(−l).

Consider further the normal subgroup HF ⊲ GF,

(17) HF = {α̃ = ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν ∈ GF ∣ ϕ̃1 ⋅ . . . ⋅ ϕ̃ν = id} .
For ũ = ũ(F0) one has ũ ≡ 0 mod zs in UF ′ × A1 near F ′ = F ′ × A1 for any F ′ ∉ F, see

condition (ii) in Corollary 3.8. Hence ψ̃g ≡ id mod zs in UF ′ ×A1 near F ′ for any F ′ ∉ F
and any g ∈ k[t]. Due to (17) for any α̃ ∈HF one has

(18) α̃∣UF ′×A1 = (ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν)∣UF ′×A1 ≡ id mod zs ∀F ′ ∉ F .
Definition 4.11 (s-reduced automorphism). Let F ⊂ Xl be a special fiber component
and UF be the standard affine chart about F in Xl. Consider the affine chart UF × A1

about the affine plane F = F × A1 ≃ A2 in the cylinder Xl(−l). The subgroup GF ⊂
SAutB Xl(−l) preserves every fiber of the A2-fibration Xl(−l) → B and, moreover, every
fiber component. Hence any α ∈ GF preserves the affine chart UF × A1 (cf. Proposition
3.3). Choosing natural coordinates (z, u, v) in UF × A1 the restriction α∣UF×A1 can be
written as

α∣UF×A1 ∶ (z, u, v) ↦ (z,
∞
∑
i=0

zifi(u, v),
∞
∑
i=0

zigi(u, v)) .

We say that α is s-reduced if f1 = . . . = fs = g1 = . . . = gs = 0, that is,

(19) α(z, u, v) ≡ (z, f0(u, v), g0(u, v)) mod zs

in any such affine chart UF × A1 in Xl(−l).
Lemma 4.12. (a) A composition of s-reduced automorphisms is again s-reduced.

(b) Any automorphism α̃ ∈HF is s-reduced.

Proof. The proof of (a) is straightforward. To prove (b), due to (a) it suffices to show

that ϕ̃ = ϕ̃f and ψ̃ = ψ̃g are s-reduced for any f, g ∈ k[t]. However, the latter is true
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only in the top level affine charts. Indeed, in a standard affine chart UF on level l′ ≤ l
in Xl one has ∂l∣UF = zl−l′∂/∂u (see Remark 3.6.1). Hence

(20) ϕ̃∣UF×A1 = exp (vds+1f(vd)∂/∂u)∶ (z, u, v) ↦ (z, u + zl−l′vds+1f(vd), v)
is s-reduced if l′ = l, that is, in any top level affine chart.

Since ũ∣UF ≡ u mod zs if l′ = l and ũ∣UF ≡ 0 mod zs otherwise, near the affine plane
F ⊂ UF × A1 one has

(21) ψ̃∣UF×A1 = exp (ũds+1f(ũd)∂/∂v)∶ (z, u, v) ↦ (z, u, v + uds+1g(ud)) mod zs

if l′ = l and ψ̃∣UF×A1 ≡ id mod zs otherwise. In particular, any ψ̃ ∈ GF is s-reduced. It
follows that any automorphism

α̃ = ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν ∈ GF

is s-reduced in every top level affine chart UF ×A1. If F has level l′ < l then ψ̃i∣UF×A1 ≡ id
mod zs ∀i = 1, . . . , ν. Hence for any α̃ ∈HF one has by (18)

α̃∣UF×A1 = (ϕ̃1 ⋅ . . . ⋅ ϕ̃ν)∣UF×A1 ≡ id mod zs ,

that is, α̃ is s-reduced. �

Proposition 4.13. Let F be a µd-invariant collection of top level components F =
F × A1 ⊂ Xl(−l) of z∗(0), and let Σ, Σ′ ⊂ ⋃F∈FF be two µd-invariant finite sets which
meet every special fiber component F ∈ F with the same positive cardinality. Assume
that for some s > 0 at each point x ∈ Σ ∩ F we are given a volume preserving two-
dimensional s-jet jx of an automorphism F → F such that

● the zero term of jx runs over Σ′ when x runs over Σ;
● the collection (jx)x∈Σ commutes with the µd-action on Xl(−l);
● if e = e(F) = d/gcd(d, l) > 1, see 4.7, and x0 ∈ F ∩ Σ is a fixed point of the

stabilizer µe of F in µd then jx0 is the s-jet of the identity.

Then there exists a (µd-equivariant) automorphism α̃ ∈HF such that

(i) α̃(Σ) = Σ′;
(ii) α̃ has the prescribed two-dimensional s-jets at the points of Σ;

(iii) α̃∣UF×A1 ≡ id mod zs ∀F ∉ F.

Proof. Let F ∈ F, and let µd(F) be the µd-orbit of F in Xl(−l). It suffices to construct
such an automorphism α̃ ∈ HF assuming that F consists of the components from the
orbit µd(F). Indeed, then α̃ ∈ HF coincides with the identity modulo zs near any
special fiber component F ′ ∉ F. Composing such automorphisms α̃ for different top
level orbits one obtains a desired automorphism in the general case.

Furthermore, if (i) and (ii) hold for a special fiber component F then they automat-
ically hold for any special fiber component F ′ ∈ µd(F) due to the µd-invariance of the
conditions and the µd-equivariance of the automorphisms α̃ ∈ HF. Hence it suffices to
take care of a particular F ∈ F equipped with two collections of orbits {Oi ∩ F}i=1,...,ν

and {O′
i ∩ F}i=1,...,ν of the stabilizer µe of F in µd, see Proposition 4.9. Let UF × A1

be the standard affine chart about F equipped with µe-quasi-invariant natural local
coordinates (z, uF , v). Due to Remark 3.6.2 for e = 1 one may assume Oi ≠ {0̄} ∀i as
needed in Proposition 4.9, see Notation 4.10.
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Comparing (20) and (21) with (12) in Notation 4.8 one can see that the automor-

phisms ϕ̃f , ψ̃g ∈HF restrict to

ϕ̃f ∣F = ϕf and ψ̃g ∣F = ψg ,
respectively, where ϕf and ψg run over the generators of the subgroup G ⊂ SAutµd(F)
when f, g run over k[t]. Let H ⊲ G be as in 4.8. Applying Proposition 4.9 one can
find an automorphism α = ϕ1 ⋅ ψ1 ⋅ . . . ⋅ ϕν ⋅ ψν ∈ H satisfying in the affine plane F ≅ A2

conditions (i) and (ii) of this proposition. Extending every ϕi to ϕ̃i ∈ HF and ψi to

ψ̃i ∈HF one obtains an s-reduced automorphism α̃ = ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν ∈HF, see Lemma
4.12(b). Since α̃ also satisfies (18) in Notation 4.10 then (iii) holds, and so, α̃ is a
desired automorphism. �

Proof of Theorem 4.4. Let π∶X → B be a marked GDF µd-surface. We have to
show that the µd-equivariant condition RF(l,−l, s) holds for X whatever are s ≥ 1 and
l ∈ {0, . . . ,m}. It suffices to show that, given any µd-invariant collection F of top level
special fiber components in Xl and any two finite sets Σ,Σ′ ⊂ ⋃F ∈FF with the same
µd-orbit structure and with card ΣF = card Σ′

F > 0 ∀F ∈ F where ΣF = Σ ∩ F , there
exists ϕ ∈ SAutB Xl(−l) such that the µd-equivariant versions of conditions (α) and (β)
in Definition 4.2 are fulfilled.

By Proposition 4.13 one can find ϕ ∈ HF ⊂ SAutµd,B Xl(−l) verifying (i) and (ii) of
Proposition 4.9 and condition (18). That is, ϕ is µd-equivariant, s-reduced, verifies
(18), sends Σ to Σ′, and has prescribed 2-dimensional r-jets (in the vertical planes)
in the (chosen) points on each µd-orbit in Σ. Since ϕ is s-reduced it has as well the
prescribed volume preserving three-dimensional s-jets in the given points. Hence ϕ
satisfies conditions (α), (α1), and (α2) of Definitions 4.2 and 4.3. Due to (18), ϕ
satisfies also condition (β) of Definition 4.2. �

4.4. A relative Abhyankar-Moh-Suzuki Theorem. We need in the sequel the
following version of the Abhyankar-Moh-Suzuki Epimorphism Theorem.

Proposition 4.14. Let π∶X → B be a GDF surface, let {F1, . . . , Ft} be a collection
of top level special fiber components in X, and let Fi = Fi × A1 ≅ A2, i = 1, . . . , t, be the
corresponding components of the divisor z∗(0) in the cylinder X . For every i = 1, . . . , t
we fix in Fi a curve Ci ≅ A1. Then there exists an automorphism α ∈ SAutB(X) such
that α(Ci) = Fi × {0}, i = 1, . . . , t.

Proof. Choose i ∈ {1, . . . , t}, and let F = Fi, F = Fi, and C = Ci ⊂ F . Our assertion
follows by induction on i from the next claim.

Claim. There exists an automorphism β = βi ∈ SAutB(X) such that β(C) = F × {0}
and β(F ′ × {0}) = F ′ × {0} for any special fiber component F ′ ≠ F .

Indeed, to deduce the assertion it suffices to apply this claim successively for i = 1, . . . , t.

Proof of the claim. By Corollary 3.8 one can find ũ ∈ O(X) such that

(i) ũ∣F = uF where uF is an affine coordinate on F ;
(ii) ũ∣F ′ = 0 for any F ′ ≠ F .

Consider the locally nilpotent derivations on OX (X),

σ1 = ∂l and σ2 = ũ
∂

∂v
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where l is the highest level of the special fiber components of X and ∂l is a vertical
locally nilpotent vector field on X as in Lemma 3.1 so that ∂l(z) = 0 and ∂l∣F = ∂/∂uF .
Consider the replicas

σ1,f = f(v)σ1 and σ2,g = g(ũ)σ2 where f, g ∈ k[t] .
Their exponentials

ϕf = exp(σ1,f), ψg = exp(σ2,g) ∈ SAutBX
generate a subgroup H ⊂ SAutB X . In the affine plane F ≅ Spec k[uF , v] one has

ϕf ∣F ∶ (uF , v) ↦ (uF + f(v), v) and ψg ∣F ∶ (uF , v) ↦ (uF , v + uFg(uF )) .
In particular, H∣F contains all the transvections, hence also the group SL(2, k). For
F ′ ≠ F by virtue of (ii) the group H∣F ′ is generated by the shears ϕf ∣F ′ . It follows that

● H∣F = SAutF ≅ SAut A2 and
● the coordinate line F ′ × {0} ⊂ F ′ stays H-invariant for any F ′ ≠ F .

Now the claim follows by the Abhyankar-Moh-Suzuki Theorem. �

The next lemma allows to interchange the u- and v-axes in the top level special fiber
components of X → B.

Lemma 4.15. Let π∶X → B be a marked GDF µd-surface, let Xl be one of the surfaces
in (8), and let {(z, uF )} be a quasi-invariant system of natural local coordinates in the
standard local charts UF about the special fiber components F in Xl. Given s > 1 there
exists a µd-equivariant automorphism τ ∈ SAutB Xl(−l) such that

● τ ∣UF×A1 ∶ (z, uF , v) ↦ (z, v,−uF ) mod zs for any top level F ;
● τ ∣UF×A1 = id mod zs for any F of lower level.

Proof. Likewise in (15) we let

(22) σ̃1 = v∂l and σ̃2 = −ũ∂/∂v
where ∂l is the vertical vector field on Xl as in Lemma 3.1 and ũ ∈ OXl(−l)(Xl(−l)) is a
µd-quasi-invariant of weight −l verifying conditions (i) and (ii) of Corollary 3.8. Letting

ϕ̃ = exp (σ̃1) and ψ̃ = exp (σ̃2) by virtue of (i) and (ii) one obtains

ϕ̃∣UF×A1 ∶ (z, uF , v) ↦ (z, uF + v, v) mod zs

and
ψ̃∣UF×A1 ∶ (z, uF , v) ↦ (z, uF , v − uF ) mod zs

if F is of top level and ψ̃∣UF×A1 ≡ id mod zs otherwise, cf. (20) and (21). Letting

τ = ϕ̃ψ̃ϕ̃ one gets
τ ∣UF×A1 ∶ (z, uF , v) ↦ (z, v,−uF ) mod zs

if F is of top level and τ ∣UF×A1 ≡ id mod zs otherwise. �

We need as well the following versions of Lemma 4.15.

Lemma 4.16. Under the assumptions of Lemma 4.15 consider a µd-invariant subset
Υ ⊂ {b1, . . . , bn} = z−1(0). Given a collection FΥ(l) of top level special fiber components
in π−1

l (Υ) ⊂Xl there exists a µd-equivariant automorphism τ ∈ SAutB Xl(−l) such that

(23) τ ∣UF×A1 ∶ (z, uF , v) ↦ (z, v,−uF ) mod zs

if F ∈ FΥ(l) and τ ∣UF×A1 ≡ id mod zs otherwise.
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Proof. Choose a µd-invariant h ∈ OB(B) such that h − 1 ≡ 0 mod zs near each point
bi ∈ Υ and h ≡ 0 mod zs near each point bi ∉ Υ. Denote by the same letter the lift of h
to Xl. For the regular µd-quasi-invariant vector field ∂l of weight l on Xl(−l) one has
∂l(h) = 0 and ∂h/∂v = 0. Let ũ ∈ O(X) be as in Corollary 3.8 and σ̃i, i = 1,2 be as in
(22). Then the locally nilpotent vector fields

(24) σ̃1,h = hσ̃1 and σ̃2,h = hσ̃2

on Xl(−l) are µd-invariant. Using these derivations instead of σ̃i, i = 1,2 and proceeding
as in the proof of Lemma 4.15 yields the result. �

5. Rigidity of cylinders upon deformation of surfaces

5.1. Equivariant Asanuma modification. In the next lemma we introduce an equi-
variant version of the Asanuma modification. For the reader’s convenience we repeat
in (a) the statement of Lemma 1.7.

Lemma 5.1. Let π∶X → B be a GDF surface, and let %∶X ′ → X be a fibered modifi-
cation along a reduced principal divisor div f where f ∈ π∗OB(B) ∖ {0} with center a
reduced zero-dimensional subscheme V(I) where I ⊂ OX(X) is an ideal, see Definition
2.22. Consider the principal divisor D = V(f) × A1 on the cylinder X = X × A1 and
the ideal J = (I, v) ⊂ OX (X) with support V(I) × {0} ⊂ V(f) × {0}. Then the following
holds.

(a) The cylinder X ′ =X ′×A1 is isomorphic to the affine modification Z of X along
the divisor D with the center J . This isomorphism fits in the commutative
diagram

(25)

X ′ ≅- Z - X
@
@
@R 	�

�
�

B
?

where the vertical arrows are A2-fibrations over B.
(b) Assume that the modification %∶X ′ →X is equivariant with respect to actions of

a finite group G on X,X ′, and B and, moreover, the ideal I is G-invariant and
the function f is G-quasi-invariant and belongs to a character χ ∈ G∨. Define
the G-action on the factor A1 of the cylinder X = X × A1 via the multiplication
by a character λ ∈ G∨. Then the morphisms in (25) are G-equivariant where G
acts on the factors A1 of the cylinder X ′ =X ′×A1 via the multiplication by λ/χ.
In particular, if G = µd, χ∶ ζ ↦ ζt, and λ∶ ζ ↦ ζk then λ/χ∶ ζ ↦ ζk−t ∀ζ ∈ µd.

Proof. For the proof of (a) see Lemma 1.7. Statement (b) follows since under its
assumptions the variable v′ in the proof of Lemma 1.7 belongs to λ, hence v = v′/f
belongs to λ/χ. �

Definition 5.2 (Asanuma modifications). The upper line in (25) yields an affine mod-
ification X ′ → X called an Asanuma modification of the first kind. Its center is a
reduced zero-dimensional subscheme of X .

We call an Asanuma modification of the second kind an affine modification X ′′ → X
of the cylinder X =X ×A1 over a marked GDF surface π∶X → B along the divisor D =
(f ○π)∗(0) on X where f ∈ OB(B) ∖ {0} with a one-dimensional center V(I) ⊂X ×{0}
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where I = (f, v) ⊂ OX (X). Due to the next lemma the latter modification results in a
cylinder isomorphic to X over B.

5.3. Let π∶X → B be a marked GDF µd-surface with a marking z ∈ OB(B) ∖ {0}.
Recall (see Definition 4.3) that X(k) stands for the cylinder X =X ×A1 equipped with
a product µd-action where µd acts on the second factor via (ζ, v) ↦ ζkv for v ∈ A1 and
ζ ∈ µd. By abuse of notation we still denote by π the µd-equivariant projection of the
induced A2-fibration X(k) → B.

Lemma 5.4. In the notation of 5.2–5.3 consider an Asanuma modification of the
second kind X ′′ → X . Then the following hold.

(a) There is an isomorphism X ′′ ≅B X .
(b) If π∶X → B is a marked GDF µd-surface with a marking z ∈ OB(B)∖{0}, f = z,

and X = X(k) then X ′′ = X ′′(k − 1).
(c) Let things be as in (b). Consider a second marked GDF µd-surface π′∶X ′ → B

with the same marking z ∈ OB(B) ∖ {0}, and let X ′ = X ′ × A1 where A1 =
Spec k[v′]. Assume that for some natural r there is an equivariant isomorphism

ϕr∶ X (r)
≅µd,BÐ→ X ′(r) such that ϕ∗r(v′) ≡ v mod zs where s > d. Then for any k ∈

Z there is an equivariant isomorphism ϕk∶ X (k)
≅µd,BÐ→ X ′(k) such that ϕ∗k(v′) ≡ v

mod zs−d.

Proof. (a) Indeed, the affine modification X ′′ → X amounts to

(26) OX (X) ↪ OX ′′(X ′′) = OX (X)[v/f] = OX(X)[v′′] where v′′ = v/f .
(b) Under the assumptions of (b) one has ζ.v′′ = ζk−1v′′ for any ζ ∈ µd.

(c) Consider first the case k = r−1. Let I = (z, v) ⊂ OX (X) and I ′ = (z, v′) ⊂ OX ′(X ′).
Under our assumptions one has ϕ∗r(I ′) = I. By virtue of Lemma 1.5 the isomorphism ϕr
lifts to an equivariant isomorphism, say, ϕr−1 of the affine modifications of the cylinders
X and X ′ along the divisors z∗(0) with the ideals I and I ′, respectively. By (b) this
leads to a commutative diagram

X(r − 1) ϕr−1

≅µd,B
- X ′(r − 1)

X(r)
? ≅µd,B

ϕr
- X ′(r)

?

where the vertical arrows are the corresponding Asanuma modifications of the second
kind and ϕ∗r−1(v′/z) ≡ v/z mod zs−1. Since the sequences (X(k))k∈Z and (X ′(k))k∈Z
are both periodic with period d the recursion on k ends the proof. �

Remark 5.5. Let %∶X ′ → X be a fibered modification as in Lemma 5.1. Consider
the product modification of cylinders σ = % × id∶ X ′ → X followed by the Asanuma
modification of the second kind X ′′ → X ′ with f = z. This yields an affine modification
X ′′ → X factorized as in Remark 1.4.2. Identifying X ′ and X ′′ via an isomorphism
as in Lemma 5.4 gives an Asanuma modification of the first kind %̃∶ X ′ → X such that
% = %̃∣X′×{0}. Under this correspondence the conclusions of Lemmas 5.1(b) and 5.4(c)
agree in the µd-equivariant setting.

5.2. Rigidity of cylinders under deformations of GDF surfaces. Form Lemma
5.1 we deduce the following corollary.
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Corollary 5.6. (a) Consider a marked GDF µd-surface π∶X → B along with a
trivializing µd-equivariant sequence (8) of fibered modifications, see Corollary
2.27(b). Given l ∈ {1, . . . ,m} and k ∈ Z the fibered modification %l∶Xl → Xl−1

as in (8) along the divisor z∗(0) with a center, say, Il induces a µd-equivariant
Asanuma modification of the first kind %̃l∶ Xl(k) → Xl−1(k + 1) over B along the
divisor z∗(0) on Xl−1 with the center Jl = (Il, v), cf. Lemma 5.1.

(b) Consequently, (8) yields a sequence of µd-equivariant affine modifications

(27) Xm(−m) %̃mÐ→ Xm−1(−m + 1) Ð→ . . .Ð→ X1(−1) %̃1Ð→ X0(0) = (B × A2)(0) .

Proof. The statement of (a) follows by Lemma 5.1 and (b) is immediate from (a). �

The next theorem is the main result of this subsection.

Theorem 5.7. Let π∶X → B and π′∶X ′ → B be two marked GDF µd-surfaces with the
same µd-quasi-invariant marking z ∈ OB(B) ∖ {0} of weight 1. Assume that for some

trivializing µd-equivariant completions (X̂, D̂) and (X̂ ′, D̂′) of X and X ′, respectively,
the graph divisors D(π̂) and D(π̂′) are µd-equivariantly isomorphic (see Definition
2.21). Then for any k ∈ Z there is a µd-equivariant isomorphism X(k) ≅µd,B X ′(k). In
particular, X(0) ≅µd,B X ′(0).

Proof. The trivializing sequences (27) associated with the GDF surfaces X and X ′,
respectively, start both with the same product X0(0) = (B × A2)(0) = X ′

0(0). Using
Proposition 5.8 below one shows by induction on l that for any l = 0, . . . ,m there is a

µd-equivariant isomorphism ϕl∶ Xl(−l)
≅µd,BÐ→ X ′

l (−l). In particular, for l =m one obtains

an isomorphism ϕm∶ X (−m)
≅µd,BÐ→ X ′(−m). Then by Lemma 5.4(c) for any k ∈ Z one

gets a µd-equivariant isomorphism X(k) ≅µd,B X ′(k). �

The following proposition provides the inductive step in the proof of Theorem 5.7.

Proposition 5.8. Under the assumptions of Theorem 5.7 suppose that for some l ∈
{0, . . . ,m − 1} there exists a µd-equivariant isomorphism ψl∶ Xl(−l)

≅µd,BÐ→ X ′
l (−l) such

that

(il) the induced correspondence between the special fiber components of πl and π′l is

the restriction of the isomorphism D(π̂) ≅Ð→ D(π̂′);
(iil) ψ∗l (v′l) ≡ vl mod zs where s > 0 and vl (v′l, respectively) is an affine coordinate in

the A1-factor of the cylinder Xl(−l) (X ′
l (−l), respectively).

Then there exists a µd-equivariant isomorphism ψl+1∶ Xl+1(−l−1)
≅µd,BÐ→ X ′

l+1(−l−1) such
that

(il+1) the induced correspondence between the special fiber components of πl+1 and π′l+1

is the restriction of the isomorphism D(π̂) ≅Ð→ D(π̂′);
(iil+1) ψ∗l+1(v′l+1) ≡ vl+1 mod(zs−1).

Proof. The morphism %l+1∶Xl+1 →Xl in (8) is a µd-equivariant affine modification along
the reduced principal divisor V(z) = z∗(0) on Xl with a reduced center I where V(I)
is the union of a finite set Σ ⊂ Xl and the components of V(z) disjoint from Σ, cf.
Remark 2.23. Notice that Σ is contained in the union of the top level components
F of V(z). Let FΣ be the set of the top-level components F = F × A1 which meet
Σ × {0}. By Lemma 5.1, %l+1 induces a µd-equivariant Asanuma modification of the
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first kind %̃l+1∶ Xl+1(−l − 1) → Xl(−l) with the principal divisor V(z) × A1 and center
V(I) × {0} ⊂ Xl(−l) consisting of a µd-invariant finite set Σ × {0} and a µd-invariant
union C of curves isomorphic to A1 such that CF = C ∩F is given by equation vl = 0 in
each component F = F × A1 ∉ FΣ. Thus, C ⊂ {z = vl = 0} in Xl(−l). For any F ∈ FΣ we
let

(28) ΣF = F ∩ (Σ × {0}) = {x1, . . . , xM(F)} .
There is a similar collection of objects related with X ′ instead of X. In particular, one
has a modification %̃′l+1 ∶ X ′

l+1(−l−1) → X ′
l (−l) with the divisor V(z)×A1 and the center

V(I ′) × {0} consisting of a µd-invariant finite set Σ′ × {0} and a µd-invariant union C ′

of curves C ′
F ′ ≅ A1.

By virtue of (il) the µd-equivariant isomorphism D(π) ≅Ð→ D(π′) of graph divisors
yields a one-to-one correspondence F ↝ F ′ between the components in FΣ and in F′Σ′

so that (see (28))

M(F) = card ΣF = card ΣF ′ =M(F ′) ∀F ∈ FΣ .

By virtue of (iil), ψl sends the pair (Xl(−l),V(z)×A1) to the pair (X ′
l (−l),V(z)×A1)

and C to C ′, but not in general Σ × {0} to Σ′ × {0}. To get a bijection between the
centers Σ and Σ′ of modifications we will replace ψl by a composition ϕl ○ ψl with a
suitable µd-equivariant automorphism ϕl ∈ SAutB X ′

l (−l).
Let (z, u, v) = (z, ul, vl) be µd-quasi-invariant natural coordinates in the standard

affine chart UF × A1 about F where F ∈ FΣ, see Definition 3.4. For a point xν in (28)
one has xν = (0, u(xν),0). Similarly, for F ′ = F ′ × A1 = ψl(F) consider the standard
affine chart UF ′ × A1 about F ′ with natural coordinates (z, u′, v′) = (z, u′l, v′l). Let

F ′ ∩ (V(I ′) × {0}) = F ′ ∩ (Σ′ × {0}) = {x′1, . . . , x′M(F)}
where x′ν = (0, u′(x′ν),0).

Let µe with e = e(F) > 1 be the stabilizer of F ∈ FΣ in µd. Then M(F) ≡ 1 mod e
if 0̄ ∈ ΣF and M(F) ≡ 0 mod e otherwise. Since ψl∶ F → F ′ is µd-equivariant one has
e(F ′) = e(F). Since also M(F ′) =M(F) it follows that 0̄ ∈ ΣF if and only if 0̄ ∈ ΣF ′ .

By (iil) one obtains

ψl(xν) =∶ x′′ν = (0, u′(x′′ν),0) ∈ F ′, ν = 1, . . . ,M(F) .
Suppose that e(F) > 1 and xν = 0̄ ∈ ΣF . Since ψl∶ F → F ′ is µd-equivariant is sends the
orbits to the orbits. It follows that x′′ν = ψl(xν) = 0̄ ∈ ΣF ′ . Up to renumbering one may
assume in this case that x′ν = x′′ν = 0̄.

Claim 1. There exists a µd-equivariant automorphism ϕl ∈ SAutµd,B X ′
l (−l) as in

Definition 4.3 with prescribed µd-equivariant s-jets in the points x′′ν chosen so that

(j) ϕl(F ′) = F ′ for every component F ′ = F ′ × A1 of the divisor z∗(0) on X ′
l (−l);

(jj) ϕ∗l (v′) ≡ v′ mod zs near F ′ ∀F ′ ∉ FΣ′;
(jjj) up to reordering, ϕl(x′′ν) = x′ν, ν = 1, . . . ,M(F ′) ∀F ′ ∈ FΣ′;
(jv) the s-jets of ϕ∗l (v′) and v′ at x′′ν coincide for any ν = 1, . . . ,M(F ′), ∀F ′ ∈ FΣ′.

Proof of Claim 1. Condition (j) holds for any ϕ ∈ SAutB(X ′
l ), cf. Proposition 3.3.

Due to Theorem 4.4 the surface X ′ verifies the µd-equivariant condition RF(l,−l, s).
Therefore, one can choose ϕl ∈ SAutµd,B X ′

l (−l) verifying conditions (α1), (α2), and (β)
of Definitions 4.2 and 4.3 with a suitable data. This yields (jj), and as well (jjj) and
(jv) in the case where either e(F ′) = 1 or 0̄ ∉ ΣF ′ .
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In the remaining case one has e(F ′) > 1 and 0̄ = x′ν ∈ ΣF ′ . By the observations
preceding the claim one may assume that x′ν = x′′ν = 0̄ and the s-jet of ϕl at 0̄ is the
s-jet of the identity. This yields (jjj) and (jv) also in the remaining case. Now the
claim follows.

Due to (j)–(jjj) the composition ψ̃l ∶= ϕl ○ ψl sends the center and the divisor of

%̃l+1 to the center and the divisor of %̃′l+1. By Lemma 1.5, ψ̃l lifts to a µd-equivariant

isomorphism ψl+1∶ Xl+1(−l − 1)
≅µd,BÐ→ X ′

l+1(−l − 1). The proof ends due to the following

Claim 2. ψl+1 satisfies conditions (il+1) and (iil+1).

Proof of Claim 2. Due to conditions (il) for ψl and (j) for ϕl the isomorphism

D(π̂)≤l
≅Ð→ D(π̂′)≤l induced by ψl+1 coincides with the restriction of the given iso-

morphism D(π̂) ≅Ð→ D(π̂′). The same holds for the induced isomorphism D(π̂)≤l+1
≅Ð→

D(π̂′)≤l+1 after a suitable renumbering of the points x′1, . . . , x
′
M(F ′) on each component

F ′ ∈ F′. This gives (il+1).
For any special fiber component F in Xl+1(−l − 1) of level ≤ l condition (iil+1) holds

due to (iil), (jj), and the equalities vl+1 = vl/z, v′l+1 = v′l/z. It holds as well for F of the
top level l + 1 due to (iil), (jv), and the same equalities. �

5.3. Rigidity of cylinders under deformations of A1-fibered surfaces. Using
Theorem 5.7 we obtain our second main result.

Theorem 5.9. Let π∶Y → C and π′∶Y ′ → C be two A1-fibered normal affine surfaces
over a smooth affine curve C. Let Ŷ → Ĉ be an SNC completion of the minimal
resolution of singularities of Y , and let D̂ext be the extended divisor of this completion.
Let a pair (Ŷ ′, D̂′

ext) plays the same role for Y ′. Suppose that

● the degenerate fibers of π and π′ are situated over the same points p1, . . . , pt ∈ C;
● for i = 1, . . . , t the corresponding fiber trees Γpi(π) and Γpi(π′) are isomorphic4;

● making similar contractions in D̂ext and D̂′
ext one can reduce both Ŷ and Ŷ ′ to

the product Ĉ × P1 with the same distinguished ”section at infinity” Ĉ × {∞}.

Then the cylinders Y × A1 and Y ′ × A1 are isomorphic over C.

Proof. Applying a suitable cyclic Galois base change B → C of order d ramified over the
points p1, . . . , pt ∈ C one can replace the A1-fibered surfaces π∶Y → C and π′∶Y ′ → C
by two marked GDF µd-surfaces X → B and X ′ → B, respectively, with the same
µd-quasi-invariant marking z ∈ OB(B) ∖ {0}, see Lemma 2.3 and Remark 2.4. Due
to our assumptions the extended graphs and the fiber trees of the special fibers of
suitable µd-equivariant pseudominimal completions X̄ and X̄ ′ of the GDF surfaces X
and X ′ are isomorphic under a µd-equivariant isomorphism.5 Moreover, these surfaces
admit trivializing µd-equivariant completions X̂ and X̂ ′, respectively, verifying the
assumptions of Theorem 5.7. Due to this theorem there is a µd-equivariant isomorphism
X(0) ≅µd,B X ′(0). Passing to the quotients X(0)/µd = Y × A1 and X ′(0)/µd = Y ′ × A1

yields a desired C-isomorphism Y × A1 ≅C Y ′ × A1. �
4This condition ensures that the corresponding fiber components of π and π′ have the same mul-
tiplicities. Indeed, under our assumptions the isomorphism respects the feathers along with their
bridges.
5Such completions are not unique. However, the deformation parameters are irrelevant for the com-
binatorial invariants such as the extended graph and the fiber trees.
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Corollary 5.10. Let C be a smooth affine curve with marked points p1, . . . , pt ∈ C.
Consider the collection H = H(C,p1, . . . , pt) of all the A1-fibered normal affine surfaces
π∶X → C such that π restricted over C ∖ {p1, . . . , pt} is the projection of a trivial line
bundle. Then the set of C-isomorphism classes of cylinders X =X ×A1, where X runs
over H, is at most countable.

Proof. Indeed, the set of the isomorphism classes of finite trees is countable. The same
is true for the set of all ordered t-tuples of such trees as in Theorem 5.9. Now the
assertion follows from this theorem. �

Remark 5.11. Let π∶X → C and π′∶X ′ → C ′ be A1-fibered normal affine surfaces. If
C /≅ A1 then any isomorphism of cylinders ϕ∶ X ≅Ð→ X ′ fits in a commutative diagram

X ϕ

≅
- X ′

C
? ≅

ψ
- C ′

?

where ψ is an isomorphism (cf. also Lemma 6.10). For instance, the isomorphism type
of the cylinder X over the surface X = (A1∖{k points})×A1 depends essentially on the
isomorphism type of the factor A1 ∖ {k points} (see [36, 9.10.1]).

5.4. Rigidity of line bundles over affine surfaces. In unpublished notes [11] kindly
provided to us by the authors the study of cylinders over affine surfaces is extended to
the total spaces of line bundles over affine surfaces. Theorem 5.19 below is an analog
of Theorem 5.7 in this wider context. We do not use this extension in the sequel, so,
we just indicate the necessary modifications in the proof of Theorem 5.7.

Notation 5.12. Let X be an affine algebraic variety. For a Cartier divisor T ∈ CDivX
we let πT ∶ X T →X be the associated line bundle on X with a zero section ZT ⊂ X T .

Definition 5.13. Let D ∈ CDivX be a reduced effective Cartier divisor on X. By
an Asanuma modification of the second kind of X T we mean an affine modification
σD∶ X T,D → X T along the principal divisor DT = (πT )∗(D) on X T with the center
DT ⋅ZT .

We have the following analogue of Lemma 5.1 (corresponding to the case T ∼ 0).

Lemma 5.14. In Notation 5.12, πT,D = πT ○σD∶ X T,D →X admits a structure of a line
bundle such that X T,D ≅X X T−D.

Proof. Choose an open covering X = ⋃iUi such that

● D ∩Ui = f∗i (0) and T ∩Ui = divhi where fi ∈ OUi(Ui) and hi ∈ FracOUi(Ui).
Then

● αi,j = fj/fi, βi,j = hj/hi ∈ O×
Ui,j

(Ui,j) where Ui,j = Ui ∩Uj, are Čech 1-cocycles on

X associated with the line bundles XD →X and X T →X, respectively.

Letting Vi = (πT )−1(Ui) there are local trivializations Vi ≅Ui Ui × A1 of πT ∶ X T → X
where A1 = Spec k[vi] with vj = βi,jvi over Ui,j. Consider the restriction V ′

i → Vi of the
morphism σ∶ X T,D →XT over Vi induced by the natural inclusion

OVi(Vi) ↪ OV ′
i
(V ′

i ) = OVi(Vi)[vi/fi] .
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One has V ′
i ≅Ui U ′

i × A1 where A1 = Spec k[v′i] with v′i = vi/fi. This defines local
trivializations of the projection πT,D∶ X T,D → X, hence a structure of a line bundle on
X T,D over X. Note that v′j = (α−1

i,jβi,j)v′i where {α−1
i,jβi,j} is a Čech 1-cocycle on X

associated with the line bundle πT−D∶ X T−D →X. �

Notation 5.15. Let X be an affine variety acted upon by a finite group G, and let
T,D ∈ Div(X) be G-invariant divisors where D is reduced. Then the line bundle
X T → X admits a G-linearization, that is, a structure of a G-equivariant line bundle.
This structure is not unique, in general. It is defined modulo the multiplication by
a character, see, e.g., [59]. Choosing a G-linearization, say, X T (1) → X with the
corresponding linear equivariant G-action ϕ∶ (g, v) ↦ g.v on X T , for a character χ ∈ G∨

consider a new such action ϕχ∶ (g, v) ↦ χ(g) ⋅ g.v. This yields a new G-linearization
denoted by X T (χ) →X.

In the case of a cyclic group G = µd, fixing a primitive character χ of µd we write
X T (k) → X for the µd-linearization on X T → X associated with the character χk.
With this notation, X T (0) → X corresponds to the given G-linearization. Clearly, the
sequence (X T (k))k∈Z is periodic with period d. For any G-invariant divisors T1, T2 ∈
Div(B) and any characters χ,λ ∈ G∨ there is a G-equivariant isomorphism X T1(χ) ⊗
X T2(λ) ≅X X T1+T2(χλ).

In the sequel we need the following simple lemma.

Lemma 5.16. Let B be a smooth affine curve acted upon by a finite group G, and
let ξ ∶ L → B be a line bundle over B which admits a G-linearization. Then for
any b1, . . . , bn ∈ B there are a G-invariant open set U containing these points and a
G-equivariant trivialization of ξ∣U .

Proof. It suffices to find a nonzero G-stable (that is, G-equivariant) rational section
s∶B → L of ξ which has neither pole nor zero in b1, . . . , bn and to set U = B∖supp (div s).
Given any nonzero G-stable rational section s0∶B → L of ξ one can find a G-invariant
rational function f ≠ 0 on B such that div f restricts to div s on b1, . . . , bn. Then
s = s0/f is a desired G-stable section of ξ. �

Notation 5.17. Let π∶X → B be a marked GDF µd-surface over a smooth affine curve
B with a µd-quasi-invariant marking z ∈ OB(B) ∖ {0} of weight 1. Then the principal
divisor D = z∗(0) ∈ Div(B) is µd-invariant. Given a µd-invariant divisor T ∈ Div(B)
consider the line bundle X T ∗ → X where T ∗ = π∗(T ) ∈ Div(X). By abuse of notation
we let X T = X T ∗ . If ξ∶L → B is the line bundle associated with T then X T → X
is induced by ξ via the morphism π∶X → B. Hence both ξ and X T → X admit µd-
linearizations such that the natural morphism X T → L is µd-equivariant. Choosing
such a µd-linearization of ξ and the one of X T → X we observe that L(k) naturally
corresponds to X T (k).

There is the following equivariant version of Lemma 5.14.

Lemma 5.18. Let things be as in 5.17. Then for any k ∈ Z there exists a µd-action on
X T,D and a µd-equivariant isomorphism of line bundles X T,D ≅µd,B X T−D(k − 1) such
that the induced morphism σD∶ X T−D(k − 1) → X T (k) is µd-equivariant.

Proof. The µd-action on X T (k) stabilizes the divisor DT = (πT )∗(D) ∈ Div(X T ) and
the center DT ⋅ZT of the affine modification σD∶ X T,D → X T (k). By [47, Cor. 2.2] (see
Lemma 1.5) it lifts to a µd-action on X T,D making σD equivariant.
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Choose a trivializing open set U ⊂ B as in Lemma 5.16, and let V = π−1
X (U) ⊂ X.

Then X T (k) → X admits over V a µd-equivariant trivialization X T (k)∣V ≅µd,V (V ×
A1)(k +m) where A1 = Spec k[v] and m is the weight of an equivariant trivialization
of X T (0)∣V . Recall that D = div z where z has weight 1 and there is a natural iso-
morphism X T,D∣V ≅V V × A1 where A1 = Spec k[v/z] compatible with an isomorphism
X T,D ≅B X T−D of Lemma 5.14 (see the proof of this lemma). This gives an equivariant
trivialization X T−D∣V ≅µd,V (V × A1)(k +m − 1) and shows that the induced µd-action
on X T−D has weight k − 1. Now the assertions follow. �

The following result is an analog of Theorem 5.7 in our more general setting.

Theorem 5.19. Let πX ∶X → B and πY ∶Y → B be two marked GDF µd-surfaces over B
with the same µd-quasi-invariant marking z ∈ OB(B)∖{0} of weight 1. Assume that for

some trivializing µd-equivariant completions (X̂, D̂X) and (Ŷ , D̂Y ) the graph divisors
D(π̂X) and D(π̂Y ) are µd-equivariantly isomorphic. Let T ∈ Div(B) be a µd-invariant
divisor. Then for any k ∈ Z there is a µd-equivariant isomorphism X T (k) ≅µd,B YT (k).

In the proof we use an analog of the Asanuma modification of the first kind for
line bundles over surfaces (see Definition 5.21 below). Let us introduce the following
notation.

Notation 5.20. Let z−1(0) = {b1, . . . , bn} ⊂ B. Consider a trivializing sequence (8) of
fibered modifications %l+1∶Xl+1 →Xl, l = 0, . . . ,m. Let T be a µd-invariant divisor on B,
and let f be a rational µd-quasi-invariant function on B such that (div f)(bi) = −T (bi),
i = 1, . . . , n. Then T and T + div f represent the same class in PicB. Replacing T by
T + div f we may assume that bi ∉ suppT ∀i = 1, . . . , n. For every l = 0, . . . ,m we let
Tl = π∗l (T ) ∈ Div(Xl). Since Tl+1 = %∗l+1(Tl) the modification %l+1∶Xl+1 → Xl induces an

affine modification %Tl+1∶ X
Tl+1

l+1 → X Tl
l which fits in the commutative diagram

(29)

X Tl+1−Dl+1

l+1

%T−Dl+1 - X Tl−Dl
l

@
@
@πT−Dl+1 R

@
@
@
πT−Dl

R

Xl+1
%l+1 - Xl

X Tl+1

l+1

σDl+1

?

%Tl+1

- X Tl
l

σDl?

@
@
@πTl+1 R

@
@
@
πTl
R

Xl+1

id

?

%l+1

- Xl

id

?

For a fiber component Fi ⊂Dl we let Ci be the intersection of Fi with the center of the
modification %l+1∶Xl+1 →Xl. Then %Tl+1∶ X

Tl+1

l+1 → X Tl
l is an affine modification along the

divisor Dl = ⋃iFi with the center Cl = ⋃i Ci where Fi = (πTl)−1(Fi) ≅ Fi × A1 ≅ A2 and
Ci ≅ Ci × A1 ⊂ Fi × A1. There is an alternative: either

(i) Ci is finite, or
(ii) Ci = Fi.

In case (i), Fi is a top level component. In case (ii), Xl+1 → Xl (X Tl+1

l+1 → X Tl
l , respec-

tively) is an isomorphism near Fi (near Fi, respectively).
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Definition 5.21. By analogy we call an Asanuma modification of the first kind the
birational morphism

κl+1∶ X Tl+1−Dl+1

l+1 → X Tl
l

where κl+1 = %Tl+1 ○ σDl+1 = σDl ○ %T−Dl+1 is the diagonal composition of morphisms in the
back square of (29). Then κl+1 is an affine modification along the divisor Dl = ⋃iFi on
X Tl
l with the center ⋃i(Ci × {0}). In case (i), Ci × {0} ⊂ Ci ≅ A2 is zero-dimensional,

while in case (ii) this is just the coordinate axis v = 0 in Ci ≅ A2. Due to Lemma
5.18 and by analogy with (27) one has the following sequence of equivariant Asanuma
modifications of the first kind:

(30) X Tm−mDm
m (−m) %̃mÐ→ . . .Ð→ X T2−2D2

2 (−2) Ð→ X T1−D1
1 (−1) %̃1Ð→ X T0

0 (0) .

Proof of Theorem 5.19. For the given GDF surfaces πX ∶X → B and πY ∶Y → B,
consider the corresponding sequences (30) starting with the same line bundle X T0

0 (0) =
(B×A1)T0(0) = YT0

0 (0). One may suppose that µd acts trivially on the factor A1. Using
Proposition 5.22 below with s >m it follows by induction that for l = 0, . . . ,m there is
a (non-linear, in general) µd-equivariant isomorphism

X Tl−lDl
l (−l) ≅µd,B Y

Tl−lDl
l (−l)

which sends the zero section Z(X Tl−lDl
l (−l)) of the first line bundle to such a section

of the second one. Replacing T by T +mD one obtains for l =m,

X T (−m) = X Tm
m (−m) ϕÐ→ YTmm (−m) = YT (−m) ,

where ϕ is a (µd,B)-isomorphism respecting the zero sections Z(X T (−m)) and
Z(YT (−m)) and the divisors DT (X T ) and DT (YT ). Hence ϕ respects also the cen-
ters DT (X T ) ⋅ Z(X T (−m)) and DT (YT ) ⋅ Z(YT (−m)) of the Asanuma modifications
of the second kind. Applying these modifications on both sides, by Lemma 5.18 we
decrease by 1 the weights of the µd-actions. Due to Lemma 1.5, ϕ admits a lift to a
(µd,B)-isomorphism ϕ̃ fitting in the commutative diagram

(31)

X T−D(−m − 1) ϕ̃

≅µd,B
- YT−D(−m − 1)

X T (−m)

σD

? ≅µd,B
ϕ
- YT (−m)

σD

?

and respecting the zero sections. Choose n ≥ 1 such that −(m + n) ≡ k mod d. For
s≫ 1 after n iterations one arrives at an isomorphism X T−mD(k) ≅µd,B YT−nD(k). This
holds for an arbitrary µd-stable divisor T ∈ Div(B). Replacing the initial T by T +nD
one gets an isomorphism X T (k) ≅µd,B YT (k), as required. �

In the proof we have used the following analog of Proposition 5.8. By abuse of
notation we let vi and ṽi be the local fiber coordinates of the line bundles X T

l →X and
YTl → Y , respectively.

Proposition 5.22. Under the assumptions of Theorem 5.19 let

ψl∶ X T
l (−l)

≅µd,BÐ→ YTl (−l)
be a µd-equivariant isomorphism such that

(il) ψ∗l (ṽi) ≡ vi mod zs ∀i.
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Then there exists a µd-equivariant isomorphism

ψl+1∶ X T−D
l+1 (−l − 1)

≅µd,BÐ→ YT−Dl+1 (−l − 1)
such that

(il+1) ψ∗l+1(ṽi) ≡ vi mod zs−1 ∀i.

Hint. The proof of Proposition 5.8 goes verbatim modulo the existence of an automor-
phism ϕ which is guaranteed by Theorem 4.4. Thus, it suffices to prove the following
analog of Theorem 4.4.

Theorem 5.23. Let a GDF µd-surface πX ∶X → B, z ∈ OB(B), and T ∈ Div(B)
be as in Theorem 5.19. Then X T satisfies an analog of the µd-equivariant condition
RF(l,−l, s).

Proof. It suffices to reproduce mutatis the proof of Theorem 4.4 (see Section 4.3). The
modifications are as follows.

The coordinate v used when working with cylinders might do not exist on the total
space of the line bundle πT ∶ X T → X. Hence one cannot consider on X T the locally
nilpotent derivations σ̃1,f and σ̃2,g as in (15). However, one can use instead their
analogs which coincide with these up to a given order on any special fiber component
Fi = (πT )−1(Fi) in X T .

Indeed, let ξ ∶ L → B be the line bundle associated with T , and let U ⊂ B be a µd-
stable dense open subset as in Lemma 5.16 which contains z−1(0) = {b1, . . . , bn} and such
that ξ∣U is trivial as a µd-line bundle. Then also the induced line bundle πT ∶ X T → X
is trivial over V = π−1(U) ⊂X. Thus, X T ∣V ≅µd,V V ×A1 where A1 = Spec k[v]. Via this
isomorphism, v yields a rational µd-quasi-invariant function on X T which we denote
by the same letter.

Choose a regular µd-quasi-invariant function h ∈ OB(B) such that h − 1 ≡ 0 mod zs

and h∣B∖U = 0. Consider the lift h̃ ∈ OXT (X T ) of h. For s ≫ 1 the product ṽ = h̃sv ∈
OXT (X T ) is a regular µd-quasi-invariant which coincides with v to order s on any special
fiber component Fi = (πT )−1(Fi) in X T . Letting ∂∗l = (πT )∗(∂l) and σ̂1,f = f(ṽd)∂∗l for
f ∈ k[t] yields a µd-invariant locally nilpotent derivation on OXT (X T ) which coincides
to order s with σ̃1,f on any fiber component Fi.

Furthermore, for s ≫ 1 the product h̃d+1∂/∂v is a µd-invariant locally nilpotent

derivation on OXT (X T ). Letting σ̂2,g = ũdsg(ũd)h̃d∂/∂v for g ∈ k[t] where ũ is as
defined in 4.10 yields a µd-invariant locally nilpotent derivation on OXT (X T ) which
coincides to order s with σ̃2,g on any fiber component Fi.

Using the locally nilpotent derivations σ̂1,f and σ̂2,g instead of σ̃1,f and σ̃2,g, respec-
tively, the rest of the proof of Theorem 4.4 applies and gives the desired µd-equivariant
relative flexibility. �

6. Basic examples of Zariski factors

6.1. Line bundles over affine curves.

Proposition 6.1. Let π∶X → B be a line bundle over a smooth affine curve B. Then
the surface X is a Zariski factor.

Proof. If B ≅ A1 then π∶X → B is a trivial line bundle, and so, X ≅ A2 is a Zariski factor
by the Miyanishi-Sugie-Fujita Theorem ([35, 57]; see also [56, Ch. 3, Thm. 2.3.1]).
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Suppose further that B /≅ A1, and so, any morphism A1 → B is constant. Consider a
second smooth affine surface X ′ and the cylinder X ′ = X ′ × An. Assume that there is

an isomorphism ϕ∶ X ′ ≅Ð→ X . The structure of a vector bundle of π̃ ∶= pr1 ○ π∶ X → B
is transferred by ϕ−1 to such a structure on X ′ with the projection π̃′ = π̃ ○ ϕ∶ X ′ → B.
This yields the commutative diagram

(32)

X ′ ϕ

≅B
- X

B

π̃′

?

id
- B

π̃

?

Since any morphism A1 → B is constant, π̃′ admits a factorization

(33) π̃′∶ X ′ pr1Ð→X ′ π′Ð→ B .

Letting Fb = π−1(b) and F ′
b = π′−1(b) ⊂X ′ where b ∈ B, ϕ restrits to an isomorphism

ϕ∣F ′
b
×An ∶F ′

b × An
≅Ð→ Fb × An ≅ An+1 .

Since any curve is a Zariski factor ([1, Thm. 6.5]) one deduces that F ′
b ≅ Fb ≅ A1 ∀b ∈ B.

Thus, π′∶X ′ Ð→ B is an A1-fibration with all the fibers being reduced and irreducible,
because the fibers of π̃′∶ X ′ → B are. Therefore, π′∶X ′ Ð→ B admits a structure of a
line bundle. Now the existence of an isomorphism X ′ ≅X follows from the next lemma
where we let d = 1. �

We work in an equivariant setup that we will use below.

Lemma 6.2. Consider two GDF µd-surfaces π∶X → B and π′∶X ′ → B with only
irreducible fibers. Extend the µd-actions to the cylinders X = X × An and X ′ = X ′ × An

by the identity on the second factor. Suppose that there is a µd-equivariant isomorphism

Φ∶ X
≅µd,BÐ→ X ′ over B. Then there exist µd-equivariant line bundle structures ξ and ξ′

on X and X ′ with projections π and π′, respectively, and a µd-equivariant isomorphism
of line bundles ξ ≅µd,B ξ′ identical on B.

Proof. The average of an arbitrary section of π upon the µd-action on X yields a µd-
invariant section of π and, respectively, a µd-equivariant structure of a line bundle ξ
on X with projection π. Similarly, X ′ admits a µd-equivariant line bundle structure
ξ′ with projection π′. Let us show that there exists an isomorphism of line bundles
ξ ≅µd,B ξ′.

The cylinder X =X×An inherits a structure of a vector bundle of rank n+1 isomorphic
to the Whitney sum ξ ⊕ 1n with projection π̃∶ X → B where 1n stands for the trivial
vector bundle of rank n over B. Similarly, π̃′∶ X ′ → B represents the vector bundle
ξ′ ⊕ 1n. The µd-equivariant isomorphism of the total spaces

Φ∶ X = tot(ξ ⊕ 1n)
≅µd,BÐ→ X ′ = tot(ξ′ ⊕ 1n)

sends the zero section Z of ξ⊕1n to a section, say, Z ′′ of ξ⊕1n. Both Z and Z ′′ are µd-
invariant. It is easily seen that the translation t−Z′′ on −Z ′′ in ξ′⊕1n is µd-equivariant.
Hence the composition Ψ = t−Z′′ ○ Φ is as well, and it sends Z to the zero section Z ′

of ξ′ ⊕ 1n. The differential dΨ∣Z yields a µd-equivariant isomorphism of the normal
bundles NZ/X ≅µd,B NZ′/X ′ . Furthermore, NZ/X ≅µd,B ξ ⊕ 1n and NZ′/X ′ ≅µd,B ξ ⊕ 1n as
µd-vector bundles. Therefore, one has ξ⊕1n ≅µd,B ξ′⊕1n, that is, the line bundles ξ and
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ξ′ are stably µd-equivariantly equivalent. In fact, they are µd-equivariantly equivalent.
Indeed, one has (see [66, §8, Corollary])

ξ ≅µd,B det(ξ ⊕ 1n) ≅µd,B det(ξ′ ⊕ 1n) ≅µd,B ξ′ ,
as stated. �

6.2. Parabolic Gm-surfaces: an overview.

Definitions 6.3 (the DPD presentation for parabolic Gm-surfaces). ([28]) A parabolic
Gm-surface is a normal affine surface X endowed with an effective Gm-action along the
fibers of an A1-fibration π∶X → C over a smooth affine curve C. The Gm-action on X
defines a grading

OX(X) =⊕
n≥0

An where An =H0(C,OC(⌊nDX⌋) ∀n ≥ 0

for a Q-divisor DX on C. This is called a Dolgachev-Pinkham-Demazure presentation,
or a DPD presentation for short, see [28, Thm. 3.2]. The Q-divisor DX on C is uniquely
defined by the class of isomorphism of π∶X → C up to a linear equivalence. Any fiber
π∗(p), p ∈ C, is irreducible of multiplicity m where DX(p) = (e/m)[p] with coprime
e,m ∈ Z. Any reduced fiber π−1(p) is smooth and isomorphic to A1 ([29, Rem. 3.13(iii)]).
The projection π∶X → C admits a section consisting of the fixed points of the Gm-action
on X. The singularities of X are the fixed points of the Gm-action in the multiple fibers
of π. More precisely, if DX(p) = (e/m)[p] where m > 1 and e,m are coprime then
the unique fixed point xp over p is a cyclic quotient singularity of type (m,e′) where
e′ ∈ {1, . . . ,m − 1} and e′ ≡ e mod m, see [28, Prop. 3.8(b)]. The following analog of
Proposition 4.12 in [28] deals with parabolic (instead of hyperbolic) Gm-surfaces.

Lemma 6.4. Given a parabolic Gm-surface π∶X → C and a branched covering µ∶B →
C, let π′∶X ′ → B be obtained from the cross-product B ×C X via normalization. Then
π′∶X ′ → B is again a parabolic Gm-surface. The Q-divisors DX on C and DX′ on B in
the corresponding DPD presentations are related via DX′ = µ∗DX .

Proof. The projection π∶X → C is the orbit morphism of a parabolic Gm-action, say, Λ
on X with all its fibers being smooth and irreducible. Hence the fibers of π′∶X ′ → B are
also irreducible and Λ lifts to a parabolic Gm-action Λ′ on the cross-product B ×C X
where λ∶ (b, x) ↦ (b, λ.x) ∀λ ∈ Gm. This lifted action survives in the normalization
X ′ → B ×C X. Thus, Λ lifts to a parabolic Gm-action Λ′ on X ′ such that π′∶X ′ → B is
the orbit morphism. The induced morphism µ′∶X ′ →X is Gm-equivariant.

On the other hand, consider the Q-divisor DX′′ = µ∗DX on B and the correspond-
ing parabolic Gm-surface π′′∶X ′′ → B with the DPD presentation related to the pair
(B,DX′′). For any n ≥ 0 there is a natural embedding An =H0(C,OC(⌊nDX⌋)) ↪ Ân =
H0(B,OB(⌊nDX′′⌋)). This yields a monomorphism of graded rings

OX(X) =⊕
n≥0

An ↪ OX′′(X ′′) =⊕
n≥0

A′′
n

and the induced Gm-equivariant surjection µ′′∶X ′′ → X that fits in the commutative
diagram

X ′′ µ′′- X

B

π′′

?

µ
- C

π

?

43



By the universal property of the cross-product, µ′′ can be factorized as

µ′′∶X ′′ → B ×C X
πÐ→X .

Since X ′′ is normal one has as well a factorization µ′′∶X ′′ ψÐ→ X ′ πÐ→ X where ψ is a
Gm-equivariant surjection fitting in the commutative diagram

X ′′ ψ - X ′

@
@
@π′′ R 	�

�
�
π′

B .

Since the fibers of a parabolic Gm-surface are irreducible ([29, Rem. 3.13(iii)]), ψ is a
bijection. Due to the normality of both X ′′ and X ′, ψ is an isomorphism. Now the
desired conclusion follows. �

Proposition 6.5. Consider an A1-fibration π∶X → C on a normal affine surface X
over a smooth affine curve C. Let π̃∶ X̃ → B be a marked GDF µd-surface obtained from
π∶X → C via a cyclic base change δ∶B → C with the Galois group µd and a subsequent
normalization as in Lemma 2.3. Then the following are equivalent.

(i) π̃∶ X̃ → B admits a structure of a line bundle;
(ii) π∶X → C admits a structure of a parabolic Gm-surface.

Proof. (i)⇒(ii). In case (i) the fibers of π∶X → C are irreducible. If all of them
are reduced then π∶X → C admits a structure of a line bundle, and so, (ii) holds.
Otherwise, π∶X → C has multiple fibers. If a fiber Fc = π−1(c) is multiple then the
branched covering construction of 2.2 creates a unique point b = δ−1(c) ∈ B over c. This
point b is a fixed point of the µd-action on B.

The µd-action on X̃ preserves the fibration π̃∶ X̃ → B and sends the sections of π̃
to sections. Taking the fiberwise barycenter of the µd-orbit of the zero section yields
a µd-invariant section, say, Z of π̃. There is a new line bundle structure on X̃ with
projection π̃ and the associated parabolic Gm-action Λ̃ on X̃ along the fibers of π̃ with
Z as the fixed point set. In fact, Λ̃ = tZ ○Λ ○ t−1

Z where Λ stands for the parabolic Gm-

action on X̃ associated with the original line bundle structure on X̃, and tZ ∈ AutB X̃
is the translation on Z in the vertical direction.

The Gm-action Λ̃ commutes with the µd-action on X̃. Indeed, the conjugation of
Λ̃ by elements of the µd-action yields a homomorphism µd → Aut Gm ≅ Z/2Z. To
show that this homomorphism is trivial we take a fixed point b ∈ B of µd. The fiber
F̃b = π̃−1(b) ≅ A1 is µd-invariant and Z ∩ F̃b is a common fixed point of µd and Λ̃. Hence
µd∣F̃b ⊂ Λ̃∣F̃b . Since µd and Λ̃ commute when restricted to F̃b they commute on X̃.

Therefore, Λ̃ descends to a parabolic Gm-action on the quotient X = X̃/µd along the
fibers of π∶X → C thus converting X into a parabolic Gm-surface over C.

(ii)⇒(i). Conversely, suppose that π∶X → C is the orbit morphism of a parabolic Gm-
action Λ on X. Then Λ lifts to a parabolic Gm-action Λ̃ on the cross-product B ×C X
where λ∶ (b, x) ↦ (b, λ.x) ∀λ ∈ Gm. This lifted action survives in the normalization
X̃ → B ×C X. Thus, Λ lifts through the branched covering X̃ → X as in 2.2. In this
way the GDF surface π̃∶ X̃ → B acquires an effective parabolic Gm-action Λ̃ along the
fibers of π̃. Hence all these fibers are reduced and irreducible, cf. [29, Rem. 3.13(iii)].
This allows to define a line bundle structure on π̃∶ X̃ → B. �
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Remarks 6.6. 1. The integral divisor −DX̃ = −µ∗DX ∈ PicB is associated with the line

bundle π̃∶ X̃ → B. This divisor DX̃ determines a DPD presentation of the Gm-surface

π̃∶ X̃ → B (see Lemma 6.4).
2. It is known that a Gizatullin Gm-surface X is toric if and only if the associated

extended graph Γext is linear, see [30, Lem. 2.20]. A similar criterion holds for the
parabolic Gm-surfaces. Namely, one can show that conditions (i) and (ii) of Proposition
6.5 are equivalent to the following one (cf. [30, Prop. 3.22]):

(iii) Γext is a bush, that is, any fiber tree Γc(π̄), c ∈ C, is a chain.

As usual, Γext stands for the extended graph of a pseudominimal resolved completion
π̄∶ X̄ → C̄ of the A1-fibered surface π∶X → C as in Proposition 6.5. This graph is viewed
as a rooted tree with the section at infinity S as the root vertex.

6.3. Parabolic Gm-surfaces as Zariski factors. The following theorem is the main
result of Section 6.

Theorem 6.7. Any parabolic Gm-surface is a Zariski factor.

The proof is done in Lemmas 6.13–6.20. It is preceded by several auxiliary facts. In
the next elementary lemma we use the following terminology.

Definition 6.8. Given a morphism π∶X → C of a normal affine variety X onto a
smooth curve C, the fiber over a point c ∈ C is called multiple if d > 1 where d is the
greatest common divisor of the multiplicities of the components of π∗(c).

Lemma 6.9. A polynomial of one variable cannot have two or more multiple fibers.

Proof. Suppose that f ∈ k[t] (is nonconstant and) has at least two multiple fibers,
say, f∗(0) and f∗(1). Then f = pr = 1 − qs for some polynomials p, q ∈ k[t] such that
pr + qs = 1, r, s ≥ 2, deg p = d/r, and deg q = d/s where d = deg f . The derivative f ′

vanishes to order r − 1 at any root of p and to order s − 1 at any root of q. More
precisely, since p and q do not have any common root one has

div f ′ ≥ (r − 1)div p + (s − 1)div q .

Taking the degrees one gets the inequalities

(r − 1)/r + (s − 1)/s ≤ (d − 1)/d .
Since r, s ≥ 2 it follows that

1 ≤ (1 − 1

r
) + (1 − 1

s
) ≤ (1 − 1

d
) .

This gives a contradiction. Alternatively, letting x = p(t), y = q(t) yields a parametriza-
tion of the plane affine curve E = {xr + ys = 1}. However, there is no nonconstant
morphism A1 → E. �

An affine variety is called A1-uniruled if a general point of X belongs to the image
of a nonconstant morphism A1 → X. One can find in the literature different versions
of the following results, see, e.g., [64] and [42, Thm. 4.1].

Lemma 6.10. Consider a dominant morphism π∶X → C from an affine variety X to
a smooth affine curve C. Assume that one of the following conditions is fulfilled.

(i) C /≅ A1;
(ii) C ≅ A1 and π has at least two multiple fibers.
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Then the following hold.

(a) Any morphism An →X has image contained in a fiber of π. Consequently, there
is no dominant morphism An →X.

(b) If the general fibers of π are A1-uniruled then any automorphism α ∈ AutX
preserves the fibration π∶X → C, that is, sends the fibers to fibers.

Proof. (a) In case (i) any morphism An → C is constant, hence the assertion follows.
Assuming (ii) suppose to the contrary that there exists F ∶An → X such that f ∶=
π ○F ∶An → A1 is nonconstant. Then f ∈ k[t1, . . . , tn] is a nonconstant polynomial with
two distinct multiple fibers. The latter contradicts Lemma 6.9.

(b) If α ∈ AutX does not preserve the fibration π∶X → C then there is a morphism
ϕ∶A1 → X such that the composition f = π ○ ϕ is not constant. Then C ≅ A1, and
so, f ∈ k[t] is a polynomial with two multiple fibers. This leads to a contradiction as
before. �

In the proof of Theorem 6.7 we use the following auxiliary Lemmas 6.11 and 6.12.

Lemma 6.11. Let π∶X → P1 be an A1-fibration on a normal affine surface X. Assume
that the group PicX is finite and π(X) ⊃ A1 = P1∖{∞}. Then π(X) = A1, all the fibers
of π are irreducible, and the divisor class group Cl (X) is generated by the classes of
the multiple fibers of π.

Proof. Let π̄∶ X̄ → P1 be a resolved completion of π∶X → P1 with extended graph Γext.
Then Γext is a rooted tree with the section at infinity S as the root. We let

● B1, . . . ,Bn be the degenerate fibers of π̄ over the points bi ∈ P1, i = 1, . . . , n;
● D = X̄ ∖Xresolved stand for the boundary divisor;
● E stand for the exceptional divisor of the resolution of singularities Xres →X;
● mi ≥ 0 be the number of components of the fiber π−1(bi);
● ni ≥ 0 be the number of components of Bi which are components of D +E.

Thus, Bi consists of ni +mi components. Contracting subsequently (−1)-fiber compo-
nents one arrives finally at a Hirzebruch surface Fs. In this way one contracts ni+mi−1
components of Bi, i = 1, . . . , n. Let %(V ) be the Picard number of a variety V . Since
%(Fs) = 2 one has %(X̄) = 2+∑n

i=1(ni+mi−1). Letting ♮D be the number of components
of a divisor D one gets

0 = %(X) = %(X̄) − ♮(D +E)

(34) = (2 +
n

∑
i=1

(ni +mi − 1)) − (1 +
n

∑
i=1

ni) = 1 +
n

∑
i=1

(mi − 1) .

It follows that

● mi ≤ 1 ∀i = 1, . . . , n, that is, the fibers of π∶X → π(X) are irreducible;
● mi = 0 for exactly one value of i, that is, π(X) = A1.

Let ω ⊂ A1 be a Zariski open dense subset such that U = π−1(ω) is isomorphic over
ω to the cylinder ω ×A1, and so, Cl (U) = 0. For D =X ∖U one has the exact sequence
Div(D) → Cl (X) → Cl (U) → 0 where Div(D) is the subgroup of Weil divisors on X
supported by D, see [56, p. 206]. Thus Cl (X) is generated by the fibers of π contained
in D. Any reduced fiber of π represents the zero class in Cl (X). Hence Cl (X) is
generated by the classes of the multiple fibers of π. �
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Lemma 6.12. Let π∶X → C be a parabolic Gm-surface with a singular point x ∈X, and

let X ′ be a normal affine surface. Suppose that there is an isomorphism ϕ∶ X ′ ≅Ð→ X
of the n-cylinders X =X ×An and X ′ =X ′ ×An. Let ϕ({x}×An) = {x′}×An where x′ ∈
SingX ′. Then the germs of surface singularities (X,x) and (X ′, x′) are isomorphic.

Proof. Let σ1∶X1 →X be the blowup of the maximal ideal of the unique singular point
x ∈X followed by a normalization. The induced morphism of n-cylinders σ1×id∶ X1 → X
consists in the blowup of the ideal of the singular ruling singX = {x} × An and a
subsequent normalization. By a theorem of Zariski ([72]; see also [51]) a sequence of
blowups in maximal ideals and subsequent normalizations

XN
σNÐ→XN−1 → . . .→X1

σ1Ð→X0 =X
resolves the singularity (X,x). It induces a similar sequence of blowups in rulings of
our n-cylinders and subsequent normalizations

XN
σNÐ→ XN−1 → . . .→ X1

σ1Ð→ X0 = X
which results in a resolution of the corresponding singularities of X ≅ X ′. The excep-
tional divisor of the resolution XN → X is E = E×An where E is the exceptional divisor
of the resolution XN →X.

Let further σ′1∶X ′
1 → X ′ be the blowup of the maximal ideal of the singular point

x′ ∈X ′ followed by a normalization. Then σ′1 × id∶ X ′
1 → X ′ is the blowup of the ideal of

the singular ruling {x′} ×An followed by a normalization. Under the isomorphism ψ ∶=
ϕ−1∶ X ′ ≅Ð→ X this ruling goes to the ruling {x} × An. Hence ϕ lifts to an isomorphism

ψ1∶ X ′
1

≅Ð→ X1. Continuing in this way one arrives finally at a resolution X ′
N → X ′ where

X ′
N = X ′

N × An ≅ XN with exceptional divisor E ′ = E′ × An ≅ E = E × An where E′ is
the exceptional divisor of the induced resolution of singularity X ′

N → X ′. Under this
procedure the singularities of the embedded surfaces X × {0} ⊂ X and X ′ × {0} ⊂ X ′

are simultaneously resolved and there is an isomorphism ψN ∶ X ′
N

≅Ð→ XN such that
ψN(E ′) = E . The only irreducible complete curves in E (in E ′, respectively) are of the
form Ei × {v} (E′

i × {v′}, respectively) where Ei and E′
i are components of E and E′,

respectively, and v, v′ ∈ An. Given such a curve E′
i × {v′} there is a curve Eσ(i) × {v}

such that ψ(E′
i × {v′}) = Eσ(i) × {v}. It follows that ψ(E′

i × An) = Eσ(i) × An. The
image ψ(X ′

N × {v′}) is a smooth surface in XN which meets the exceptional divisor
E ⊂ XN transversely along the curve ψ(E′ × {v′}) = E × {v} ⊂ XN × {v}. The same
is true for XN × {v}. Namely, the latter is a smooth surface in XN which meets E
transversely along the same curve E × {v}. Projecting the both surfaces to XN via
the canonical projection XN → XN yields a local isomorphism of the surface germs
(ψ(X ′

N × {v′}),E × {v}) and (XN × {v},E × {v}) near the common exceptional divisor
E × {v}. Contracting the divisor E × {v} yields an isomorphism between the singular
germs (X,x) and (X ′, x′). �

The next lemma gives a proof of Theorem 6.7 under an additional assumption.

Lemma 6.13. Let π∶X → C be a parabolic Gm-surface, and let X ′ be a normal affine

surface. Assume that there is an isomorphism ϕ∶ X ′ ≅Ð→ X of the n-cylinders X =X×An

and X ′ =X ′ ×An. Suppose also that for the induced An+1-fibration π̂∶ X → C one of the
conditions (i) and (ii) of Lemma 6.10 is fulfilled. Then X ′ ≅X.

Proof. By Lemma 6.10 one has π̂ ○ ϕ∣{x′}×An = cts(x′) ∈ C. This provides a surjection
π′∶X ′ → C which extends to a morphism π̂′ = π′○pr1∶ X ′ → C fitting in the commutative
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diagram

(35)

X ′ ϕ

≅
- X

C

π̂′

?

id
- C

π̂

?

For any point c ∈ C, ϕ restricts to an isomorphism

ϕ∣π′−1(c)×An ∶π′
−1(c) × An

≅Ð→ π−1(c) × An ≅ An+1 .

Since any curve is a Zariski factor ([1, Thm. 6.5]) one deduces that any fiber of π′∶X ′ →
C is isomorphic to A1. The multiple fibers of π′ (and π̂′) are situated over the same
points of C as the ones of π (and π̂), have the same multiplicities, and each of them
carries a unique singular point of X ′, see 6.3.

Applying to the surfaces π∶X → C and π′∶X ′ → C a suitable branched covering with
the same cyclic base change µ∶B → C as in Lemma 2.3 one obtains GDF µd-surfaces
π̃∶ X̃ → B and π̃′∶ X̃ ′ → B and two cyclic branched coverings X̃ →X and X̃ ′ →X ′ with
the Galois group µd. The same branched covering construction applied to the cylinders
X and X ′ (that are isomorphic over C, see (35)) yields the cylinders X̃ = X̃ × An and
X̃ ′ = X̃ ′ × An along with a µd-equivariant commutative diagram

(36)

X̃ ′ ϕ̃

≅µd,B
- X

B

π̃′×id

?

id
- B

π̃×id

?

where ϕ̃ is a lift of ϕ from (35).
By Proposition 6.5, π̃∶ X̃ → B admits a line bundle structure. In particular, the

fibers of π̃∶ X̃ → B and the ones of π̃× id∶ X̃ → B are reduced and irreducible. Hence the
fibers of π̃′ × id∶ X̃ ′ → B and the ones of π̃′∶ X̃ ′ → B are as well. Therefore, π̃′∶ X̃ ′ → B
also admits a structure of a line bundle. Proceeding as in the proof of (i)⇒(ii) in
Proposition 6.5one can choose µd-equivariant line bundle structures, say, ξ and ξ′ of
π̃∶ X̃ → B and π̃′∶ X̃ ′ → B, respectively. In particular, the zero sections are µd-invariant.
Taking the quotients by the µd-actions yields a structure of parabolic Gm-surfaces on
π∶X → C and π′∶X ′ → C where the first one is the given Gm-structure. By Lemma 6.2
there is a µd-equivariant isomorphism of line bundles ξ ≅ ξ′. It induces a Gm-equivariant
isomorphism over C of the quotient parabolic Gm-surfaces X ≅Gm,C X

′. �

6.14. We will suppose in the sequel that in the setting of Theorem 6.7 neither (i)
nor (ii) of Lemma 6.10 is fulfilled, that is, C = A1 and the fibration π∶X → A1 has
at most one multiple fiber. By virtue of the Miyanishi-Sugie-Fujita Theorem we may
suppose as well that the parabolic Gm-surface π∶X → A1 has exactly one multiple fiber
π−1(0) of multiplicity d > 0, and so, X has a unique singular point, say, x which is the
unique fixed point of the Gm-action on the multiple fiber π−1(0) and a cyclic quotient
singularity. Let X ′ be a normal affine surface such that the cylinders X and X ′ are
isomorphic. Then X ′ has as well a unique singular point, say, x′. By Lemma 6.12 there
is a local isomorphism of singularities (X,x) ≅ (X ′, x′).
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Remind that a toric variety X is called non-degenerate if OX(X)× = k∗. Any non-
degenerate affine toric surface is isomorphic to the quotient of A2 by a diagonal µd-action

(37) ζ.(x, y) = (ζx, ζey) where ζd = 1, 1 ≤ e < d, gcd(e, d) = 1

(see, e.g., [28, Ex. 2.3] or [29, Ex. 2.8]). One has Cl (A2/µd) ≅ Z/dZ.

Lemma 6.15. Under the assumptions of 6.14, X is a non-degenerate affine toric
surface.

Proof. According to Proposition 6.5 the branched covering construction applied to
π∶X → A1 with the cyclic base change A1 → A1, z ↦ zd, yields a a line bundle π̃∶ X̃ → A1

which is trivial since Pic A1 = 0. Its zero section is µd-invariant, hence the line bundle
structure is µd-equivariant. Via an isomorphism X̃ ≅ A2 one obtains an effective action
of µd on A2 which can be linearized taking the form (37) in appropriate coordinates on
A2. Then π̃ becomes the standard projection A2 → A1, (x, y) ↦ x. Thus X ≅ A2/µd is
an affine toric surface of type (d, e). �

Corollary 6.16. Under the assumptions of 6.14 one has Cl (X ′) ≅ Cl (X) ≅ Z/dZ.

Proof. Recall (see [34, Thm. 8.1]; cf. [35, (9.9.8)]) that Cl (X) is a cancellation invariant.
Since X ≅ X ′ there are isomorphisms

(38) Cl (X ′) ≅ Cl (X ′) ≅ Cl (X) ≅ Cl (X) ≅ Z/dZ .

�

We use below the following simple version of the Cox ring (see [3], [15]).

Definition 6.17 (Cox ring). Let X be a normal affine variety with OX(X)× = k∗.
Suppose that the divisor class group Cl (X) is a finite cyclic group of order d generated
by the class of a Weil divisor F on X. Consider the (Z/dZ)-graded Cox ring

CoxOX(X) ∶=
d−1

⊕
j=0

H0(X,OX(jF ))ζj

where ζ ∈ k× is a primitive dth root of unity. Then X̃ = Spec CoxOX(X) is a normal
affine variety equipped with a µd-action defined via the (Z/dZ)-grading on OX̃(X̃) =
CoxOX(X), see [3, Thm. 1.5.1.1]. The natural embedding OX(X) ↪ CoxOX(X) onto
the subalgebra of µd-invariants yields the quotient morphism X̃ → X = X̃/µd. We call
this morphism a Cox covering construction.

Consider the n-cylinder X =X ×An over X. The divisor class group Cl X ≅ Cl (X) ≅
µd is generated by the class of the Weil divisor F = F × An on X , see [34, Thm. 8.1].
The Cox covering construction applied to (X ,F) yields the n-cylinder X̃ = X̃ × An.

For the next lemma we provide two alternative proofs.

Lemma 6.18. In the setup of 6.14, X ′ is a non-degenerate affine toric surface.

Proof. By Lemma 6.15 one has OX(X)× = k∗. Since OX ′(X ′)× ≅ OX (X)× = k∗ then
also OX′(X ′) = k∗. Consider the Weil divisor F0 = π−1(0) on X. Its class generates the
class group Cl (X) ≅ µd. By [4, Thm. 3.1] the branched covering A2 →X = A2/µd as in
Lemma 6.15 coincides with the Cox covering defined by the pair (X,F0), see Definition
6.17. Letting F0 = F0 × An and applying the cyclic Cox covering construction to the
pair (X ,F0) one obtains the n-cylinder X̃ = A2 × An = An+2.
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Choose a Weil divisor F ′
0 on X ′ whose class in Cl (X ′) is sent to the class of F0 in

Cl (X) via the isomorphisms (38). Applying the Cox covering construction to the pair
(X ′, F ′

0) leads to a cyclic µd-covering X̃ ′ → X ′. Letting F ′
0 = F ′

0 × An and applying the

Cox covering construction to the pair (X ′,F ′
0) yields the n-cylinder X̃ ′ = X̃ ′ × An. We

claim that X̃ ′ is isomorphic to X̃ ≅ An+2. Indeed, let ϕ∶ X ≅Ð→ X ′ be an isomorphism.
One has F ′

0 ∼ ϕ∗F0 on X ′. The Cox covering construction does not depend, up to an
isomorphism, on the choice of a divisor in the class generating the group Cl (X ′) ≅ Z/dZ,
see [3, Prop. 1.4.2.2]. Hence applying this construction to the pair (X ′, ϕ∗F0) yields

a variety, say, X̂ ′ isomorphic to X̃ ′. On the other hand, the isomorphism of pairs

ϕ∶ (X ,F0)
≅Ð→ (X ′, ϕ∗F0) leads to an isomorphism X̂ ′ ≅ X̃ .

It follows that X̃ ′×An ≅ An+2. By the Miyanishi-Sugie-Fujita Theorem ([35, Cor. 3.3],
[56, Ch. 3, Thm. 2.3.1]) one has X̃ ′ ≅ A2. Since the µd-action on A2 can be linearized
(see, e.g., [38, Thm. 2]) the quotientX ′ ≅ A2/µd is an affine toric surface. �

6.19 (The second proof of Lemma 6.18). Alternatively, one can argue as follows.

Claim 1. There exists an A1-fibration π′∶X ′ → A1.

Proof of Claim 1. By the Iitaka-Fujita Theorem ([44]) the log-Kodaira dimension is
a cancellation invariant. Hence k̄(X ′) = k̄(X) = −∞. Therefore, X ′ admits an A1-
fibration π′∶X ′ → C, see [56, Ch. 2, Thm. 2.1.1]. Composing the induced surjection

X ′ → C with an isomorphism ϕ∶ X ≅Ð→ X ′ one concludes that either C ≅ A1 or C ≅ P1.
However, the latter is impossible. Indeed, by Corollary 6.16 one has Cl (X ′) ≅ Cl (X) ≅
Z/dZ where d is the multiplicity of the fiber F0 = π−1(0) through the singular point x ∈
X. Let F ′

0 be the fiber of π′ through the singular point x′ of X ′. Since Cl (X ′) ≅ Z/dZ
the divisor dF ′

0 on X ′ is principal, that is, dF ′
0 = div f for some f ∈ OX′(X ′). Since f

is constant on any A1-fiber of π′ one has f = π′∗(g) where g ∈ OC(C) is not a constant.
Hence C cannot be a complete curve.

Claim 2. Let π′∶X ′ → A1 be an A1-fibration. Then each fiber of π′ is irreducible,
there exists exactly one multiple fiber of π′, this fiber has multiplicity d and contains
the singular point x′ of X ′.

Proof of Claim 2. The irreducibility of the fibers of π′ follows from Lemma 6.11.
Suppose to the contrary that π′∶X ′ → A1 has two or more multiple fibers. Then by
Lemma 6.10 any automorphism of the cylinder X ′ preserves the induced An+1-fibration
X ′ → A1. The same must be true for X ≅ X ′ and the induced fibration X → A1.
However, the cylinder X over the non-degenerate affine toric surface X is flexible ([5,
Thm. 2.1]). This leads to a contradiction.

Let F ′
0 = (π′)−1(0) be the unique multiple fiber of π′. By Corollary 6.16 one has

(39) Cl (X ′) = ⟨F ′
0⟩ ≅ Cl (X) = ⟨F0⟩ ≅ Z/dZ .

It follows that (π′)∗(0) = dF ′
0 and, in turn, π′(x′) = 0 ∈ A1. This proves Claim 2.

Consider further pseudominimal resolved completions π̄∶ X̄ → P1 and π̄′∶ X̄ ′ → P1 of
π∶X → A1 and π′∶X ′ → A1, respectively. Let F̄0 ⊂ X̄ and F̄ ′

0 ⊂ X̄ ′ be the fiber compo-
nents which contain the proper transforms of F0 and F ′

0, respectively. Since the fibers
F0 = π−1(0) and F ′

0 = (π′)−1(0) are irreducible and the completions are pseudominimal,
F̄0 and F̄ ′

0 are the unique (−1)-vertices of Γ0(π̄) and Γ0(π̄′), respectively. These are
the bridges of the unique feathers F ⊂ Γ0(π̄) and F ′ ⊂ Γ0(π̄′), respectively. The chains
F ⊖ F̄0 and F ′⊖ F̄ ′

0 correspond to the exceptional divisors of the minimal resolutions of
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the cyclic quotient singularities (X,x) and (X ′, x′), respectively. By Lemma 6.12 one
has (X,x) ≅ (X ′, x′). Hence F ≅ F ′ as ordered chains.

For the non-degenerate affine toric surface X the extended graph Γext of (X̄,D) is a
chain ([30, Lem. 2.20]). Hence also the fiber tree Γ0(π̄) is. The tip, say, R of the chain
Γ0(π̄) which is not a tip of F meets the section at infinity S. Hence R has multiplicity
1 in π̄∗(0). It follows that the chain B = Γ0(π̄)⊖R can be contracted to a smooth point
starting with the contraction of the unique (−1)-component F̄0, see Lemma 2.12.

Claim 3. The extended graph Γ′
ext of (X̄ ′,D′) is a chain.

Proof of Claim 3. It suffices to show that the fiber tree Γ0(π̄′) is a chain. Suppose the
contrary. Then the extremal linear branch B′ of Γ0(π̄′) which contains F ′ is adjacent
to a branching vertex, say, R′ of Γ0(π̄′). The contraction of F ′ makes R′ a (−1)-vertex
of degree 2 which contracts to a node of the resulting fiber. Hence R′ has multiplicity
m > 1 in (π′)∗(0).

As follows from [30, Lem. 4.7] the isomorphism F ≅ F ′ can be extended to an
isomorphism of the contractible chains B ⊃ F and B′ ⊃ F ′ with the unique (−1)-
vertices F̄0 and F̄ ′

0, respectively. Since the multiplicity of F̄0 in π∗(0) equals d the one
of F̄0 in (π′)∗(0) equals md > d. However, the latter contradicts (39). This proves the
claim.

Since the extended graph Γ′
ext is a chain and OX′(X ′)× = k× it follows that X ′ is a

Gizatullin surface. Applying [30, Lem. 2.20] one concludes that X ′ is a nondegenerate
affine toric surface. �

The next lemma completes the proof of Theorem 6.7.

Lemma 6.20. Under the assumptions of 6.14 one has X ′ ≅X.

Proof. Two non-degenerate toric affine surfaces are isomorphic if and only if their
singularities are. By Lemmas 6.15 and 6.18, X and X ′ are non-degenerate toric affine
surfaces, and by Lemma 6.12 the singularities (X,x) and (X ′, x′) are isomorphic.
Hence X ≅X ′. �

7. Zariski 1-factors

7.1. Stretching and rigidity of cylinders.

Definition 7.1 (Combinatorial stretching). Let B be a smooth affine curve. Given
an effective divisor A = ∑i aipi ∈ Div(B) where ai ∈ Z≥0 and pi ∈ B we asso-
ciate with A a chain divisor D(A) = ∑iL(ai)pi where L(ai) is a chain with weights
[[−2,−2, . . . ,−2,−1]] of length ai if ai > 0 and L(0) = ∅ otherwise.

Let D = ∑i Γipi be a graph divisor, see Definition 2.21. We let (A.D)m̄ = D′ = ∑i Γ
′
ipi

where

● m̄ = (m1, . . .) with −1 ≤mi ≤ ht (Γi);
● Γ′

i is obtained from Γi by inserting the chain Li above each vertex v of Γi on
level mi if mi ≥ 0 and below the root vi if mi = −1 so that the left end li of
Li becomes a vertex on level mi + 1 of Γ′

i and its right end ri is joint with the
vertices of Γi on level mi + 1 over v if v is not a tip of Γi and becomes a tip of
Γ′
i otherwise. The weights change accordingly; the weight of v decreases by 1

and the weight of ri becomes −1− s(v) where s(v) is the number of vertices on
level mi + 1 in Γi joint with v.
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The transformation D ↦ (A.D)m̄ will be called a combinatorial (A, m̄)-stretching. It
is called a top-level stretching if mi = ht (Γbi) ∀i = 1, . . . , n, and an (A,−1)-stretching
if mi = −1 ∀i. A combinatorial (A, m̄)-stretching is called principal if A is a principal
effective divisor, that is, A = div f where f ∈ OB(B) ∖ {0}.

Definition 7.2 (Geometric stretching). Let π′∶X ′ → B and π∶X → B be two GDF
surfaces over B. An affine modification σ ∶ X ′ → X over B will be called a geometric
(A, m̄)-stretching where mi ≥ 0 ∀i if its effect on the graph divisor D(π) amounts
to a combinatorial (A, m̄)-stretching D(π′) = (A.D(π))m̄ as in Definition 7.1. One
extends here D(π) so that suppD(π) ⊃ suppA adding the new terms Γipi where pi ∈
suppA ∖ suppD(π) and Γi = [[0]].

A geometric (A,−1)-stretching inserts the chain [[−2, . . . ,−2,−1]] of length ai in
the fiber tree Γpi(π) between the root and the section S so that the (−1)-vertex of
this chain becomes the root of the resulting fiber tree Γpi(π′). A principal geometric
(A,−1)-stretching with A = div f for f ∈ OB(B) ∖ {0} amounts to perform in (8) an
affine modification X ′

0 →X0 of X0 = B ×A1 with the divisor (f ○ π)∗(0) and the center
f∗(0) × {0}. In other words, letting A1 = Spec k[u] one has

(40) OX′
0
(X ′

0) = OB(B)[u′] where u′ = u/f .
Therefore, X ′

0 ≅B B × A1. Performing the remaining fibered modifications in (8) gives
again the same surface X =Xm.

To give the first application of the latter notion we need the following definitions.

Definition 7.3 (The Danielewski-Fieseler quotient). Given a GDF surface π∶X →
B the Danielewski-Fieseler quotient DF(π) is the quotient of X by the equivalence
relation defined by the fiber components of π. Thus, DF(π) is a (non-separated, in
general) one-dimensional scheme, and π factorizes as follows:

π∶X pÐ→ DF(π) qÐ→ B

where the fibers of p∶X → DF(π) are reduced and irreducible. In particular, q∶DF(π) →
B is an isomorphism over B ∖ {b1, . . . , bn}, while the total transform of bi in DF(π)
consists of Ni points (bi,j)j=1,...,Ni where Ni is the number of the fiber components Fi,j in
π−1(bi). Therefore, q is an isomorphism if and only if all the fibers of π are irreducible,
if and only if π∶X → B admits a structure of a line bundle.

Definition 7.4 (Type divisors). Let li,j = l(Fi,j) be the level of Fi,j. The anti-effective
divisor on DF(π)

tp .div(π) = −∑
i,j

li,jbi,j

is called the type divisor of X.

The following lemma contains the promissed application of the (−1)-stretching.

Lemma 7.5. Consider two GDF surfaces πX ∶X → B and πY ∶Y → B with the same
Danielewski-Fieseler quotient and with linearly equivalent type divisors, see Definition
7.4. Then one can choose new trivializing sequences (8) for X and Y in such a way
that the corresponding type divisors coincide.

Proof. The principal geometric (A,−1)-stretching with A = div f ≥ 0 applied to a GDF-

surface π∶X → B affects the completion (X̂, D̂) as in (9) in such a way that

(41) tp.div (π′) = tp.div (π) −A.
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In other words, the type divisor tp .div(πX) is defined only up to adding a principal
anti-effective divisor.

Under the assumptions of the lemma there is a principal divisor T ∈ DivB such that

(42) tp .div(πX) = tp .div(πY ) + T .
Let A ∈ DivB be a principal effective divisor such that A − T ≥ 0. Performing the
principal (A,−1)-stretching and (A − T,−1)-stretching, respectively, one replaces the
trivializing sequences (8) for X and Y by suitable new ones so that the new type
divisors for X and Y are

tp .div(πX) −A, resp., tp .div(πY ) − (A − T ) ,
see (41). Due to (42) the latter divisors are equal. �

As another application of the (A,−1)-stretching we have the following lemma.

Lemma 7.6. Consider a marked GDF surface π∶X → B along with a marking
z ∈ OB(B) where z∗(0) = b1 + . . . + bn, with a trivializing sequence (8), and with the
corresponding graph divisor D(π) = ∑n

i=1 Γibi. Then the following hold.

(a) Performing a suitable principal geometric (A,−1)-stretching and extending (8)
accordingly one may assume that

(43) ht(Γi) = ht(D(π)) ∀i = 1, . . . , n .

(b) Let, furthermore, π∶X → B be a marked GDF µd-surface. Then (43) holds
after performing a suitable principal µd-equivariant (A,−1)-stretching where A =
div f with a µd-invariant function f ∈ OB(B) ∖ {0}.

Proof. (a) Let

D∞ = ∑
ci∈B̄∖B

ci and D0 =
n

∑
i=1

(m −mi)bi where m = ht (D(π)) and mi = ht(Γi) .

Let also D(r) = rD∞ −D0 where r ≫ 1. The very ample linear system ∣D(r)∣ defines
an embedding

(44) Φ∣D(r)∣∶ B̄ ↪ PN(r) = PE where E =H0(B̄,OB̄(D(r)))∨ .
A general hyperplane section cuts out on B̄ a reduced effective divisor, say, A′ such that
suppA′ ⊂ B ∖ supp z∗(0). Letting A = A′ +D0 ∼ rD∞ there exists a rational function f
on B̄ with div f = A − rD∞ ∈ Div B̄. Then A = div (f ∣B) is a principal effective divisor
on B. It is easily seen that the (A,−1)-stretching over X satisfies (43).

(b) Under the assumptions of (b) the divisors D0,D∞, and D(r) are µd-invariant and
the embedding (44) is equivariant with respect to a linear action of µd on E. Consider
the character decomposition E = ⊕χ∈µ∨

d
Eχ. Choose χ ∈ µ∨d such that the equivariant

projection E → Eχ yields a non-constant map B̄ → PEχ. The reduced µd-invariant
effective divisor A′ cut out on B̄ by a general hyperplane section in PEχ still satisfies
suppA′ ⊂ B ∖ supp z∗(0). Define f ∣B ∈ OB(B) as before. The divisor A = div (f ∣B) ∈
Div(B) being µd-invariant, f is a quasi-invariant of weight, say, k ∈ {0, . . . , d − 1}.

Replacing f by the µd-invariant f̃ = zd−kf one obtains a µd-invariant principal divisor

Ã = div(f̃ ∣B) = A′ +D′
0 + (d − k)div z∗(0) .

Then D̃(π) = (Ã.D(π))−1 verifies (43) with D̃(π) instead of D(π). �
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Remark 7.7. Extending a trivializing sequence (8) as in the proof one introduces new
special fibers. The resulting graph divisor D̃(π) adopts a certain number of new fiber
graphs Γ̃pj(π) = [[0]]pj of hight 1 supported off supp (div z) = {b1, . . . , bn}. So, the
former marking z cannot serve any longer as a marking.

By virtue of the following lemma and the subsequent remarks, in certain cases a
combinatorial stretching admits a simple geometric realization.

Lemma 7.8. Let π∶X → B be a marked GDF surface with a marking z ∈ OB(B)∖ {0}
and a graph divisor D(π) = ∑n

i=1 Γibi, and let F be the set of leaves of D(π). Given a
subset F0 of F and an integer s≫ 1 choose a function ũ ∈ OX(X) such that

(i) ũ ≡ uF mod zs near any fiber component F with F̄ ∈ F0 and
(ii) ũ ≡ zs mod zs+1 near any F with F̄ ∈ F ∖ F0.

Choose also a function f ∈ OB(B) such that supp (div f) ⊂ supp (div z). Letting

X ′ = SpecOX(X)[ũ/f]
consider the morphisms π′∶X ′ → B and σ∶X ′ →B X associated to the natural em-
beddings OB(B) ⊂ OX(X) ⊂ OX′(X ′). Then π′∶X ′ → B is a GDF surface with the
graph divisor D(π′) = ∑n

i=1 Γ′
ibi obtained from D(π) by attaching to each leaf F̄ ∈ F0

with π(F ) = bi a chain Li = [[−2, . . . ,−2,−1]] of length ai ∶= ordbi(f). Furthermore, σ
induces a morphism of graphs Γ′

i → Γi contracting the chains Li, i = 1, . . . , n.

Proof. For a component F of π−1(bi) one has (f ○π)∣UF ≡ cizai mod zai+1 where ci ≠ 0.
Due to (ii) if F̄ ∈ F ∖ F0 then the morphism σ∶X ′ →X is an isomorphism over UF .

If F̄ ∈ F0 then σ∶X ′ →X restricted to σ−1(UF ) is an ai-iterated fibered modification
with a reduced divisor F and center at the maximal ideal (z, uF ) and its infinitesimally
near points. Indeed, let P0 = {z = 0, uF = 0} be the origin of the local coordinate
system (z, uF ) in UF near F . The affine modification of X along z = 0 with center
P0 amounts in UF to the extension OUF (UF ) ↪ OUF (UF )[uF /z]. Iterating one obtains
the extension OUF (UF ) ↪ OUF (UF )[uF /zai]. Due to (i) the latter extension coincides
with OUF (UF )[ũ/f]. Hence the fiber tree Γ′

i is obtained from Γi by joining the left end
of the chain Li = [[−2, . . . ,−2,−1]] of length ai to the leaf F̄ of Γi. By contrast, for
F̄ ∈ F ∖ F0 one has OUF (UF ) = OUF (UF )[ũ/z]. �

Remarks 7.9. 1. If in Lemma 7.8 one has F0 = F and any leaf F̄ ∈ F with π(F ) = bi
is on the same level mi ∶= ht(Γi), i = 1, . . . , n then σ∶X ′ → X is the principal top-
level (A, m̄)-stretching where A = div f and m̄ = (m1, . . . ,mn). One can choose a new
marking z ∈ OB(B) for X such that supp (div f) ⊂ supp (div z).

2. Let π∶X → B in Lemma 7.8 be a marked GDF µd-surface, and let as before
X ′ = SpecOX(X)[ũ/f]. Assume that the functions ũ and f are µd-quasi-invariants.
Then π′∶X ′ → B is a marked GDF µd-surface and σ∶X ′ →X is µd-equivariant.

3. Let A = div f where f ∈ OB(B) with supp (div f) ⊂ supp (div z), and let s ≫ 1.
Consider an affine modification σ∶X ′ → X over B such that its effect on the graph
divisors is the same as in Lemma 7.8. Then one has OX′(X ′) = OX(X)[ũ/f] for a
function ũ ∈ OX(X) such that

(i′) ũ ≡ cF ⋅ (uF − pF (z)) mod zs in UF for F̄ ∈ F0, π(F ) = bi where cF = (f/zai)∣F
and pF ∈ k[z] is a polynomial of degree ≤ ai − 1 whose coefficients encode the
sequence of infinitely near centers of blowups over F ;

(ii′) ũ ≡ zs mod zs+1 in UF for F ∈ F ∖ F0.
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4. Let π′∶X ′ → B and π′′∶X ′′ → B be two marked GDF µd-surfaces equivariantly
dominating X over B with the same effect on graph divisors. Then by Theorem
5.7 there is a µd-equivariant isomorphism of cylinders X ′(k) ≅µd,B X ′′(k) ∀k ∈ Z.
Thus, different geometric realizations of the same combinatorial stretching give rise to
isomorphic cylinders.

Corollary 7.10. Under the assumptions of Lemma 7.8 let π∶X → B be a marked GDF
µd-surface, and let F0 ⊂ F be a µd-invariant set of top level leaves of D(π). Then there
exists a marked GDF µd-surface π′∶X ′ → B and an equivariant affine modification
σ∶X ′ → X over B which amounts to attaching a chain LF = [[−2, . . . ,−2,−1]] of the
same length a ≥ 1 to every leaf F̄ ∈ F0 of the graph divisor D(π).

Proof. It suffices to apply Remark 7.9.2 choosing a µd-quasi-invariant function ũ ∈
OX(X) of weight −m as in Corollary 3.8 and letting f = za. �

Due to the next proposition, a principal top-level stretching does not affect the
cylinder up to an isomorphism over B.

Proposition 7.11. Let π∶X → B be a marked GDF surface with a marking z ∈ OB(B)
where div z = b1 + . . . + bn. Suppose that

(α) for i = 1, . . . , n the leaves of Γbi(π) are on the same level mi.

Let σ∶X ′ → X be a principal top-level (A, m̄)-stretching as in Definition 7.2 where
A = div f for some f ∈ OB(B) ∖ {0}. Then for any s ≫ 1 there is an isomorphism of

cylinders ϕ∶ X ≅BÐ→ X ′ such that for every pair of special fiber components F in X and
F ′ in X ′ with ϕ(F × A1) = F ′ × A1 one has6

(45) (ϕ∣UF×A1)∗∶ (z, uF , v) ↦ (z, uF ′ , v′) mod zs

in suitable natural coordinates (z, uF , v) and (z, uF ′ , v′) in the standard affine charts
UF × A1 ⊂ X and UF ′ × A1 ⊂ X ′, respectively.

Proof. (a) Choosing a new marking z ∈ OB(B) for X one may suppose that
supp (div f) ⊂ supp (div z) and (α) still holds. Performing a suitable principal (A,−1)-
stretching as in Lemma 7.6(a) one may assume that

(α0) for all i = 1, . . . , n the leaves of Γbi(π) are on the same level m = ht(D(π)).

Consider the Asanuma modification of the second kind κ∶ X ′′ → X associated with f
(see Definition 5.2), that is,

OX (X) ⊂ OX ′′(X ′′) = OX(X)[v/f] .
Lemma 5.4(a) provides an isomorphism

(46) β∶ X ≅BÐ→ X ′′ where β∗∶ (z, uF , v) ↦ (z, uF ′′ , v′′)
in suitable natural local coordinates. We claim that there is an isomorphism X ′ ≅B X ′′.
Indeed, due to Remark 7.9.4 and condition (α0) one may suppose that

OX ′(X ′) ≅k[z] OX (X)[ũ/f]
where ũ ∈ OX(X) verifies conditions (i) and (ii) of Lemma 7.8 with F0 being the set of
top level fiber components in X. Thus, it suffices to establish an isomorphism

(47) OX (X)[ũ/f] ≅OB(B) OX (X)[v/f] .
6We let ϕ∗(f, g, h) = (ϕ∗f,ϕ∗g,ϕ∗h) where ϕ∗ = (ϕ−1)∗.
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By Lemma 4.15 there exists τ ∈ SAutB X such that

(48) (τ ∣UF×A1)∗∶ (z, uF , v) ↦ (z, v,−uF ) mod zs

for any top level fiber component F in X, see (23). By (i) of Lemma 7.8, ũ ≡ uF mod zs

in UF . Due to condition (α0) all the components of f∗(0) in X are on the top level.
Therefore, τ∗ transforms the ideal I = (v, f) ⊂ OX (X) to I ′ = (ũ, f) ⊂ OX (X) preserving

the principal ideal (f). By Lemma 1.5, τ induces an isomorphism τ̃ ∶ X ′ ≅BÐ→ X ′′ which
gives (47), and so, proves our claim.

Let a be the maximal order of zeros of f . Letting ũ′ = ũ/f and v′′ = v/f one obtains

(49) τ∗∶ (z, ũ′, v′′) ↦ (z, v′′,−ũ′) mod zs−a .

Let F ′′ = τ̃(F ′) ⊂ X ′′. Consider the standard affine charts UF ′×A1 in X ′ and UF ′′×A1

in X ′′ with local coordinates (z, uF ′ , v′) and (z, uF ′′ , v′′), respectively, where

(50) uF ′′ = uF , v′ = v, and uF ′ = uF /f ≡ ũ′ mod zs−a .

From (48) and (49) one can deduce

τ̃ ∶ X ′ ≅BÐ→ X ′′, τ̃∗∶ (z, uF ′ , v′) ↦ (z, v′′,−uF ′′) mod zs−a .

Then by (46) and (50) one gets

β−1 ○ τ̃ ∶ X ′ ≅BÐ→ X , (z, uF ′ , v′) ↦ (z, v,−uF ) mod zs−a ,

and so,

τ−1 ○ β−1 ○ τ̃ ∶ X ′ ≅BÐ→ X , (z, uF ′ , v′) ↦ (z, uF , v) mod zs−a .

Thus, the isomorphism ϕ ∶= τ̃−1○β○τ ∶ X ≅BÐ→ X ′ verifies (45) with s replaced by s−a. �

As an illustration, we apply Proposition 7.11 to the Danielewski examples.

Example 7.12 (Danielewski surfaces). Recall that the nth Danielewski surface Xn

is given in A3 with coordinates (z, u, tn) by equation zntn − u2 + 1 = 0, see Example
3.9. The function tn = t0/zn yields (modulo z) a natural affine coordinate on each
component of the special fiber z = 0. The morphism %n∶Xn →Xn−1 is given by

(z, u, tn) ↦ (z, u, tn−1 = ztn) .
For any i ∈ {1, . . . , n − 1} the morphism %i+1 ○ . . . ○ %n∶Xn → Xi is a principal top level
stretching. Proposition 7.11 and Corollary 7.16 below provide an alternative proof of
the Danielewski–Fieseler Theorem ([17], [26]) which says that the cylinders Xn × A1,
n ∈ N, are all isomorphic whereas the surfaces Xn and Xm are not if n ≠m.

Remark 7.13. If, by chance, a GDF surface π∶X → B verifies condition (α0) with
respect to some trivializing sequence (8) and some marking z ∈ OB(B) then X admits
a free Ga-action along the fibers of π. In this case the conclusion of Proposition 7.11
can be derived by applying the Danielewski trick, see Section 1.3. See also Proposition
8.3 for concrete examples.

Next we provide an equivariant version of Proposition 7.11 with a similar proof. To
avoid a repetition we omit certain details of the proof.

Proposition 7.14. Let π∶X → B be a marked GDF µd-surface with a marking z ∈
OB(B) ∖ {0} of weight 1 verifying condition (α), see Proposition 7.11. Then for any
k ∈ Z and l ∈ N there exist a µd-equivariant principal top level (A, m̄)-stretching σ∶X ′ →
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X where A = div zld and a µd-equivariant isomorphism of cylinders ϕ∶ X (k)
≅µd,BÐ→ X ′(k)

verifying (45) for any component F of z∗(0) in X.

Proof. By virtue of Lemma 7.6(b) one may suppose that all the components of z∗(0) in
X are on the same top level m, that is, the graph divisor D(π) verifies condition (α0),
see the proof of Proposition 7.11. Let ũ ∈ OX(X) be a µd-quasi-invariant of weight −m
satisfying conditions (i) and (ii) of Corollary 3.8 with F0 being the set of (top level)
components of z∗(0) in X.

The iterated Asanuma modification of the second kind X ′′(k) → X(k), v′′ ↦ v =
zldv′′, is µd-equivariant along with the isomorphism

βk∶ X (k)
≅µd,BÐ→ X ′′(k), v ↦ v′′ .

By Lemma 4.16 one can find a µd-equivariant automorphism τ ∈ SAutB X(−m) which
interchanges modulo zs, up to a sign, the functions ũ and v (of the same weight −m)
and leaves z invariant. By Lemma 1.6, τ admits a lift to a µd-equivariant isomorphism

τ̃ ∶ X ′(−m)
≅µd,BÐ→ X ′′(−m)

verifying (49) for f = zld. Now the composition ϕ−m = τ̃−1○β−m○τ yields an isomorphism

X(−m)
≅µd,BÐ→ X ′(−m) verifying (45). By Lemma 5.4(c) one may replace the weight −m

by a given weight k. This does not affect (45) up to replacing s by s − d. �

We use below the following auxiliary fact.

Lemma 7.15. Let X be a normal affine surface that admits an A1-fibration X → C
over a smooth affine curve C, and let X̄ → C̄ be a pseudominimal completion of X → C
with extended graph Γext. Then the number v(Γext) of vertices of Γext does not depend
on the choice of an A1-fibration on X over an affine base. So, v(X) ∶= v(Γext) is an
invariant of X.

Proof. Recall (see [33, Def. 2.16]) that every feather component F of the extended divi-
sor Dext is born under a blowup at a smooth point of the boundary divisor D = X̄ ∖X.
The unique component Di of D containing the center of this blowup is called the mother
component of F . The normalization procedure as defined in [33, Def. 3.2] replaces Γext

by the normalized extended graph Γext,norm such that any feather component F in Γext

becomes an extremal (−1)-vertex in Γext,norm attached at its mother component Di. Un-
der this procedure the total number of vertices remains the same: v(Γext,norm) = v(Γext).
Furthermore, these graphs are assumed to be standard; the standardization procedure
does not affect the number of vertices either, see [33, §1]. By [33, Thm. 3.5] the stan-
dard normalized extended graph Γext,norm of X is unique, that is, it does not depend
on the choice of an A1-fibration on X over an affine base, unless X is a Gizatullin
surface. In the latter case the minimal dual graph Γ of D is linear and Γext,norm is
unique up to a reversion Γext,norm ↝ Γ∨

ext,norm. However, the reversion neither changes
the number of vertices in Γ nor does it in Γext,norm. The latter is due to the Matching
Principle ([33, Thm. 3.11]). According to this principle there is a bijection between
the feather components of Γext,norm and Γ∨

ext,norm along with their mother components.
In conclusion, v(Γext) = v(Γext,norm) is an invariant of the surface X. �

Corollary 7.16. Let θ ∶ X ′ → X be a principal geometric top-level (A, m̄)-stretching
between two GDF surfaces π′∶X ′ → B and π∶X → B where A = div f , f ∈ OX(X)∖{0}.
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Suppose that f(b) = 0 for some b ∈ B such that the fiber π−1(b) is reducible. Then
X ′ /≅X.

Proof. Consider a trivializing completion (X̂,D) for π∶X → B as in 2.28.1. Suppose
that its degenerate fibers are situated over the points b1, . . . , bn ∈ B. This completion
is pseudominimal if and only if for any i ∈ {1, . . . , n} the only (−1)-vertices of Γbi(π)
are leaves, that is, the root vi of the fiber tree Γbi(π) is not a (−1)-vertex, see Lemma
2.18(c). If vi is a (−1)-vertex then vi is a tip of an extremal linear branch Bi of
Γbi(π). There is an alternative: either Γbi(π) = Bi is a chain [[−1,−2, . . . ,−2,−1]], or
Bi is a branch [[−1,−2, . . . ,−2]] at a branching vertex v of Γbi(π) with weight ≤ −3.
In the former case, Γbi(π) can be contracted to a single (0)-vertex. In the latter
case, contracting Bi in Γbi(π) one gets a pseudominimal tree Γbi,min(π) with v as the
root. Performing these contractions of the branches Bi for all i = 1, . . . , n yields a
pseudominimal SNC completion (X̄min,Dmin) of X.

Notice that

● Bi ⊂ Γbi(π) ⊂ Γbi(π′);
● Γbi(π) is a chain if and only if the fiber π−1(bi) is irreducible, if and only if

Γbi(π′) is.

By our assumption the fiber π−1(bi) is reducible for some i ∈ {1, . . . , n}. Therefore,
Γbi(π) is not a chain. Then the (eventual) contraction of Bi in both Γbi(π) and Γbi(π′)
leads to two pseudominimal rooted trees Γbi,min(π) and Γbi,min(π′) where the number
of vertices in Γbi,min(π′) is larger by ai = ordbi(f) > 0 than the one in Γbi,min(π). In
turn, the simultaneous contractions in all the special fibers as described above lead
to the pseudominimal completions (X̄min,Dmin) and (X̄ ′

min,D
′
min) of π∶X → B and

π′∶X ′ → B, respectively, such that the corresponding extended graphs Γext,min and
Γ′

ext,min have different number of vertices. By Lemma 7.15 this number is invariant

upon isomorphisms of affine surfaces. Hence X /≅X ′, as claimed. �

7.2. Non-cancellation for GDF surfaces. The main result of this section is the
following theorem.

Theorem 7.17. Let π∶X → B be a GDF surface. Then X is a Zariski 1-factor if and
only if π∶X → B admits a line bundle structure.

Proof. The ‘if’ part follows from Proposition 6.1. As for the ‘only if’ part, see the
following version of Proposition 7.11 which avoids assumption (α). �

Proposition 7.18. Suppose that a GDF surface π∶X → B has a reducible fiber. Then
there exists a sequence of pairwise non-isomorphic GDF surfaces πYk ∶Yk → B with
cylinders isomorphic over B to the one of X: Yk ≅B X ∀k ∈ N.

Proof. Fix a trivializing well ordered sequence (8) of affine modifications with X =Xm.
Let l ∈ {1, . . . ,m} be the minimal index such that πl∶Xl → B in (8) has a reducible
fiber, say, π−1

l (b1) where b1 ∈ B. So, the graph divisor D(πl−1) is a chain divisor. Hence
πl∶Xl → B verifies condition (α) of Proposition 7.11.

Consider a principal top-level (A, m̄)-stretching σ∶X ′
l → Xl where A = div z. Ac-

cording to Proposition 7.11 for any s ≫ 1 there exists an isomorphism of cylinders

ϕl∶ Xl
≅BÐ→ X ′

l satisfying (45). To any component F ⊂ Xl of π−1
l (bi) there corresponds a

unique component F ′ ⊂X ′
1 of π′1

−1(bi) such that σ(F ′) = PF ′ ∈ F . Inspecting the proof
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of Proposition 7.11 we see that ϕl(F) = F ′ where F = F ×A1 ⊂ Xl and F ′ = F ′×A1 ⊂ X ′
l .

Due to (45) one has
ϕl(F × {0}) = F ′ × {0} .

We construct by recursion a sequence of GDF surfaces

(51) X ′
m

%′mÐ→X ′
m−1 Ð→ . . .Ð→X ′

l+1

%′l+1Ð→X ′
l

such that

(i) X ′
j ≅B Xj, j = l, . . . ,m;

(ii) X ′
j /≅Xj for any j = l, . . . ,m.

Let Σ = ⋃F ΣF be the center of the affine modification %l+1∶Xl+1 →Xl from (8) where
ΣF = Σ ∩ F . Set

F0 = {F ∣ΣF ≠ ∅}, F′0 = {F ′ ∣F ∈ F0} ,
ΣF ′ × {0} = ϕl(ΣF × {0}) ⊂ F ′ × {0} ,

and
Σ′ = ⋃

F ′∈F′0
ΣF ′ ⊂X ′

l .

Consider the fibered modification %′l+1∶X ′
l+1 →X ′

l along the reduced divisor z∗(0) with
the reduced center Σ′ ⊂ X ′

l . Let %̃l+1∶ Xl+1 → Xl and %̃′l+1∶ X ′
l+1 → X ′

l be the Asanuma
modifications of the first kind which correspond to %l+1 and %′l+1, respectively, see

Lemma 5.1(a). By construction, ϕl∶ Xl
≅BÐ→ X ′

l sends the center and the divisor of %̃l+1 to
the center and the divisor of %̃′l+1. By Lemma 1.5, ϕl lifts to an isomorphism of cylinders

ϕl+1∶ Xl+1
≅BÐ→ X ′

l+1. Likewise in (1) of Lemma 1.6, ϕl+1 verifies (45) with s replaced by
s − 1. Now one can apply the same argument to the isomorphism ϕl+1∶ Xl+1 Ð→ X ′

l+1

instead of ϕl∶ Xl Ð→ X ′
l . By recursion, we arrive at a sequence (51) such that Xi ≅B X ′

i

for all i = 1, . . . ,m.
Let Y1 = X ′

m and πY1 = πX′
m

. To finish the proof it suffices to repeat the same
construction with zk instead of z. This leads to a sequence of GDF surfaces Yk, k =
1,2, . . .. By Lemma 7.15 these surfaces are pairwise non-isomorphic. The proof goes
similarly as the one of Corollary 7.16. �

The following is an equivariant version of Proposition 7.18.

Proposition 7.19. Let π∶X → B be a marked GDF µd-surface which has a reducible
fiber. Then there exists a sequence of pairwise non-isomorphic marked GDF µd-surfaces
X(kd), k ∈ N, whose cylinders are µd-equivariantly isomorphic over B:

X (kd) ≅µd,B X ∀k ∈ N .

Proof. Consider a sequence (8) of µd-equivariant morphisms, and let πl∶Xl → B be
the first member of (8) which has a reducible fiber. Proceeding as in the proof of

Proposition 7.18 we let X
(kd)
l be the GDF µd-surface obtained from Xl via a principal

equivariant top-level (Ak, m̄)-stretching where Ak = div zkd, k ∈ N.
According to Proposition 7.14 for any s ≫ 1 there is a µd-equivariant isomorphism

of cylinders ϕl∶ Xl(−l)
≅µd,BÐ→ X (kd)

l (−l) satisfying (45). Repeating for any k ∈ N the
construction from the proof of Proposition 7.18 in a µd-equivariant fashion one arrives at

a sequence of marked GDF µd-surfaces X(kd) =X(kd)
m with µd-equivariantly isomorphic

cylinders X (kd)(−m) ≅µd,B X(−m) where the isomorphisms satisfy (45). By Lemma
5.4(c) there are µd-equivariant isomorphisms X (kd)(0) ≅µd,B X(0) .
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Arguing as in the proof of Corollary 7.16 one can see that the number of vertices of

the corresponding pseudominimal extended graphs Γ
(kd)
ext,min strictly increases with k. By

Corollary 7.16 the GDF surfaces X(kd), k = 0,1, . . ., are pairwise non-isomorphic. �

7.3. Extended graphs of Gizatullin surfaces. The covering trick can be extended
to completions as follows.

7.20 (Covering trick for a completion). Let πY ∶Y → C be an A1-fibration over an affine
curve C, and let π̄Y ∶ Ȳresolved → C̄ be a pseudominimal resolved completion of πY ∶Y → C
with extended graph Γext. Contracting the exceptional divisor E ⊂ Ȳresolved of the
minimal resolution of singularities of Y yields a birational morphism σ∶ Ȳresolved → Ȳ
where Ȳ → C̄ is a completion of πY ∶Y → C with a simple normal crossing boundary
divisor. Extending a branched covering B → C as in 2.2 to the smooth completions
B̄ → C̄ consider the normalizations of the cross-products Ȳresolved×C̄ B̄ and Ȳ ×C̄ B̄, the
respective minimal desingularizations X̂resolved → (Ȳresolved ×C̄ B̄)norm and X̂ → (Ȳ ×C̄
B̄)norm, and the induced P1-fibrations X̂resolved → B̄ and X̂ → B̄. Recall that the
branched covering construction applied to πY ∶Y → C gives a GDF surface πX ∶X → B
as in Definition 2.2. The surface X is smooth, see Lemma 2.18(b). Hence X̂ → B̄ is a

completion of X → B dominated by X̂resolved → B̄. The induced morphism σ̂∶ X̂resolved →
X̂ contracts the total transform of the exceptional divisor E of σ∶ Ȳresolved → Ȳ .

7.21. Recall (see e.g., [33] and Section 1.1) that a Gizatullin surface X is a normal
affine surface of class (ML0). Such a surface X admits two different A1-fibrations over
the affine line A1; in particular, X /≅ A1∗ × A1. For any A1-fibration π∶X → C over a
smooth affine curve C one has C ≅ A1 and π has at most one degenerate fiber. One
may assume that this is the fiber π−1(0).

In the proof of Theorem 7.24 we use the following fact.

Lemma 7.22. Let X be a Gizatullin surface. Then the following hold.

(a) Let Ω(X) stand for the set of isomorphism classes of the pseudominimal ex-
tended graphs Γext of all possible A1-fibrations π∶X → A1 with the special fiber
π−1(0). Then Ω(X) is finite. Hence there exists d ∈ N such that the multiplici-
ties of the fiber components of π∗(0) in any such fibration divide d.

(b) Given an A1-fibration X → A1 = C consider the GDF surface X̃ → B obtained
via the cyclic base change A1 = B → C, z ↦ zd with d as in (a) and a subsequent
normalization. Let Γ̃ext be the extended graph of a pseudominimal completion
of X̃. Then the set Ω̃(X,d) of isomorphism classes of the graphs Γ̃ext for all
possible A1-fibrations X → A1 = C is finite.

Proof. (a) By Lemma 7.15 the graphs Γext in Ω(X) have all the same number v(X) of
vertices. Notice that the number of non-isomorphic graphs on a given set of vertices
is finite. Furthermore, given an A1-fibration π∶X → A1 along with a pseudominimal
resolved completion π̄∶ X̄ → P̄1 the multiplicities of the fiber components of π̄−1(0) can
be deduced in a combinatorial way from the associated extended graph Γext. Hence
there is d ∈ N divisible by all these multiplicities for all possible A1-fibrations π∶X → A1.

To show (b) it suffices to restrict to the A1-fibrations onX with a fixed pseudominimal
extended graph Γext. Let π∶X → C = A1 be such an A1-fibration. Recall thatB ≅ C ≅ A1,
the only possible degenerate fiber of π is π−1(0), and the base change B → C is z ↦ zd.
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By 7.20 the extended graph Γ̂ext is dominated by Γ̂ext,resolved. In turn, the pseudo-

minimal extended graph Γ̃ext in Ω̃(X,d) is dominated by Γ̂ext and also by Γ̂ext,resolved.

This yields an upper bound for the number of vertices v(Γ̃ext) ≤ v(Γ̂ext,resolved). We

claim that v(Γ̂ext,resolved) is bounded above by a function depending only on d and on
Γext, and so, only on X, as desired.

To show the claim notice that for any vertex of Γext there is at most d vertices of
Γ̂ext,resolved such that the corresponding curves in X̂resolved dominate the one in X̄resolved.
Hence it suffices to find an upper bound on the number of the remaining vertices of
Γ̂ext,resolved which correspond to the curves in X̂resolved contracted in X̄resolved.

Let E′ and E′′ be two fiber components of the extended divisor Dext with respective
multiplicities m′ and m′′ that meet in X̄. Choose local coordinates (x, y) in X̄ centered
at the intersection point E′ ∩ E′′ = {p} with E′ and E′′ as the axes. Then the germ
of the cross-product X̄ ×C̄ B̄ near p is given by equation zd − xm′

ym
′′ = 0. Likewise, if

E′′ = S then the germ of X̄ ×C̄ B̄ near p is given by equation zd = xm′
. Normalizing

such a surface germ produces, in both cases, at most d cyclic quotient singularities of
type uniquely determined by d,m′, and m′′. The resolution graphs of these singular
points are the Hirzebruch-Jung strings uniquely determined by d and Γext. It follows
that the number of vertices in the total preimage in Γ̂ext,resolved of the edge [E,E′] of

Γext is bounded above in terms of d and Γext. Finally, v(Γ̂ext,resolved) is bounded above
by a function of d and Γext, as claimed. �

Remark 7.23. It follows that a Gizatullin surface X admits at most a finite number
of maximal families of pairwise non-equivalent A1-fibrations X → A1.

There is a remarkable sequence (Xn)n∈N of Gizatullin surfaces called the Danilov-
Gizatullin surfaces. Given n ∈ N there exists a deformation family Fn → Sn of A1-
fibrations Xn → A1 which are pairwise non-equivalent modulo the (AutXn)-action
where dimSn strictly grows with n ([32, Thms. 1.0.1, 1.0.5, and Ex. 6.3.21]).

7.4. Zariski 1-factors and affine A1-fibered surfaces. The following is the main
result of Section 7.

Theorem 7.24. Let π∶X → C be a normal A1-fibered affine surface over a smooth affine
curve C. Then X is a Zariski 1-factor if and only if π∶X → C admits a structure of a
parabolic Gm-surface.

The “if” part follows from Theorem 6.7. The “only if” part is proven in the next
proposition.

Proposition 7.25. Let π∶X → C be an A1-fibration on a normal affine surface X over
a smooth affine curve C. If X is a Zariski 1-factor then π∶X → C admits a structure
of a parabolic Gm-surface.

Proof. Assume that X → C does not admit a structure of a parabolic Gm-surface.
We are going to construct an infinite sequence of normal affine surfaces X(nd) non-
isomorphic to X such that the cylinders X (nd) and X are isomorphic, thus showing
that X cannot be a Zariski 1-factor.

Consider all possible A1-fibrations X → Z on X over smooth affine curves Z along
with the their pseudominimal extended graphs Γext. By Lemma 7.22(a) the set Ω(X)
of the isomorphism classes of graphs Γext is finite. So, there is d ∈ N which divides the
multiplicities of the fiber components in any A1-fibration X → Z.
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Applying to the given A1-fibration X → C the branched covering trick of Lemma 2.3
of degree d one obtains a marked GDF µd-surface X̃ → B. By Proposition 6.5, X̃ → B
does not admit a line bundle structure. By Proposition 7.19 there is a sequence of
pairwise non-isomorphic marked GDF µd-surfaces X̃(kd) → B such that for all k ∈ N the
cylinders X̃ (kd)(0) and X̃ (0) are µd-equivariantly isomorphic over B while v(X̃(kd)) →
∞ as k →∞ where v stands as before for the number of vertices in the extended graph
of a pseudominimal completion. Passing to the quotients under the µd-actions yields
a sequence of A1-fibered normal affine surfaces X(kd) = X̃(kd)/µd → C with cylinders
isomorphic over C:

X̃ (kd)(0)/µd ≅C X̃ (0)/µd = X ∀k ∈ N .

We claim that under our assumptions the surface X(kd) is not isomorphic to X for
any k ≫ 1. Suppose to the contrary that X(kd) ≅ X for an infinite set I of values of
k ≥ 1. Then X admits at least two different A1-fibrations over affine bases, that is, X

is a Gizatullin surface. Indeed, otherwise any isomorphism ϕ∶X(kd) ≅Ð→ X sends the
A1-fibration X(kd) → C to the unique A1-fibration X → C. It can be lifted via the base

change B → C and a normalization to an isomorphism ϕ̃∶ X̃(kd) ≅Ð→ X̃. This gives a
contradiction since v(X̃(kd)) > v(X̃) for k ≫ 1.

Thus, under our assumptions X and also X(kd) ≅ X, k ∈ I, are Gizatullin surfaces.
Hence C ≅ A1, and so, B ≅ A1 too. By Lemma 7.22(b) the set Ω̃(X,d) = Ω̃(X(kd), d),
k ∈ I, is finite. In particular, for any k ∈ I the pseudominimal extended graph Γ̃

(kd)
ext

associated with the GDF surface π̃∶ X̃(kd) → B (which is a cyclic cover of X(kd)) belongs
to the finite set Ω̃(X(kd), d) = Ω̃(X,d). Since the set I ⊂ N is infinite this contradicts

the fact that v(Γ̃(kd)
ext ) = v(X̃(kd)) → ∞ as k →∞. Hence X /≅X(kd) for all k ≫ 1. �

8. Classical examples

In this section we analyse from our viewpoint examples of non-cancellation due to
Danielewski [17], Fieseler [26], Wilkens [69], tom Dieck [68], and Miyanishi–Masuda
[54]. We retrieve certain classification results for Danielewski-Fieseler surfaces in A3

due to Dubouloz and Poloni ([25], [61]) and derive new explicite examples of non-
cancellation, see Proposition 8.3. See also [27, §4] and [53] for further examples.

Notation 8.1. Recall that a bush is a rooted tree such that all the branches at the
root vertex are chains, see Remark 6.6.2. Let Γd,m be the bush with d ≥ 1 branches
of equal lengths m ≥ 1. Let πd,m∶Xd,m → B = Spec k[z] ≅ A1 be a Danielewski-Fieseler
surface with the unique special fiber π−1

d,m(0) such that Γ0(πd,m) ≅ Γd,m. Thus, the fiber

π∗d,m(0) is reduced and has d components F1, . . . , Fd, all on level m.

Example 8.2. Let Xd,m,g be a surface given in A3 = Spec k[z, u, t] by an equation of
the form

(52) zmt − gm(z, u) = 0 where gm(z, u) = b0(u) + b1(u)z + . . . + bm−1(u)zm−1

for some bi ∈ k[u], i = 1, . . . ,m − 1 with deg bi ≤ d − 1 and some monic polynomial
b0 ∈ k[u] of degree d with simple roots. Then Xd,m,g is a surface of type Xd,m, see
[25, §3.1]. The surfaces Xd,m,g were classified in [61, Thm. 6.1(1)]; see also [16], [52],
and [58] for some particular cases. For the reader’s convenience we reproduce this
classification with a new proof.
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Proposition 8.3. (a) For any surface Xd,m as in 8.1 there exists a polynomial
g ∈ k[z, u] as in Example 8.2 such that Xd,m ≅B Xd,m,g. Vice versa, any surface
Xd,m,g as in 8.2 is a Danielewski-Fieseler surface Xd,m as in 8.1.

(b) Up to isomorphism over B = Spec k[z] the cylinder Xd,m,g =∶ Xd,m does not
depend on the choice of g in (52). Furthermore, Xd,m ≅B Xd′,m′ if and only if
d = d′.

(c) If Xd,m,g ≅ Xd′,m′,h then d = d′ and m = m′. For d,m ≥ 2 the following are
equivalent:
● Xd,m,g ≅Xd,m,h;
● there is a commutative diagram

(53)

Xd,m,g ≅
- Xd,m,h

B
? ≅ - B

?

● there exist α, λ ∈ k∗ and β, γ ∈ k[z] with degβ ≤m − 1 such that

h(z, u) = (g(λz, αu + β(z)) − γ(z))/αd

where γ is uniquely defined by d,m,α,λ, and β and the affine transforma-
tion u↦ αu+β(0) sends the roots of b0 = g(0, u) to the roots of c0 ∶= h(0, u).

Proof. Consider a pseudominimal SNC completion (X̄d,m,Dd,m) ofXd,m with projection
π̄d,m∶ X̄d,m → B̄ = P1 extending πd,m, the fiber at infinity F̄∞ ⊂ Dd,m, the section at

infinity S ⊂ Dd,m, and the unique reduced degenerate fiber π̄∗(0) = C0 +∑d
i=1Bi where

C0 is the root of Γ0(πd,m) ≅ Γd,m of weight C2
0 = −d, and Bi = Ci,1 + . . . + Ci,m−1 + F̄i,

i = 1, . . . , d are chains of length m with the sequence of weights [[−2, . . . ,−2,−1]] and
the (−1)-tips F̄i.

Let σ∶ X̄d,m → X̄d,m−1 be the contraction of F̄1, . . . , F̄d. The image of Ci,m−1 acquires
the weight −1 on X̄d,m−1. Iterating this procedure leads to a sequence (9):

(54) X̄d,m
%̄mÐ→ X̄d,m−1 Ð→ . . .Ð→ X̄d,1

%̄1Ð→ X̄d,0 = P1 × P1

along with the corresponding trivializing sequence (8) for Xd,m where X̄d,l is a pseudo-
minimal completion of Xd,l and

πd,0∶Xd,0 = A2 → B = A1, (z, u) ↦ z .

The affine modification Xd,1 → Xd,0 = Spec k[z, u] has divisor z = 0 and a reduced
center consisting of d distinct points, say, (0, α1), . . . , (0, αd). Let b0 ∈ k[u] be the
monic polynomial of degree d with simple roots α1, . . . , αd. One has

Xd,1 ≅B Xd,1,b0 where Xd,1,b0 = {zt1 − b0(u) = 0} ⊂ A3

is given by (52) with m = 1 and t = t1.
Assume by recursion that Xd,l ≅B Xd,l,gl where Xd,l,gl is given in A3 = Spec k[z, u, tl]

by an equation zltl − gl(z, u) = 0 as in (52). The surface Xd,l+1 in (8) is obtained from
Xd,l = Xd,l,gl by a fibered modification with the reduced divisor z∗(0) consisting of d
disjoint components, say, F1,l, . . . , Fd,l ⊂ Xd,l,gl (where the closure F̄i,l in X̄d,l is the
image of Ci,l) and a reduced center Z which consists of d points, say,

xi = (0, αi, βi) ∈ Fi,l, i = 1, . . . , d .
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Let bl ∈ k[u] be the polynomial of the minimal possible degree (so, deg bl ≤ d − 1) such
that bl(αi) + βi = 0, i = 1, . . . , d. The three surfaces in A3 = Spec k[z, u, tl],

Xd,l,gl , {z = 0}, and {bl(u) + tl = 0}
meet transversely at the points xi, i = 1, . . . , d. Hence for the ideal I ⊂ OXd,l(Xd,l) of Z
one has I = (z, bl(u) + tl). It follows that

OXd,l+1
(Xd,l+1) = OXd,l(Xd,l)[tl+1] where tl+1 = (bl(u) + tl)/z ,

see Definition 1.3. By the inductive hypothesis one obtains

tl = gl(z, u)/zl = (b0(u) + b1(u)z + . . . + bl−1(u)zl−1)/zl

where tl fits in (52) with m = l. Therefore, Xd,l+1 = Xd,l+1,gl+1
is given in A3 =

Spec k[z, u, tl+1] by the equation

zl+1tl+1 − gl+1(z, u) = 0 where gl+1(z, u) = b0(u) + b1(u)z + . . . + bl(u)zl .
This proves the first assertion in (a). Repeating the same argument in the reversed
order gives the second (alternatively, see [25, §3.1]).

By (a) two GDF surfaces Xd,m,g and Xd,m,h with the same d and m have the same
graph divisor. According to Theorem 5.7 the cylinders over these surfaces are isomor-
phic over B = Spec k[z].

For any m′ >m the affine modification

σm′,m∶Xd,m′ →Xd,m, σm′,m = %m+1 ○ ⋯ ○ %m′

is a principal top level stretching. Hence by Proposition 7.11 one has Xd,m ≅B Xd,m′ .
Alternatively, the latter follows by the Danielewski’s argument, see Remark 7.13.

The number d of components of the divisor z∗(0) in Xd,m is invariant upon isomor-
phisms of cylinders over B. This yields (b).

The extended graph Γext = F̄∞ ∪ S ∪ Γd,m of the pseudominimal completion
(X̄d,m,Dd,m) of Xd,m has v(Xd,m) = dm+3 vertices. According to Lemma 7.15, v(Xd,m)
is an invariant of the surface, as well as the Picard number %(Xd,m) = d − 1, see (34).
Hence Xd,m ≅Xd′,m′ implies dm = d′m′ and d = d′, and so, m =m′.

For d,m ≥ 2 the dual graph of the boundary divisor D̂d,m is minimal and nonlinear.
It follows that Xd,m is a surface of class (ML1), that is, it admits a unique A1-fibration
over an affine base. Hence any isomorphism Xd,m,g ≅ Xd,m,h fits in a commutative
diagram (79).

Next we follow the line of the proof of Lemma 5.12 in [31]. Assume there is an

isomorphism ϕ∶Xd,m,g
≅Ð→ Xd,m,h. The induced birational map ϕ̄∶ X̄d,m,g ⇢ X̄d,m,h fits

in the commutative diagram

X̄d,m,g
ϕ̄- X̄d,m,h

W

σ

?
ψ̄ - W ′

σ′

?

P1
? ≅

η
- P1

?
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where σ is the contraction of the disjoint union of chains7 Bi⊖ F̄i on X̄d,m,g, i = 1, . . . , d
with a sequence of weights [[−2, . . . ,−2]] of length m − 1 along with the root C0 to
a normal surface singularity of W , and σ′ is a similar contraction on X̄d,m,h. Clearly,
ϕ̄ is regular in the points of S ∖ (C0 ∪ F̄∞). So, ψ̄ is biregular over P1 ∖ {∞} outside
the isolated normal singularities of W and W ′. By the Riemann extension theorem, ψ̄
extends across the singular point of W yielding a biregular isomorphism ψ̄∶W∖σ(F̄∞) →
W ′ ∖ σ′(F̄ ′∞). It follows that ϕ̄ also extends to the minimal resolutions of singularities

yielding an isomorphism X̄d,m,g ∖ F̄∞
≅Ð→ X̄d,m,h ∖ F̄ ′∞.

Contracting on the surfaces X̄d,m,g ∖ (F̄∞ ∪ S) and X̄d,m,h ∖ (F̄ ′∞ ∪ S′) the unions of
chains ⋃di=1Bi and ⋃di=1B′i, respectively, yields an isomorphism

ϕ∶Xd,0,g = Spec k[z, u] ≅Ð→Xd,0,h = Spec k[z, u], (z, u) ↦ (λz,αu + β(z))
where α,λ ∈ k∗ and β ∈ k[z]. It sends the roots of b0(u) = g(0, u) into the roots of
c0(u) = h(0, u). Hence

c0(u) = α−db0 ○ ϕ(0, u) = α−db0(αu + d0) .
The automorphism ϕ ∈ Aut A2 extends to an automorphism Φ ∈ Aut A3,

(55) Φ∶ (z, u, t) ↦ (λz,αu + β(z), α
d

λm
t + γ(z)) ,

with a unique polynomial γ ∈ k[z] depending on d,m,α, β, λ such that the resulting
equation zdt−h(z, u) = 0 of the surface Xd,m,h = Φ(Xd,m,g) has again the required form
(52). The uniqueness of γ follows from the relation

αdh(z, u) = g(λz,αu + β(z)) − λmγ(z) .
This relation shows as well that h(z, u) is independent of the higher order terms of
β(z). The rest of the proof of (c) is easy and can be left to the reader. �

8.4. Proposition 8.3 was established by Wilkens ([69]) for k = C, d = 2, m ≥ 2, and
g(z, u) in (52) of the form g(z, u) = h(z)u+u2 where h ∈ k[z] is a polynomial of degree
degh < m with h(0) ≠ 0. Generalizing the examples of Danielewski-Fieseler [17, 26]
and tom Dieck [68], Miyanishi and Masuda ([54]) considered yet another instance of
surfaces in A3

C given by (52).

Example 8.5 (Masuda-Miyanishi [54]). Given natural d,m with d > m ≥ 2 and a
homogeneous polynomial

(56) g(z, u) = ud + a2u
d−2z2 + . . . + adzd

consider the surface X(d,m, g) in A3 defined by the equation

zmt − g(z, u) − 1 = 0 .

Then π = z∣X(d,m,g)∶X(d,m, g) → B = Spec k[z] is a Danielewski-Fieseler surface with a
unique special fiber π−1(0) consisting of d components on level m. The examples of tom
Dieck ([68]) correspond to the case g(z, u) = ud. By a suitable triangular automorphism
(z, u, t) ↦ (z, u, t − b(z, u)) one can eliminate the last d −m terms in (56) and reduce
the equation to (52). The next result of Miyanishi and Masuda is a particular case of
Proposition 8.3.
7 For a subgraph Γ′ of a graph Γ we let Γ⊖Γ′ denote the graph obtained from Γ by deleting Γ′ along
with the edges of Γ incident to Γ′.

65



Proposition 8.6. ([54, Thm. 2.8]) With the notation as in 8.5 the following hold.

(a) X(d,m, g) ≅B X(d,m′, h) for any d,m,m′ and g, h ∈ k[z, u] as in (56).
(b) X(d,m, g) ≅ X(d,m′, h) if and only if m = m′ and h(z, u) = g(λz, u) for some

λ ∈ k∗.

9. GDF surfaces with isomorphic cylinders

This section is devoted to the proof of Theorem 0.6 in the Introduction; see also
Theorem 9.4 below. Hereafter B stands for a smooth affine curve.

9.1. Preliminaries.

9.1. Recall (see Definition 7.3) that the Danielewski-Fieseler quotient DF(π) of a GDF
surface π∶X → B is a one-dimensional scheme obtained as the quotient of X by the
equivalence relation defined by the fiber components of π. The type divisor tp .div(π) is
an anti-effective divisor on DF(π) taking the value −l(F ) for a special fiber component
F of π on level l(F ), see Definition 7.4.

The linear equivalence of divisors on DF(π) is, as usual, the equivalence modulo the
principal divisors on DF(π). The latter divisors are just the principal divisors on B
lifted to DF(π). The Picard group Pic DF(π) is defined in a usual way. To a GDF
surface π∶X → B we associate its Picard class [tp .div(π)] ∈ Pic DF(π). If π∶X → B
represents a line bundle L over B then DF(π) = B and [tp .div(π)] = [L] ∈ PicB.

Remarks 9.2. 1. Let q∶DF(π) → B be the natural projection, and let b1, . . . , bn ∈ B
be the points such that Nj ∶= card q−1(bj) > 1. It is easily seen that

Pic DF(π) ≅ (PicB) ⊕Z%(π) where %(π) =
n

∑
j=1

(Nj − 1) .

2. Let π∶X → B be a GDF surface. It is well known that the natural projection
p∶X → DF(π) admits a structure of an A1-fiber bundle (see, e.g., Proposition 3.3).
If DF(π) is non-separated then the latter fiber bundle does not admit any regular
section. Indeed, the image of such a section would be a non-separated reduced proper
subscheme of X. However, the latter is not possible since X is separated. By a similar
reason, given a line bundle L over DF(π), the total space of L is affine if and only if
DF(π) is separated, that is, DF(π) = B.

3. Let as before F be a special fiber component of π on level l(F ). Let bF = p(F ) ∈
DB(X), bi = π(F ) = q(bF ) ∈ B, and Bi = B ∖ {b1, . . . , bn} ∪ {bi}.

Given a regular section s0∶B → X0 = B × A1 in (8) the proper transform sm of s0

in X = Xm acquires a pole of order l(F ) over bF . The latter means the following.
Choose the standard affine chart UF ≅Bi Bi×A1 about F with natural local coordinates
(z, uF ) where z ∈ OB(B) is a marking giving a local parameter on (Bi, bi). Then at
the point bi the rational function zlFuF ○ sm is regular and does not vanish. Therefore,
−div∞(sm) ∼ tp .div(π) where the pole divisor div∞(sm) on DF(X) is defined above.
The proof goes by induction on the length lF of the shortest path in the fiber tree
Γbi(π) joining the vertex F̄ with the root. Each subsequent blowup in (8) along this
path increases the pole order by one.

Example 9.3. If all the fibers of a GDF surface π∶X → B are irreducible then π is
the projection of a locally trivial A1-fiber bundle. Since the base B is affine this fiber
bundle admits regular sections. Given such a section Z there is a unique structure of
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a line bundle, say, L on π∶X → B with zero section Z. Let Z ′ ≠ Z be a second regular
section of L, and let L′ be the line bundle over B with projection π and zero section
Z ′. Since the effective zero divisor divZ(Z ′) = divZ′(Z) belongs to the classes of both
L and of L′ in PicB, these classes coincide, that is, L ≅B L′.

Notice that any class in PicB contains effective and anti-effective divisors. Via the
above procedure any such class can be represented by an A1-fiber bundle X → B, that
is, by a GDF surface with only irreducible fibers.

9.2. Classification of GDF cylinders up to B-isomorphism. Theorem 0.6 can
be reformulated as follows.

Theorem 9.4. Let πX ∶X → B and πY ∶Y → B be two GDF surfaces over the same
base B. Then the cylinders X = X × A1 and Y = Y × A1 are isomorphic over B if and

only if there exists an isomorphism τ ∶DF(πX) ≅BÐ→ DF(πY ) such that [tp .div(πX)] =
[τ∗(tp .div(πY ))] in the Picard group Pic DF(πX).

The proof starts with the following elementary lemma.

Lemma 9.5. An isomorphism ϕ∶ X ≅BÐ→ Y induces an isomorphism τ ∶DF(πX) ≅BÐ→
DF(πY ).

Proof. The Danielewski-Fieseler quotient DF(πX) is the quotient of X by the equiva-
lence relation defined by the fiber components of πX . It coincides with the quotient of
the cylinder X by the equivalence relation defined by the fiber components of X → B.

The isomorphism ϕ∶ X ≅BÐ→ Y respects the latter equivalence relations on X and Y . �

This lemma along with the linear equivalence of the type divisors established in
Section 9.6.1 gives the ‘only if’ part of Theorem 9.4.

The strategy of the proof of the ‘if’ part is as follows. We reduce the assertion to
the case where the type divisor completely determines the graph divisor. This is so
indeed if the fiber trees are bushes, see Definition 9.7. First we obtain this reduction
assuming that the GDF surface πX ∶X → B has a unique special fiber π−1

X (b0), b0 ∈ B,
see Theorem 9.28. In Section 9.6.2 we treat the general case of GDF surfaces with any
number of special fibers.

Theorem 5.7 is crucial for the proof. This theorem says that certain continuous
parameters of a GDF surface πX ∶X → B are irrelevant for the B-isomorphism class of
the cylinder X =X × A1. This allows to replace the initial GDF surface πX ∶X → B by
a suitable new one πX′ ∶X ′ → B which carries the same graph divisor D(πX′) = D(πX)
and admits a quite simple explicit description.

Let us indicate some corollaries of Theorem 9.4. First of all, the GDF surfaces over
a given smooth affine curve B which are not Zariski 1-factors and whose cylinders
are isomorphic over B to a given one form a countable number of families with affine
bases. The dimensions of the bases are unbounded. This follows also from Theorem
5.7, Proposition 7.11, Lemma 7.15, and Corollary 7.16. A similar conclusion holds as
well for the collection of all normal affine surfaces A1-fibered over a given smooth affine
curve and having a given cylinder.

The following result confirms Conjecture 1.1 under a certain additional assumption.
It is due to Bandman and Makar-Limanov ([9, Thm. 1]).

Theorem 9.6 (Bandman-Makar-Limanov). Let πX ∶X → A1 be a Danielewski-Fieseler
surface, that is, a GDF surface over B = Spec k[z] with the unique special fiber z∗(0).
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Then there is an isomorphism of cylinders X ≅B Y where Y = Y × A1 is the cylinder
over a Gizatullin GDF surface πY ∶Y → A1. Hence the group SAutX acts in X with a
Zariski open orbit O such that codimX(X ∖O) ≥ 2.

An elegant direct proof of this theorem in [9] exploits the Danielewski construction.
We provide here an alternative argument based on Theorem 9.4.

Proof. The assertion is trivial if X ≅ A2. To exclude this case we will assume that the
fiber π−1

X (0) with the fiber tree Γ0 = Γ0(πX) is reducible. Letting tp(Γ0) = (ni)i=0,...,h

by our assumption n0 = 0 and h = ht(Γ0) > 0.
By Theorem 9.4 it suffices to find a Gizatullin GDF surface πY ∶Y → A1 with a unique

special fiber π−1
Y (0) such that tp(Γ0(πY )) = tp(Γ0). Consider a chain γ0 = [v0, . . . , vh−1]

of length h − 1. Let Γ′
0 be the rooted tree with v0 for the root, γ0 for the trunk, and

with the leaves vi+1,j, j = 1, . . . , ni+1 on level i + 1, i = 0, . . . , h − 1, joint with γ0 by the
edges [vi, vi+1,j]. So, Γ′

0 has exactly ni leaves vi,j on level i. Therefore, tp(Γ′
0) = tp(Γ0).

Let πY ∶Y → A1 be a Danielewski-Fieseler surface such that Γ0(πY ) = Γ′
0. By Theorem

9.4 one has X ≅B Y. Clearly, Y /≅ A1 × A1∗ is a Gizatullin surface. Indeed, there exists
an SNC completion (Ȳ ,D) of Y with the linear dual graph Γ(D) = [F∞, S, v0, . . . , vh−1]
obtained by attaching to γ0 the [[0,0]]-chain [F∞, S]. Thus, Y is a Gizatullin surface.

The group SAutY acts on Y with a Zariski open orbit whose complement is finite
([39]). Hence also SAutY ⊃ SAutY × SAut A1 has a Zariski open orbit in Y ≅ X with
a complement of codimension at least 2. In particular, ML(X) ≅ ML(Y) is trivial. �

9.3. GDF surfaces whose fiber trees are bushes. In this subsection we assume
for simplicity that B is the affine line A1 and π∶X → A1 has a unique special fiber
π−1(0). Later on we will indicate the modifications which allow to treat the general
case.

Definition 9.7 (Bushes). Recall that a bush is a rooted tree Γ such that the branches
of Γ at the root v0 are chains, see Figure 1. If tp(Γ) = (ni)i≥0, see 2.19, then Γ has
exactly ni branches of height i, the root v0 of Γ being the common tip of each branch.

Figure 1. A bush Γ of height 3 and of type tp(Γ) = (0,2,1,2)

Definition 9.8 (Accompanying sequence of a bush). Let Γ be a bush of height m > 0.
We associate with Γ a sequence (pi, ri)i=1,...,m ∈ (k[u])2m of pairs of monic polynomials
with simple roots such that

● deg pi equals the number of vertices of Γ on level i;
● pi+1∣pi for i = 1, . . . ,m − 1;
● ripi = p1 for i = 1, . . . ,m.
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Thus, r1 = 1 and ri∣ri+1 for i = 1, . . . ,m − 1. Furthermore, tp(Γ) = (ni)i≥0 where
ni = deg pi−deg pi+1; see Definition 2.19. For instance, for Γ in Figure 1 one can choose

(57) p1 =
4

∏
i=0

(u − i), p2 =
2

∏
i=0

(u − i), p3 =
1

∏
i=0

(u − i), and ri = p1/pi, i = 1,2,3 .

To any root α of p1 there corresponds a unique branch Bα of Γ of height l(α) ∶=
ht(Bα) ≥ 1 where l(α) satisfies

(58) p1(α) = p2(α) = . . . = pl(α)(α) = 0 and pl(α)+1(α) ≠ 0

or, which is equivalent,

(59) r1(α) ≠ 0, . . . , rl(α)(α) ≠ 0, rl(α)+1(α) = . . . = rm(α) = 0 .

Example 9.9. Consider the surface Xm = {zmt − p(u) = 0} in A3 of Danielewski type
with the projection πm∶Xm → A1, (z, u, t) ↦ z. Then Γ0(πm) is a bush with d = deg p
branches of equal length m and (pi, ri) = (p,1) for i = 1, . . . ,m; cf. Examples 3.9, 3.10,
and 7.12.

Remark 9.10. The accompanying sequence (pi, ri)i=1,...,m of Γ is uniquely determined
by the pair (Γ, p1). Given Γ this family of polynomials is parameterized by the coeffi-
cients of p1, that is, by the points in An ∖Dn where n = deg p1 and Dn = {discr(p1) = 0}
is the discriminant hypersurface in An.

Hereafter we adopt the following convention.

Convention 9.11 (Reduction of the base field). Given a finite collection of affine
varieties over k defined by systems of polynomial equations in AN one can replace the
base field k by the finite extension Q ⊂ k′ generated in k by the coefficients of all these
polynomials. Choosing an embedding k′ ↪ C one may assume that k = C.

In the next proposition we associate to any bush Γ0 along with an accompanying
sequence (pi, ri) a certain Danielewski-Fieseler surface π∶X → A1 in AN such that
Γ0(π) = Γ0; cf. [19, 20, 25].

Proposition 9.12. Fix a bush Γ0 of height m > 0 and an accompanying sequence
(pi, ri)i=1,...,m as in 9.8. For 1 ≤ j ≤ m consider the subvariety Wj ⊂ Aj+2 =
Spec k[z, u, t1, . . . , tj] given by

(60) zt1 − p1(u) = 0, zti − ri(u)ti−1 = 0, i = 2, . . . , j .

Then the following hold.

(i) There is a unique irreducible component Xj of Wj which dominates the z-axis;
(ii) πj ∶= z∣Xj ∶Xj → A1 is a GDF surface with the unique special fiber π−1

j (0);
(iii) (Xj)j=1,...,m fits in a sequence (8) of fibered modifications

Xm
%mÐ→Xm−1 Ð→ . . .Ð→X1

%1Ð→X0 = A2 = Spec k[z, u]
where

%i∶ (z, u, t1, . . . , ti) ↦ (z, u, t1, . . . , ti−1) , i = 1, . . . ,m ;

(iv) Γ0(πj) is the bush Γ0 truncated at the level j. In particular, Γ0(πm) = Γ0.

Proof. Consider the hyperplane L0 = {z = 0} in Aj+2. The projection

(61) π∶Aj+2 → A2, (z, u, t1, . . . , tj) ↦ (z, u)
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restricted to Wj ∖ L0 yields an isomorphism Wj ∖ L0 ≅ A1∗ × A1. The closure Xj ∶=
Wj ∖L0 is a surface satisfying (i) such that πj ∣Xj∖L0 ∶Xj ∖L0 → A1∗ is induced by the
first projection of A1∗ × A1. Any component of Wj different from Xj is of the form
{(0, α)} × Aj where α is a root of p1 and Aj = Spec k[t1, . . . , tj].

Let us introduce the following notation. Given a root α of p1 consider the open
set ω(α) ⊂ A1 = Spec k[u] given by p1(u)/(u − α) ≠ 0. Let U0(α) = A1 × ω(α) ⊂ X0 =
Spec k[z, u], and for j = 1, . . . ,m let Uj(α) = π−1(U0(α)) ⊂Xj where π is as in (61). The
collection {Uj(α)}p1(α)=0 gives an open covering of Xj. Restricting to Uj(α) amounts
to passing to the localization

OUj(α)(Uj(α)) = OXj(Xj)[(u − β)−1∣p1(β) = 0, β ≠ α] .
The projection πj ∣Uj(α)∶Uj(α) → A1 = Spec k[z] is dominant and defines an A1-fibered
surface such that Uj(α) ∖L0 =Xj ∖L0.

Claim. Let (59) holds for a root α of p1 with l(α) = l. Then the pair (z, tj − tj(x))
for j ∈ {1 . . . , l} and (z, tl − tl(x)) for j ∈ {l, . . . ,m}, respectively, is a local analytic
coordinate system near any point x ∈Xj such that z(x) = 0 and u(x) = α. In particular,
(Xj, x) is a smooth surface germ. The divisor π∗j (0) is reduced, the fiber π−1

j (0) is
smooth, and each of its components is isomorphic to A1.

Proof of the claim. Replacing u by u−α one may assume that α = 0. All the assertions
but the last one are local, hence one may restrict to the neighborhood Uj ∶= Uj(0) of x.

We proceed by induction on j. Since p1(u)/u ∈ k[u] does not vanish in U0 one has
by (60):

OU1(U1) = OU0(U0)[p1(u)/z] = OU0(U0)[u/z] .
Thus, U1 → U0 is an affine modification of U0 ⊂ A2 = Spec k[z, u] along the reduced
divisor z∗(0) whose center is the ideal (z, u). This yields an embedding U1 ↪ A2 =
Spec k[z, t′1] where t′1 = u/z commuting with the projections to A1 = Spec k[z] and
sending the exceptional divisor to the axis {z = 0} in A2. Since t1 = p1(u)/z and t′1
differ in U1 by the invertible factor p1(u)/u our assertions hold for j = 1.

Assume by recursion that for some j < l there is an embedding Uj ↪ A2 = Spec k[z, t′j]
which commutes with the projections to A1 = Spec k[z]. Consider the map Uj+1 → Uj
forgetting the last coordinate tj+1 = rj+1(u)tj/z, see (60). Since j + 1 ≤ l the function
rj+1 is invertible in Uj, see (59). Hence

(62) OUj+1
(Uj+1) = OUj(Uj)[rj+1(u)tj/z] = OUj(Uj)[tj/z] .

This yields an embedding Uj+1 ↪ A2 = Spec k[z, t′j+1] commuting with the projections
to A1 = Spec k[z] where t′j+1 ∶= tj/z differs in Uj+1 from tj+1 by an invertible factor rj+1.
Hence (z, tj+1) gives local analytic coordinates near the axis z = 0. This proves the
claim for j = 1, . . . , l.

The first equation in (60) gives u/z = ut1/p1(u) ∈ OUj(Uj). Hence rj+1(u)/z ∈
OUj(Uj), and so, OUj+1

(Uj+1) = OUj(Uj) for all j ∈ {l, . . . ,m − 1}, see (62). This means
that Uj+1 → Uj is an isomorphism commuting with the projections to A1 = Spec k[z].
Now the claim follows.

According to the claim for any j = 1, . . . ,m the surface Xj is smooth, the fiber π∗j (0)
is reduced, and the unique component Fα,j ⊂ Xj of this fiber with u∣Fα,j = α is an
A1-curve parameterized by tl where l = min{j, l(α)}. This yields (ii).

It follows also that the morphism %j+1∶Xj+1 → Xj as in (iii) sends the affine line
Fα,j+1 ⊂ Xj+1 isomorphically onto the affine line Fα,j ⊂ Xj for any j = l, . . . ,m − 1 and
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contracts Fα,j+1 to the point (0, α,0, . . . ,0) ∈ Aj+2 for any j = 0, . . . , l − 1. This proves
(iii) and shows as well that Fα,j is on level j for 1 ≤ j ≤ l−1 and on level l for l ≤ j ≤m.
Hence one has Γ0(πj) = (Γ0)≤j as stated in (iv). �

Remark 9.13. It follows from the proof that Γ0(πj ∣Uj(α)) = (Bα)≤j for j = 1, . . . , l(α)
and Γ0(πj ∣Uj(α)) = Bα for j = l(α), . . . ,m. In particular, the graph Γ0(πm∣Um(α)) coin-
cides with the branch Bα of Γ0 of height ht(Bα) = l(α).

From Proposition 9.12 and its proof we deduce such a corollary.

Corollary 9.14. We keep the notation as before. Given a root α of p1 consider the
fiber component Fα = Fα,m = {z = 0, u − α = 0} ⊂ π−1

m (0) on Xm. Then the following
hold.

(a) tl(α) coincides with u−α
zl(α)

up to a factor which is a regular and invertible function
in a Zariski open neighborhood Um(α) ⊂Xm of Fα;

(b) (z, tl(α)) yields a local analytic coordinate system in Xm near Fα;
(c) for i ∈ {1, . . . ,m} the restriction ri(u)ti∣Fα vanishes if i ≠ l(α) and gives an

affine coordinate on Fα ≅ A1 if i = l(α).

Proof. Statements (a) and (b) follow by an argument in the proof of Proposition 9.12
(see the Claim).

(c) By (59) one has ri(α) = 0 for i > l(α) and ri(α) ≠ 0 for i ≤ l(α). Due to (b),
ri(α)ti∣Fα is an affine coordinate if i = l(α). If i < l(α) then ri+1(α) ≠ 0 and, by (60),
ti∣Fα = z ti+1

ri+1(α) ∣Fα = 0. �

9.4. Spring bushes versus bushes. In this section we extend the results of Section
9.3 to the Danielewski-Fieseler surfaces whose fiber trees are spring bushes.

Definition 9.15 (Spring bush). A rooted tree Γ̂ of height ĥ ≥ 1 is called a spring bush

if the truncation Γ ∶= Γ̂≤ĥ−1 is a bush sharing the same root with Γ. Thus, any leaf of

Γ̂ is a neighbor of a leaf of Γ. A spring bush is not necessarily a bush (see Figure 2).

Γ̂ ∶ Γ ∶

Figure 2. A spring bush Γ̂ of type tp(Γ̂) = (0,0,3,1,2) over a bush Γ = Γ̂≤3

Definition 9.16 (Accompanying sequence of a spring bush). Let Γ̂ be a spring bush

of height ĥ = ht(Γ̂) over a bush Γ of height h = ĥ − 1, and let (pi, ri)i=1,...,h be the
accompanying sequence of Γ. Recall that for each root α of p1 there corresponds a
unique linear branch Bα of Γ (see Definition 9.8). Let pĥ be the monic polynomial
dividing ph such that the roots of pĥ correspond to the branches of Γ linked to the

top vertices of Γ̂. Let also rĥ = p1/pĥ. For instance, for Γ̂ in Figure 2 along with the
accompanying sequence (57) of Γ and the root α1 = 0 of p1 one has (p4, r4) = (u, p1/u).
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For a branch Bα of Γ linked to n(α) leaves of Γ̂ we fix a monic polynomial with
simple roots qα ∈ k[v] of degree n(α) where qα(v) = v if n(α) = 1. We let

(63) q(u, v) = ∑
p1(α)=0

qα(v)
p1(u)
u − α ∈ k[u, v] .

The system of polynomials {(pi, ri)i=1,...,ĥ, q} is called an accompanying sequence of Γ̂.

Our main result in this section is the following.

Proposition 9.17. Let Γ̂ be a spring bush, and let Γ̃ be a bush with tp(Γ̂) = tp(Γ̃), see

Figure 3. Letting B = Spec k[z] ≅ A1 consider Danielewski-Fieseler surfaces πX̂ ∶ X̂ → B

and πY ∶Y → B with the unique special fibers over 0 ∈ B such that Γ0(X̂) = Γ̂ and

Γ0(Y ) = Γ̃. Then there is an isomorphism of cylinders ϕ∶ X̂ ≅BÐ→ Y which sends the

components of z∗(0) in X̂ to components of z∗(0) in Y preserving the levels.

Γ̂ ∶ Γ̃ ∶

Figure 3. A spring bush Γ̂ and a bush Γ̃ of the same type (0,1,2)

The proof is done at the end of this section. We start with the following elementary
fact that can be interpreted in terms of commuting affine modifications, cf. Remark
1.4.2.

Lemma 9.18. Let A be an affine domain, and let a1, . . . , ak, b1, . . . , bl ∈ Frac(A) be
elements of the field of fractions of A. Consider the extensions A′ = A[a1, . . . , ak],
B = A[b1, . . . , bl], and B′ = A[a1, . . . , ak, b1, . . . , bl]. Then B′ = B[a1, . . . , ak], that is,
the extensions A ⊂ A′ and B ⊂ B′ share the same system of generators a1, . . . , ak.

Remark 9.19. Let π∶X → B be a marked GDF surface with a marking z ∈ OB(B)
where z∗(0) = b1+ . . .+bn is a reduced effective divisor. Performing a principal (A,−1)-
stretching with the divisor A = div zd = d(b1 + . . .+ bn) one may suppose that the graph
divisor D(π) does not have any leaf on level ≤ d − 1; cf. Lemma 7.5.

Notation 9.20. In the remaining part of this section we consider the following objects.

● Γ̂ - a spring bush of height ht(Γ̂) = m + 1 ≥ 3 over a bush Γ along with an
accompanying sequence {(pi, ri)i=1,...,m+1, q} as in 9.16. According to Remark
9.19 we may and we will assume that Γ has no branch of height 1;

● Γh - the subbush of height m + 1 of Γ̂ obtained by removing on each branch of
Γ̂ of height m + 1 all leaves but one, see Figure 4;

● Γs - the subbush of height m of Γh obtained from Γh by removing all the leaves
of Γh, see Figure 4;

● Bs(α) - the branch of Γs of height ls(α) = ht(Bs(α)) which corresponds to a
root α of p1; Bh(α) ⊂ Γh and lh(α) are defined likewise;

● B = Spec k[z] ≅ A1;

● π̂∶ X̂ → B, πh∶Xh → B, and πs∶Xs → B - the Danielewski-Fieseler surfaces
with a unique special fiber over 0 ∈ B such that Γ0(π̂) = Γ̂, Γ0(πh) = Γh, and
Γ0(πs) = Γs where
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● Xh ⊂ Am+3 and Xs ⊂ Am+2 satisfy the corresponding systems (60). So, (60)
provides the extensions

k[z, u] ⊂ OXs(Xs) ⊂ OXh(Xh) ;

● Fs(α) ⊂Xs - the fiber component of z∗(0) corresponding to the leaf of Bs(α);
● ts(α) = (u − α)/zls(α) - an affine coordinate on Fs(α), see Corollary 9.14(a);
● Fh(α) ⊂Xh and th(α) are defined likewise;

● X̂ ,Xh,Xs - the cylinders over X̂,Xh, and Xs, respectively;
● Fs(α) = Fs(α) × A1 ≅ Spec k[ts(α), v] ≅ A2 - the fiber component of z∗(0) in Xs

which corresponds to α; Fh(α) ⊂ Xh is defined likewise.

Γ̂ ∶ Γh ∶ Γs ∶

Figure 4. A spring bush Γ̂ and its subbushes Γh and Γs

Lemma 9.21. There is an isomorphism X̂ ≅B V where the affine threefold V results
from the affine modification V → Xh along the divisor z∗(0) on Xh with center the ideal
(z, q(u, v)) ⊂ OXh(Xh) for q ∈ k[u, v] as in (63).

Proof. Let ts ∈ OXs(Xs) be such that ts∣Fs(α) = ts(α) for any root α of p1. The extension

(64) OXs(Xs) ⊂ OXh(Xh) = OXs(Xs)[ts/z]
amounts to the fiber modification σh∶Xh → Xs along the divisor z∗(0) whose center is
the ideal (z, ts) ⊂ OXs(Xs). The extension

(65) OXs(Xs) ⊂ OX̂(X̂) = OXs(Xs)[q(u, ts)/z]
amounts to the fiber modification X̂ → Xs along the divisor z∗(0) whose center is the
ideal (z, q(u, ts)) ⊂ OXs(Xs).

Letting OXs(Xs) = OXs(Xs)[v], by Lemma 5.1 applied to (65) the cylinder X̂ can be

obtained from Xs via the affine modification σ̂∶ X̂ → Xs along the divisor z∗(0) whose
center is the ideal Js = (z, q(u, ts), v) ⊂ OXs(Xs), that is,

(66) OX̂ (X̂ ) ≅k[z] OXs(Xs)[q(u, ts)/z, v/z] .
The ideal Js defines a reduced zero dimensional subscheme S ⊂ Xs. Let

S(α) = S ∩ Fs(α) = Fs(α) ∩ {qα(ts) = 0} .
One has cardS(α) = n(α) ≥ 1, see (63). In the case ls(α) < m one has n(α) = 1 and
Sα = {ts = 0, v = 0} ⊂ Fs(α). Let

S(α) = {ts = 0, qα(v) = 0} ⊂ Fs(α) .
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One has cardS(α) = cardS(α) and, moreover, S(α) = S(α) if ls(α) < m, see 9.16.
According to Theorem 4.4 the relative flexibility holds for the cylinder Xs (see Definition
4.2). Hence there is an automorphism τ ∈ SAutB(Xs) such that

● τ(Fs(α)) = Fs(α) ∀α;
● τ ∣Fs(α) = id if ls(α) <m;
● τ(S(α)) =S(α) if ls(α) =m.

Thus, τ(S(α)) =S(α) for any α, and so, τ∗ sends Js to the ideal Is ∶= (z, ts, q(u, v)) ⊂
OXs(Xs).

Consider further the affine threefold W = SpecOXs(Xs)[ts/z, q(u, v)/z]. It results
from the affine modification of Xs along the divisor z∗(0) whose center is the ideal Is.

By virtue of (66) and Lemma 1.5, τ admits a lift to an isomorphism X̂ ≅BÐ→ W . We
claim that there is an isomorphism W ≅B V . Indeed, using (64) and Lemma 9.21 one
obtains

OW (W ) = OXs(Xs)[ts/z, q(u, v)/z]
= OXs(Xs)[ts/z][q(u, v)/z] ≅k[z] OXh(Xh)[q(u, v)/z] = OV (V ) .

�

In the proof of Proposition 9.17 we use the following Lemmas 9.22–9.25.

Lemma 9.22. We adopt Notation 9.20. To a trivializing sequence (8) for Xh:

(67) Xh =Xh,m+1
%m+1Ð→ Xh,m Ð→ . . .Ð→Xh,1

%1Ð→Xh,0 = B × A1

there corresponds a trivializing sequence (27) of cylinders:

(68) Xh = Xh,m+1
rm+1Ð→ Xh,m Ð→ . . .Ð→ Xh,1

r1Ð→ Xh,0 = B × A2

where ri+1 = %i+1×idA1, i = 0, . . . ,m. Given a root α of p1 let Fh,i(α) be the corresponding
component of the divisor z∗(0) on Xh,i equipped with the affine coordinate

th,i(α) = (u − α) ⋅ z−lh,i(α)

where (u − α)∣Fh,i(α) = 0 and lh,i(α) is the level of Fh,i(α), see Corollary 9.14(a). Then
the affine modification ri+1∶ Xh,i+1 → Xh,i amounts to the extension

(69) OXh,i(Xh,i) ⊂ OXh,i+1
(Xh,i+1) = OXh,i(Xh,i)[th,i/z]

where th,i ∈ OXh,i(Xh,i) satisfies

th,i∣Fh,i(α) =
⎧⎪⎪⎨⎪⎪⎩

th,i(α), lh(α) ≥ i + 1,

0, lh(α) ≤ i .

Proof. The center of the affine modification ri+1∶ Xh,i+1 → Xh,i along the divisor z∗(0)
on Xh,i is the union of the affine lines

(70) Lh,i(α) = {th,i(α) = 0} ≅ Spec k[v] ≅ A1

such that lh(α) ≥ i + 1. Each component

(71) Fh,i(α) = Fh,i × A1 ≅ Spec k[th,i(α), v] ≅ A2

of z∗(0) in Xh,i contains at most one such line. Now the lemma follows easily. �

Lemma 9.23. Let tp(Γ̂) = (n0, . . . , nm+1). Consider the polynomials

qα ∈ k[u], deg qα = n(α), and q ∈ k[u, v]
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as in (63), see 9.16. For each i = 1, . . . ,m + 1 consider the affine threefold

Vi = SpecOXh,i(Xh,i)[q(u, v)/z]
given in Xh,i × A1 by equation zw − q(u, v) = 0 where A1 = Spec k[w]. Then the natural
projection Vi → Xh,i is the affine modification along the divisor z∗(0) on Xh,i with the
reduced center Li = ∪α,βLα,β where the affine line

Lα,β = {v − β = 0} ⊂ Fh,i(α) ≅ A2 ,

see (71), corresponds to a solution (α,β) ∈ A2 = Spec k[u, v] of the system

p1(u) = 0, q(u, v) = 0 .

The plane Fh,i(α) contains n(α) such lines Lα,β. The center of the modification Vi →
Xh,i consists of

(72) N = ∑
p1(α)=0

n(α) =
m+1

∑
k=0

nk

affine lines. The reduced divisor z∗(0) on Vi has N disjoint components Fi,(α,β) where

(73) Fi,(α,β) = {z = 0, u = α, v = β} ≅ Spec k[th,i(α),w] ≅ A2 .

Proof. The proof is straightforward. �

Lemma 9.24. There is a sequence

(74) Vm+1
νm+1Ð→ Vm Ð→ . . .Ð→V2

ν2Ð→ V1

where νi+1∶Vi+1 → Vi is the affine modification along the divisor z∗(0) with a reduced
center Si defined by the ideal (z, th,i) ⊂ OVi(Vi) and consisting of the

(75) Ni = ∑
lh(α)≥i+1

n(α) =
m+1

∑
k=i+1

nk

affine lines Li,(α,β) with lh(α) ≥ i + 1.

Proof. Using Lemma 9.18 and (69) one obtains

OVi+1
(Vi+1) = OXh,i+1

(Xh,i+1)[q(u, v)/z] = OXh,i(Xh,i)[th,i/z][q(u, v)/z]
= OXh,i(Xh,i)[q(u, v)/z][th,i/z] = OVi(Vi)[th,i/z] .

�

Lemma 9.25. Let πY ∶Y → B = A1 be a Danielewski-Fieseler surface as in Proposition
9.17, that is, Γ0(Y ) is the bush Γ̃ with tp(Γ̃) = tp(Γ̂) = (n0, n1, . . . , nm+1). Given a the
trivializing sequence

(76) Y = Ym+1
σm+1Ð→ Ym Ð→ . . .Ð→ Y1

σ1Ð→ Y0 = B × A1 = Spec k[z, u]
with Γ0(πYi) = Γ̃≤i there is a trivializing sequence of cylinders

(77) Y = Ym+1
sm+1Ð→ Ym Ð→ . . .Ð→ Y1

s1Ð→ Y0 = B × A2

where for i ≥ 1 the morphism ∶ Yi+1 → Yi, si+1 = σi+1 × idA1 is an affine modification
along the reduced divisor z∗(0) on Yi with a reduced center Si such that

● z−1(0) is a disjoint union of N components F̃i,j ≅ A2 with N as in (72) where

F̃i,j corresponds to the vertex on level l(F̃i,j) of the branch B̃j of Γ̃;

● the center Si is a disjoint union of Ni affine lines L̃i,j ⊂ F̃i,j with ht(B̃j) ≥ i + 1
where Ni is as in (75) and Si ∩ Fi,j consists of at most one line Li,j.
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Proof. Since tp(Γ̃) = tp(Γ̂) using (75) one obtains

(78) card{j ∣ht(B̃j) ≥ i + 1} =
m+1

∑
k=i+1

nk = Ni .

The remaining assertions are immediate. �

Proof of Proposition 9.17. By virtue of Theorem 5.7 one may assume that Xh satisfies
(60) in Proposition 9.12 with j =m+1 = ht(Γh) = ht(Γ̂). Due to Remark 9.19 one may
suppose as well that Γh do not have branches of height 1. By virtue of Lemma 9.21
the assertion of Proposition 9.12 follows from the next claim by letting i =m + 1.

Claim. For any i = 1, . . . ,m + 1 there is an isomorphism Vi ≅B Yi which sends the
components of z∗(0) in Vi to components of z∗(0) in Yi preserving the levels.

Proof of the claim. We proceed by induction on i using the trivializing sequences (74)
and (77). By our assumption for i = 1 one has N1 = N0 = N , see (78). Recall (see
Lemma 9.23) that V1 ⊂ A5 = Spec k[z, u, v, t,w] is given by

zt − p1(u) = zw − q(u, v) = 0 .

Thus, V1 results from an affine modification V1 → A3 = Spec k[z, u, v] along the divisor
z∗(0) whose center is the ideal (z, p1(u), q(u, v)) ⊂ k[z, u, v] supported by a reduced
zero dimensional scheme S0 ⊂ {z = 0} of cardinality N . By Lemma 5.1 the cylinder
Y1 results as well from an affine modification Y1 → A3 = B × A2 = Spec k[z, u, v] along
the divisor z∗(0) whose center is a reduced zero dimensional scheme S0 ⊂ {z = 0} of
cardinality N . There is an automorphism τ of A3 with τ∗(z) = z and τ(S0) = S0. By

Lemma 1.5, τ can be lifted to an isomorphism ϕ1∶V1
≅BÐ→ Y1. Thus, the claim holds for

i = 1.
Suppose further that for some i ∈ {1, . . . ,m} there is an isomorphism ϕi∶Vi

≅BÐ→ Yi
which transforms the N affine planes Fi,(α,β) in (73) to the N affine planes F̃i,j ⊂ Yi
preserving the levels, cf. Lemmas 9.24 and 9.25. The Ni planes Fi,(α,β) ⊂ Vi which carry
the center Si = ∪lh(α)≥i+1Li,(α,β) of the blowup νi+1∶Vi+1 → Vi are situated on the top

level i. Hence their images F̃i,j are as well components of z∗(0) in Yi on the top level i.

These Ni affine planes F̃i,j do not coincide, in general, with the Ni top level components
of z∗(0) in Yi which carry the center Si of the affine modification si+1∶ Yi+1 → Yi from
(77). However, there is an automorphism T of the bush Γ0(πYi) = (Γ̃)≤i sending the
Ni branches of height i carrying the vertices which correspond to the image of Si to
the Ni branches of height i carrying the vertices which correspond to Si. By Theorem
5.7, T is induced by an automorphism τ̃ ∈ SAutB(Yi). Applying τ̃ one may suppose
that the same collection Fi of top level i components of z∗(0) in Yi supports the center
Si of modification si+1 and the image of the center Si of νi+1. Now each component
F̃i,j ∈ Fi carries two distinct embedded affine lines contained in Si and Si, respectively.
By the relative Abhyankar-Moh-Suzuki Theorem (see Proposition 4.14) there exists
an automorphism ηi ∈ SAutB(Yi) which sends the image of Si to Si and preserves
the levels of the components of z∗(0). Composing ϕi and ηi one may suppose that
ϕi(Si) = Si while ϕi is still level-preserving. By Lemma 1.5, ϕi admits a lift to a
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level-preserving isomorphism ϕi+1∶Vi+1
≅BÐ→ Yi+1 which fits in a commutative diagram

(79)

Vi+1
ϕi+1

≅B
- Yi+1

Vi

νi+1

? ≅B
ϕi
- Yi

si+1

?

Passing from Vi to Vi+1 increases by 1 the levels of the components of z∗(0) which carry
the center of the blowup while the levels of the remaining components do not change.
The same is true for the passage from Yi to Yi+1. It follows that ϕi+1 still preserves the
levels. This concludes the inductive step. �

9.5. Cylinders over Danielewski-Fieseler surfaces. In this section we restrict to
the GDF surfaces with a unique special fiber. Our main result (Theorem 9.28) says
that, up to isomorphism of cylinders over the base, it suffices to consider only the
surfaces whose fiber tree of the unique special fiber is a bush.

Definition 9.26. We say that a marked GDF surface π∶X → B over a smooth affine
curve B with a marking z ∈ OB(B) ∖ {0} is a marked Danielewski-Fieseler surface if

● z∗(0) is a reduced divisor supported at a single point b0 ∈ B;
● the restriction π∣X∖π−1(b0)∶X ∖ π−1(b0) → B ∖ {b0} is a trivial line bundle.

Under these assumptions there exists a trivializing sequence (8) such that for any
i = 1, . . . ,m − 1 the divisor of the fibered modification %i+1∶Xi+1 →Xi is z∗(0) on Xi.

Remark 9.27. The proofs of Propositions 9.12 and 9.17 go verbatim after replac-
ing everywhere the Danielewski-Fieseler surfaces over the pair (A1,0) by the marked
Danielewski-Fieseler surfaces over the pair (B, b0) and replacing every affine space As

by the product B × As−1.

The main result in this section is the following.

Theorem 9.28. Let πX ∶X → B be a marked Danielewski-Fieseler surface as in Def-
inition 9.26. Then there is another marked Danielewski-Fieseler surface πY ∶Y → B
with the same marking such that

● the fiber tree Γb0(πY ) is a bush with tp (Γb0(πY )) = tp (Γb0(πX));

● there is an isomorphism over B of cylinders X ≅BÐ→ Y which sends the compo-
nents of π−1

X (b0) to components of π−1
Y (b0) preserving the levels.

Proof. Consider a trivializing sequence (8) for X = Xm with Γb0(πXi) = Γ≤i where
Γ = Γb0(πX). There is a unique, up to isomorphism, bush bh(Γ) such that tp(bh(Γ)) =
tp(Γ).

If m ≤ 1 then Γ is already a bush. Suppose further that m ≥ 2. Assume by induction
that the assertion holds for Xm−1, that is, there is a marked Danielewski-Fieseler surface
πYm−1 ∶Ym−1 → B sharing the same marking z ∈ OB(B) with πX ∶X → B where z∗(0) = b0

such that

● Γb0(πYm−1) = bh(Γ≤m−1) 8 and

● there is an isomorphism ϕm−1∶ Xm−1
≅BÐ→ Ym−1 preserving the levels of special

fiber components.

8Notice that bh(Γ≤i) ≠ (bh(Γ))≤i in general.
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Recall that %m∶Xm →Xm−1 is a fibered modification along the reduced divisor z∗(0) =
∑N
i=1Fi on Xm−1 with a reduced center S = ∑N

i=1 Si where for every i = 1, . . . ,N either
Si = Fi or Si ⊂ Fi is nonempty and finite. Let F be the collection of the fiber components
Fi in Xm−1 on the top level m − 1 with finite Si. Consider the affine modification

%̃m∶ Xm → Xm−1, %̃m = %m × idA1 ,

along the reduced divisor z∗(0) = ∑N
i=1Fi on Xm−1 where Fi = Fi × A1 ≅ A2 with the

reduced center S = ⋃Ni=1 Si where Si = Si × A1, i = 1, . . . ,N .
Let z∗(0) = ∑N

i=1F ′
i on Ym−1 where F ′

i = ϕm−1(Fi), and let S ′i = ϕm−1(Si) ⊂ F ′
i .

Applying a suitable automorphism τ ∈ SAutB Ym−1 one may suppose that

(80) S ′i = S′i × A1 ⊂ F ′
i × {0} ⊂ F ′

i ∀Fi ∈ F .
Indeed, choose for any Fi ∈ F a point si ∈ Si. Due to the relative Abhyankar-Moh-Suzuki
Theorem (see Proposition 4.14) one can rectify the images ϕm−1({si} × A1) ⊂ F ′

i ≅ A2

simultaneously for all Fi ∈ F. Then τ ○ϕm−1 sends any parallel line {ti}×A1 ⊂ Fi = Fi×A1

where ti ∈ Si ∖ {si} to an affine line, say, {t′i} × A1 parallel to (and disjoint with) the
image {s′i} × A1 = τ ○ ϕm−1({si} × A1).

Assuming (80) perform the fibered modification %′m∶Ym → Ym−1 along the reduced di-
visor z∗(0) on Ym−1 with the reduced center ∑N

i=1 S
′
i. It results in a marked Danielewski-

Fieseler surface πYm ∶Ym → B. Consider the induced affine modification of cylinders

%̃′m∶ Ym → Ym−1, %̃′m = %′m × idA1 ,

along the reduced divisor z∗(0) = ∑N
i=1F ′

i on Ym−1 with the reduced center S ′ =
ϕm−1(Si) = ∑N

i=1 S ′i satisfying (80). Since ϕm−1 sends the divisor and the center of
the affine modification Xm → Xm−1 to the ones of Ym → Ym−1 then by Lemma 1.5,

ϕm−1 admits a lift to an isomorphism ϕm∶ Xm
≅BÐ→ Ym which automatically preserves

the levels.
The fiber tree Γb0(πYm) is a spring bush with tp(Γ̃) = tp(Γ). Due to Proposition

9.17 and Remark 9.27 there exists a marked Danielewski-Fieseler surface πY ∶Y → B
sharing the same marking z such that

● Γb0(πY ) = bh(Γb0(πYm)) is a bush and

● there is an isomorphism of cylinders Y ≅BÐ→ Ym.

Since X = Xm ≅B Ym under ϕm it follows that

● tp(Γb0(πY )) = tp(Γ) and

● there is an isomorphism of cylinders X ≅BÐ→ Y,

as required. �

9.6. Proof of the main theorem.

9.6.1. Invariance of the type up to a linear equivalence. The ‘only if’ part of Theorem
9.4 follows from the next proposition.

Proposition 9.29. Consider two GDF surfaces πX ∶X → B and πY ∶Y → B over the

same base B. Assume that there is an isomorphism over B of cylinders ϕ∶ X ≅BÐ→ Y.

Let τ ∶DF(πX) ≅BÐ→ DF(πY ) be the induced isomorphism of the Danielewski-Fieseler
quotients, see Lemma 9.5. Then the type divisors tp .div(πX) and τ∗(tp .div(πY )) on
DF(πX) are linearly equivalent.
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Proof. Consider the birational morphisms

σX ∶X →X0 = B × A1 and σY ∶Y → Y0 = B × A1

which are the compositions of the contractions %i in (8). Consider also the induced
birational morphisms of cylinders

(81) σX ∶ X → B × A2, σX = σX × idA1 , and σY ∶ Y → B × A2, σY = σY × idA1 .

There is a birational map ψ∶B × A2 ⇢ B × A2 fitting in the commutative diagram

(82)

X ϕ

≅B
- Y

B × A2

σX
?

ψ
− − −− >B × A2 .

σY
?

Fix a common marking z ∈ OB(B) with z∗(0) = b1 + . . . + bn for πX ∶X → B and for
πY ∶Y → B. Letting B∗ = B ∖ {b1, . . . , bn} ⊂ B, ψ restricts to an automorphism over
B∗ of B∗ × A2. Letting A2 = Spec k[u, v] the Jacobian J(ψ)(b) of ψ∣{b}×A2 ∈ Aut A2 is a
rational function on B without zeros and poles in B∗.

Claim. Consider a fiber component F = F × A1 ⊂ π−1
X (bi) and its image F ′ = ϕ(F) ⊂

π−1
Y (bi). Let l and l′ be the levels of F and F ′, respectively. Then one has

(83) ordbiJ(ψ) = l′ − l .
This order does not depend on the choice of a component F of π−1

X (bi).

Proof of the claim. Let P (P ′, respectively) be the path of length l (l′, respectively)
in Γbi(πX) (Γbi(πY ), respectively) joining the leaf F̄ (F̄ ′, respectively) with the root.
The chains P and P ′ are the dual graphs of the total transforms of {bi} × P1 ⊂ B̄ × P1

in (9) under certain sequences of blowups with centers in some points α,α′ ∈ {bi} ×A1,
respectively, and infinitely near points.

Choose local coordinates (z, u) near the fiber {bi} ×A1 in Bi ×A1 so that α = (0,0) ∈
{bi} × A1. The chain of affine modifications which corresponds to P yields in suitable
local coordinates the chain of extensions

(84) k[z, u] ⊂ k[z, u/z] ⊂ k[z, u/z2] ⊂ . . . ⊂ k[z, u/zl] .
Letting Bi = B∗ ∪ {bi} consider the standard neighborhoods UF ≅Bi Bi × A1 of F in X
and UF ′ ≅Bi Bi × A1 of F ′ in Y , see Proposition 3.3, along with their cylinders

UF = UF × A1 ⊂ X and UF ′ = UF ′ × A1 ⊂ X ′ where UF ≅Bi UF ′ ≅Bi Bi × A2 .

Let Ωi = Bi ×A2 be the standard neighborhood of {bi} ×A2 in Bi ×A2. Due to (84) the
restriction σX ∣UF ∶ UF → Ωi can be given in suitable local coordinates (z, t, v) in UF near
F and (z, u, v) in Ωi near {bi} × A2 as

σX ∶ (z, t, v) ↦ (z, zlt, v) ,
cf. Corollary 9.14(a). Similarly, the restriction σY ∣UF′ ∶ UF ′ → Ω′

i can be given in suitable
local coordinates as

σY ∶ (z, t′, v′) ↦ (z, zl′t′, v′) .
In these local coordinates one obtains

det(d(t,v)σX ) = zl and det(d(t′,v′)σY) = zl
′
.
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Since det(d(t,v)ϕ) is an invertible function on B one has J(ψ)(z) ∼ zl′−l near bi. This
yields (83). Now the claim follows.

Using (83) one concludes that

(85) τ∗(tp .div(πY )) − tp .div(πX) = p∗(divJ(ψ))
where p∶DF(πX) → B is the natural projection. Now the proof is completed. �

The following corollary is immediate from (85).

Corollary 9.30. Under the assumptions of Proposition 9.29, ψ ∈ AutB(B ×A2) if and
only if tp .div(πX) = τ∗(tp .div(πY )).

9.6.2. Special isomorphisms and regularization. In this subsection we finish the proof
of Theorem 9.4. We need the following notions.

Definition 9.31 (Special isomorphisms). Given marked GDF surfaces πX ∶X → B and
πY ∶Y → B sharing a common marking z ∈ OB(B)∖{0} consider trivializing sequences of
cylinders (68) along with the corresponding birational morphisms σX and σY as in (81).

Given an isomorphism ϕ∶ X ≅BÐ→ Y consider a birational B-automorphism ψ = σY○ϕ○σ−1
X

of B × A2 biregular off z−1(0) and fitting in diagram (82). We say that ϕ is special if
ψ ∈ SAutB∗(B∗ × A2) where B∗ = B ∖ z−1(0) and sub-special if ψ ∈ SAutB′(B′ × A2) for
some Zariski open dense subset B′ ⊂ B.

One has the following criterion for an isomorphism to be sub-special.

Lemma 9.32. An isomorphism ϕ∶ X ≅BÐ→ Y is sub-special if and only if ψ in (82)
verifies

(86) J(ψ)(b) = Jac(ψ∣{b}×A2) = 1 ∀b ∈ B∗ .

If (86) holds then one has a factorization

(87) ψ =
N

∏
i=1

exp(∂i)

where ∂1, . . . , ∂N are locally nilpotent derivations of OB′(B′)[u, v] for an open dense
subset B′ ⊂ B.

Proof. The ‘only if’ part of the first assertion is well known, see, e.g., [2, Lem. 4.10].
Assume further that ψ satisfies (86). Let B = OB∗(B∗), and let K = FracOB(B) be the
function field of B. Since ψ ∈ AutB B[u, v] and J(ψ) = 1 one has ψ ∈ SAutKK[u, v],
see [37, Prop. 9] or [62, Example 2.1]. Note that the base field K in [37] and [62] is
supposed to be algebraically closed of characteristic zero. However, due to the van der
Kulk version of the Jung Theorem (see, e.g., [70]) the algebraic closeness assumption
is superfluous.

The group SAutKK[u, v] is generated by the replicas of the locally nilpotent deriva-
tions ∂/∂u and ∂/∂v ([62, Example 2.1]). Therefore, one has a decomposition

(88) ψ =
m

∏
i=1

exp(fi∂/∂u) exp(gi∂/∂v) =
N

∏
j=1

exp(∂j), N = 2m,

where fi ∈ K[v], gi ∈ K[u], and the ∂j are locally nilpotent K-derivations of K[u, v],
i = 1, . . . , n, j = 1, . . . ,N . This yields (87). �
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A regularization procedure described below allows to replace certain isomorphism of
cylinders by special ones.

Proposition 9.33. Under the assumptions of Proposition 9.29 suppose in addition that

tp .div(πX) = τ∗(tp .div(πY )). Then there exists a special isomorphism ϕ̃∶ X ≅BÐ→ Y.

Proof. Due to Corollary 9.30, ψ in (82) is biregular, and so, the Jacobian J(ψ)(b) is a
non-vanishing regular function on B. Consider the automorphism

η ∈ AutB Y, η∶ (y, v) ↦ (y, v/J(ψ)) for (y, v) ∈ Y = Y × A1 .

Then ϕ̂ ∶= η ○ ϕ∶ X ≅BÐ→ Y and ψ̂ ∶= σY ○ ϕ̂ ○ σ−1
X ∈ Aut(B × A2) fit in (82). One has

J(ψ̂) ≡ 1. By Lemma 9.32, ϕ̂ is sub-special. To simplify the notation we will suppose
that ϕ is.

According to Lemma 9.32, ψ can be factorized as in (88). For a natural s≫ 1 choose
a function h ∈ OB(B) ∖ {0} such that

● hfi ∈ OB∗(B∗)[u] and hgi ∈ OB∗(B∗)[v] where fi, gi are as in (88), i = 1, . . . ,m;
● h−1 vanishes to order s+M at b1, . . . , bn where M is the maximal order of pole

at b1, . . . , bn of the coefficients of fi, gi, i = 1, . . . ,m.

Replacing the factors of ψ in (88) by their h-replicas yields an automorphism

(89) ψh =
N

∏
i=1

exp(h∂i) ∈ SAutB∗(B∗ × A2), N = 2m.

Claim. Letting α = ψh ○ ψ−1 one has α ≡ id mod zs and α−1 ≡ id mod zs.

Proof of the claim. We prove the first congruence, the proof of the second one being
similar. Let

αj = (
j

∏
i=1

exp(h∂i))(
j

∏
i=1

exp(∂i))
−1

= (
j−1

∏
i=1

exp(h∂i)) exp((h − 1)∂j)(
j−1

∏
i=1

exp(∂i))
−1

.

Since (h − 1)∂j ≡ 0 mod zs one has

exp((h − 1)∂j) − id ≡ 0 mod zs .

Hence
α1 ≡ id mod zs and αj − αj−1 ≡ 0 mod zs .

By recursion one gets α = αN ≡ id mod zs, as needed.

Notice that α satisfies the conditions of Lemma 1.6 with respect to the affine mod-
ification σY ∶ Y → B × A2 along the divisor (zt)∗(0) where t = ht(D(πX)). Indeed,
α∗(z) = z, and α ≡ id ≡ α−1 mod zt⌊s/t⌋ where s≫ t. By Lemma 1.6, α ∈ SAutB(B×A2)
admits a lift α̃ ∈ AutB Y such that α̃ ≡ id mod zt⌊s/t⌋−t. Letting ϕ̃ = α̃ ○ ϕ∶ X → Y
and ψ̃ = α ○ ψ = ψh ∈ SAutB∗(B∗ × A2) yields a pair (ϕ̃, ψ̃) fitting in (82). So, the

isomorphism ϕ̃∶ X ≅BÐ→ Y is special. �

Proof of the ‘if ’ part of Theorem 9.4. It is worth to start by recalling the setup. We
consider two marked GDF surfaces πX ∶X → B and πY ∶Y → B over the same base B
and with the same marking z ∈ OB(B) where z∗(0) = b1+ . . .+bn. We assume that there

is an isomorphism τ ∶DF(πX) ≅BÐ→ DF(πY ) such that tp .div(πX) ∼ τ∗(tp .div(πY )) on
DF(πX). We must show that under these assumptions there exists an isomorphism

ϕ∶ X ≅BÐ→ Y.
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By Lemma 7.5 one may suppose that

(90) tp .div(πX) = τ∗(tp .div(πY )) .
We proceed by induction on the number n = card z−1(0) of special fibers. If n = 1 then
πX ∶X → B and πY ∶Y → B are marked Danielewski-Fieseler surfaces as in Definition
9.26. By Theorem 9.28 there exist two other marked Danielewski-Fieseler surfaces
πX′ ∶X ′ → B and πY ′ ∶Y ′ → B with the same marking such that

● there are isomorphisms X ′ ≅B X and Y ′ ≅B Y, and
● the fiber trees Γb1(πX′) and Γb1(πY ′) are bushes with

tp(Γb1(πX′)) = tp(Γb1(πX)) and tp(Γb1(πY ′)) = tp(Γb1(πY )) .
Then (90) implies

tp(Γb1(πX′)) = tp(Γb1(πY ′)) .
Therefore, the bushes Γb1(πX′) and Γb1(πY ′) are isomorphic. By Theorem 5.7 there is

an isomorphism of cylinders X ′ ≅B Y ′, hence also an isomorphism ϕ∶ X ≅BÐ→ Y. This
proves the assertion for n = 1.

Suppose the assertion holds if card z−1(0) ≤ n − 1. Consider further the case
card z−1(0) = n. Let

B0 = B∖{b2, . . . , bn} and B1 = B∖{b1} so that B0∪B1 = B and B0∩B1 = B∗ .

Let πX0 ∶X0 → B0 and πX1 ∶X1 → B1 be the restrictions of πX and πY over B0 and B1,
respectively. Define in a similar way πY0 ∶Y0 → B0 and πY1 ∶Y1 → B1. By the inductive
hypothesis there are commutative diagrams (cf. (82))

(91)

X0
ϕ0

≅B0

- Y0

B0 × A2

σX ∣X0
?

ψ0− − −− >B0 × A2

σY ∣Y0
?

and

X1
ϕ1

≅B1

- Y1

B1 × A2

σX ∣X1
?

ψ1− − −− >B1 × A2

σY ∣Y1
?

By virtue of Proposition 9.33 one may suppose that both ϕ0 and ϕ1 in (91) are special,
see Definition 9.31. To cook up an isomorphism ϕ over B using ϕ0 and ϕ1 we apply
the same kind of regularization as in the proof of Proposition 9.33.

Claim 1. Given s≫ 1 there exist ψ′0, ψ
′
1 ∈ SAutB(B × A2) satisfying

(i) ψ′0 ≡ ψ0 mod zs near {b1} × A2 and ψ′0 ≡ id mod zs near {bi} × A2, i = 2, . . . , n;
(ii) ψ′1 ≡ id mod zs near {b1} × A2 and ψ′1 ≡ ψ1 mod zs near {bi} × A2, i = 2, . . . , n.

Proof of Claim 1. It suffices to prove (i), the proof of (ii) being similar. Likewise in
the proof of Proposition 9.33 we replace the factors exp(∂j) in the factorization ψ0 =
∏j exp(∂j) ∈ SAutB∗(B∗ × A2) as in (89) by their replicas exp(h∂j) where h ∈ OB(B)
satisfies

● h − 1 vanishes to order s′ ≫ s at b1;
● h vanishes to order s at b2, . . . , bn.

This gives an automorphism ψ′0 = ∏j exp(h∂j) ∈ SAutB(B×A2) verifying (i), as desired.

The following claim ends the proof of the theorem.

Claim 2. The composition ψ = ψ′0○ψ′1 ∈ SAutB(B×A2) admits a lift to an isomorphism

ϕ∶ X ≅BÐ→ Y.
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Proof of Claim 2. The affine modifications σX ∶ X → B × A2 and σY ∶ Y → B × A2 along
the divisors z∗(0) on X and Y, respectively, have for their centers certain subschemas
SX , SY of the rth infinitesimal neighborhood of the divisor z−1(0) on B × A2 where
r ≥ 1 is such that zr belongs to the corresponding defining ideals I(SX ), I(SY) ⊂
OB×A2(B ×A2). By Lemma 1.5, ψ can be lifted to an isomorphism ϕ∶ X ≅BÐ→ Y provided
ψ∗ sends I(SY) to I(SX ), or, which is equivalent, if ψ(SX ) = SY .

For i = 0,1 the centers SXi and SYi of the affine modifications σX ∣Xi and σY ∣Yi coincide
with the restrictions SX ∣Xi and SY ∣Yi , respectively. Since ψi admits a lift ϕi (see (91))
one has ψi(SXi) = SYi , i = 0,1.

Due to (i) and (ii) for s ≥ r one has ψ∣Bi×A2 ≡ ψi∣Bi×A2 mod zr for i = 0,1, that is,
these automorphisms coincide in the rth infinitesimal neighborhood of z−1(0) in Bi×A2.
It follows that ψ(SXi) = SYi , i = 0,1. Finally one has ψ(SX ) = SY , as required. �

10. On moduli spaces of GDF surfaces

We conclude the paper by constructions of a versal deformation family and an affine
coarse moduli space of marked GDF surfaces with a given marking, a given cylinder,
and a given graph divisor.

10.1. Coarse moduli spaces of GDF surfaces.

Definition 10.1. Consider a marked GDF surface πX ∶X → B with a marking z ∈
OB(B)∖{0}, a trivializing sequence (8), and a graph divisor D = D(πX). By a family of
GDF surfaces of type (B, z,D) we mean a pair of smooth morphisms of quasiprojective
schemes X→ S and πX∶X→ B such that

● for each point s ∈ S the fiber X(s) of X→ S over s is reduced;
● the specialization π(s)∶X(s) → B over s is a marked GDF surface with the

marking z and the graph divisor D;
● there is a point s0 ∈ S such that the specialization over s0 yields the initial

marked GDF surface πX ∶X → B.

We say that X→ S is an (affine) deformation family of marked GDF surfaces if both
X and S are smooth (affine) varieties and the morphism X→ S is a submersion which
extends to a proper deformation family of SNC completions of GDF surfaces over B̄
such that the corresponding family of extended divisors (Dext(s))s∈S over S is locally
trivial. This yields a locally trivial family of graph divisors (D(s) = D(πX(s)))s∈S . The
monodromy group of the latter family is a subgroup of the finite group

AutB(D(s0)) =
n

∏
i=1

Aut(Γi(s0)) .

We say that the family of graph divisors (D(s))s∈S is trivial if its monodromy group is.

The Grothendieck theory of moduli spaces ([40]) and its versions deal with proper
schemes, or pairs of proper schemes. In our particular non-proper setting we adopt the
following simplified definition.

Definition 10.2. Consider a triplet (B, z,D) where B is a smooth affine curve, z ∈
OB(B) ∖ {0} is a marking, and D = ∑n

i=1 Γibi is a graph divisor with trees Γ1, . . . ,Γn
supported by z−1(0) = {b1, . . . , bn} ⊂ B. A scheme C(B, z,D) will be called a coarse
moduli space of GDF surfaces of type (B, z,D) if the following hold.
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● To any marked GDF surface πX ∶X → B of type (B, z,D) there corresponds
a unique point c(πX) ∈ C(B, z,D), and vice versa, any point c ∈ C(B, z,D)
corresponds to a unique, up to an isomorphism over B, marked GDF surface
πX(c)∶X(c) → B of type (B, z,D);

● for any deformation family of GDF surfaces X → S of type (B, z,D) the cor-
respondence S → C(B, z,D) sending a point s ∈ S to c(πX(s)) ∈ C(B, z,D) is a
morphism.

Under certain restrictions there exists a coarse moduli space of GDF surfaces.

Theorem 10.3. Consider a triplet (B, z,D) as in Definition 10.2. Suppose that
OB(B)× = k∗, that is, B does not admit any non-constant invertible regular function.
Then the following hold.

(a) There exists a coarse moduli space C(B, z,D) of marked GDF surfaces of type
(B, z,D). This space C(B, z,D) is an affine variety with at most quotient sin-
gularities.

(b) The cylinders over any two surfaces in C(B, z,D) are isomorphic over B.
(c) If π∶X → B is a marked GDF surface of type (B, z,D) and X is not a Zariski

1-factor, that is, D(πX) ≅ D is not a chain divisor then there exists a sequence
of marked GDF surfaces πX(k) ∶X(k) → B with the given marking z and the
cylinders isomorphic over B to X × A1 such that

dim C(B, z,D(πX(k))) → ∞ when k →∞ .

The proof of Theorem 10.3 is done at the end of the section.

10.2. The automorphism group of a GDF surface.

Notation 10.4. Given an A1-fibered surface πX ∶X → B we let U(πX) = Ru(AutB(X))
be the (normal) subgroup of AutB(X) generated by all the Ga-actions on X along the
fibers of πX . For a GDF surface πX ∶X → B with a trivializing sequence (8) we let
Ul = U(πXl), l = 1, . . . ,m where Um = U(πX).

The next proposition can be deduced from Theorems 6.3 and 8.24 in [48] and their
corollaries. However, in our particular case we prefer to give a simple direct argument.

Proposition 10.5. Assume that OB(B)× = k∗. Given a GDF surface πX ∶X → B with
a trivializing sequence (8) the following hold.

(a) There are natural inclusions

(92) AutB(X) = AutB(Xm) ⊂ AutB(Xm−1) ⊂ . . . ⊂ AutB(X0) = AutB(B × A1) .
(b) One has AutB(B × A1) = U0 ⋊Gm where U0 ≅ OB(B) viewed as a vector group.
(c) Let mi,l = ht((Γi)≤l), i = 1, . . . , n. For any l = 0, . . . ,m one has

Ul = U0 ∩AutB(Xl) ≅H0(B,−Dl) where Dl =
n

∑
i=1

mi,lbi .

(d) Let Cl−1 ⊂ Xl−1 be the center of the fibered modification %l∶Xl → Xl−1 where
l ∈ {1, . . . ,m}. Then the subgroup Ul ⊂ Ul−1 acts identically on Cl−1.

(e) If πX ∶X → B has a reducible fiber then AutB(Xm) ≅ Um ⋊ µd where µd ⊂ Gm is
a finite cyclic group.
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Proof. (a) By Corollary 9.30 for any l = 0, . . . ,m one has a natural inclusion AutB(Xl) ⊂
AutB(X0). Now, ϕ ∈ AutB(Xl−1) admits a lift to ϕ̃ ∈ AutB(Xl) if and only if ϕ preserves
the ideal of the center of the affine modification %l∶Xl → Xl−1. This, clearly, leads to
the inclusions AutB(Xl) ⊂ AutB(Xl−1).

Statement (b) is immediate from the fact that any ϕ ∈ AutB(B × A1) acts via

ϕ∶ (b, u) ↦ (b, α(b)u + β(b)) where α ∈ OB(B)× = k∗ and β ∈ OB(B) .
The first equality in (c) is easy and is left to the reader. The second one follows

from [48, Thm. 6.3] (cf. also [48, Rem. 6.5.2]) due to the fact that locally in B near the
point bi, a locally nilpotent vertical vector field ∂ on B × A1 admits a lift to Xl if and
only if ∂ is of the form ∂ = f(z)zmi,l∂/∂u for a function f in the local ring of (B, bi),
cf. the proof of Lemma 3.1.

(d) The inclusion AutB(Xl) ⊂ AutB(Xl−1) in (92) implies that the union of the top
level l fiber components in Xl is AutB(Xl)-invariant. Using [47, Prop. 2.1] one can
conclude that

AutB(Xl) = AutB(Xl−1, Cl−1) .
Since the ind-subgroup Ul ⊂ AutB(Xl) is connected and acts morphically on Xl−1, its
action on the finite AutB(Xl)-invariant set Cl−1 ⊂Xl−1 is identical.

(e) From (a)–(c) one obtains the inclusions

(93) AutB(Xl)/Ul ⊂ AutB(Xl−1)/Ul−1 ⊂ . . . ⊂ AutB(X0)/U0 = Gm, l = 0, . . . ,m .

Choose l ∈ {1, . . . ,m} such that πXl ∶Xl → B has a reducible fiber while πXl−1
∶Xl−1 → B

does not. Then πXl−1
∶Xl−1 → B admits a structure of a line bundle. Consider the

associate Gm-action on Xl−1 along the fibers of πXl−1
. Due to (93) one has AutB(Xl−1) =

Ul−1 ⋊Gm, and due to (92),

Ul ⊂ AutB(Xl) ⊂ Ul ⋊Gm .

Let π−1
Xl

(bi) be a reducible fiber. Then the fiber F = πXl−1
(bi) ≅ A1 contains at least two

distinct points of Cl−1. Let ϕ be an element of the Gm-action on Xl−1 along the fibers
of πXl−1

which preserves the finite set F ∩Cl−1. Then ϕ has finite order, say, d where
d ≤ card (F ∩ Cl−1). Since ϕd is identical on F then also ϕd = id on Xl−1. This shows
that AutB(Xl) = Ul⋊µd where µd ⊂ Gm is a finite cyclic subgroup. A similar semi-direct
product decomposition holds for any subgroup AutB(Xi) ⊂ AutB(Xl), i = l, . . . ,m, see
(c) and (92). �

10.3. Configuration spaces and configuration invariants.

Notation 10.6. Consider a marked GDF surface πX ∶X → B with a marking z ∈
OB(B), a trivializing sequence (8), and a graph divisor D(πX) = ∑n

i=1 Γibi where z∗(0) =
b1+. . .+bn. For a vertex v ∈ vert (Γi) on level l > 0 we let F (v) ⊂Xl be the corresponding
top level fiber component over bi, and let (bi, u(v)) ∈ B×A1 be the image of F (v) under
the contraction %1 ○ . . . ○ %l∶Xl → X0 = B × A1. Fixing the shortest path γ(v) joining v
in Γi with the root v0,i of Γi one can construct the standard affine chart about F (v) in
Xl following the blowup process along the path γ(v). Starting with tvi,0 = u, where vi,0
is the root of Γi, assume by recursion that tv is already defined for a (non-extremal)
vertex v of Γi on a level l, and let w be a vertex on the level l+1 joint to v by an edge.
Then we let

(94) tw = (tv − tv(w))/z
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where tv(w) is the tv-coordinate of the point %l+1(F (w)) ∈ F (v). By recursion one
defines a system of affine coordinates on the fiber components of z−1(0) in Xl for all
l = 0, . . . ,m. If Xl admits a µd-action along the fibers of πXl ∶Xl → B then this system
of affine coordinates is µd-invariant, cf. Lemma 3.5 and its proof.

Definition 10.7 (Configuration space of a tree). Let Γ be a rooted tree. For a vertex
v ∈ vert (Γ) on level l we let r+(v) be the number of incident edges joining v with
vertices on level l + 1. If ht(Γ) > 0 then r+(v) = 0 if and only if v is an extremal vertex
different from the root v0 of Γ. Thus, ∑v∈vert (Γ) r+(v) equals the number of edges of Γ.
We let Γ∗ stand for the subgraph of Γ obtained by deleting all the leaves of Γ and their
incident edges.

Let Dr ⊂ Ar be the zero level of the discriminant of the universal monic polynomial
p ∈ k[t] of degree r > 0. The open set S(r) = Ar ∖Dr ⊂ Ar represents the configuration
space of r-points subsets (the roots of p) of A1 = Spec k[t]. The configuration space of
Γ is the formal sum

S(Γ) = ∑
v∈vert (Γ∗)

S(r+(v))v .

A point s ∈ S(Γ) can be viewed as a collection of configurations

s = {s(v) ∈ S(r+(v)) ∣ v ∈ vert (Γ∗)} .
The underlying variety of S(Γ) is the smooth affine variety ∏v∈vert (Γ∗) S(r+(v)) of
dimension

dimS(Γ) = ∑
v∈vert (Γ∗)

r+(v) = card (edges (Γ)) .

The automorphism group Aut(Γ) of the rooted tree Γ acts on S(Γ) via

Aut(Γ) ∋ α∶ s↦ α∗(s) where α∗(s)(v) = s(α(v)) .
This action is not effective, in general. Its kernel of non-effectiveness, say, K is the
pointwise stabilizer of Γ∗:

K = {α ∈ Aut(Γ) ∣α(v) = v ∀v ∈ vert (Γ∗)} .
The quotient

Aut∗(Γ) = Aut(Γ)/K
acts effectively on S(Γ).

Consider the level l factor Sl(Γ) of S(Γ) where

Sl(Γ) = ∑
v∈vert (Γ∗) ∣ l(v)=l

S(r+(v))v .

There is an effective action of the Abelian unipotent group Gh
a on S(Γ) where h = ht(Γ).

It is defined as follows. For l = 0, . . . ,m−1 the lth Ga-factor of Gh
a acts identically on any

component S(r+(v))v with l(v) ≠ l, and acts effectively on Sl(Γ) via the simultaneous
shifts on τ ∈ k of the affine coordinates in all the corresponding configurations. This
Ga-action on Sl(Γ) is free and admits a slice

So
l (Γ) =

⎧⎪⎪⎨⎪⎪⎩
sl = ∑

v∈vert (Γ∗) ∣ l(v)=l
sl(v)v ∣ ∑

v∈vert (Γ∗) ∣ l(v)=l
barycentre (sl(v)) = 0

⎫⎪⎪⎬⎪⎪⎭
.

The smooth Aut∗(Γ)-invariant affine variety So(Γ) ∶= ∏m−1
l=0 So

l (Γ) is a slice of the free
Gh
a-action on S(Γ).
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Besides, there is an effective Gm-action on S(Γ) via the simultaneous multiplication
by λ ∈ k∗ of the affine coordinates in all the corresponding configurations. This action
leaves the slice So(Γ) invariant.

The action of the semi-direct product

G(Γ) = Gh
a ⋊ (Gm ×Aut∗(Γ))

on S(Γ) descends to an effective action of the reductive group Gm × Aut∗(Γ) on the
smooth affine variety S(Γ)/Gh

a ≅ So(Γ). The quotient

M(Γ) = S(Γ)/G(Γ) = So(Γ)/(Gm ×Aut∗(Γ))
is an affine variety with quotient singularities.

Definition 10.8 (Configuration space of a graph divisor). Given a graph divisor D =
∑n
i=1 Γibi we define the configuration space of D to be the formal sum

S(D) =
n

∑
i=1

S(Γi)bi .

The underlying smooth affine variety ∏n
i=1 S(Γi) has dimension equal to the number of

edges in D.
Letting D∗ = ∑n

i=1 Γ∗
i bi consider the group Aut∗B(D) = ∏n

i=1 Aut∗(Γi). It acts effec-
tively on S(D).

Let hi = ht(Γi), and let h(D) = ∑n
i=1 hi. The effective action of Ghi

a ⋊ Gm on S(Γi)
as defined in 10.7 extends to an effective action of Gh(D)

a ⋊Gm on S(D). The action of

Gh(D)
a is free and admits a slice

So(D) =
n

∑
i=1

So(Γi)bi .

The action of the affine algebraic group

(95) G(D) = Gh(D)
a ⋊ (Gm ×Aut∗B(D))

on S(D) descends to an effective action of Gm×Aut∗B(D) on the quotient S(Γ)/Gh(D)
a ≅

So(D). The quotient

(96) M(D) = S(D)/G(D) = So(D)/(Gm ×Aut∗B(D))
is an affine variety with quotient singularities.

Definition 10.9 (Configuration invariant). Let πX ∶X → B be a marked GDF surface
as in 10.6 with the graph divisor D = D(πX) = ∑n

i=1 Γibi where Γi = Γbi(πX). For a vertex
v ∈ vert (D∗) the top level l fiber component F (v) ⊂ Xl is equipped with the natural
affine coordinate tv as in 10.6. Let Cl ⊂ Xl be the center of the fibered modification
%l+1∶Xl+1 →Xl in (8). We define the configuration invariant ∆(πX) ∈ S(D(πX)) by the
formula

∆(πX)(v) = F (v) ∩Cl ∈ S(r+(v)), v ∈ vert (D∗), l(v) = l .
If X admits a µd-action along the fibers of πX then this action is well defined on
Xl for any l = 0, . . . ,m making (8) equivariant. So, both the collection of centers
(Cl)l=0,...,m−1 and the collection of the affine coordinates tv are invariant under µd.
Hence the configuration invariant ∆(πX) is as well.

10.4. Versal deformation families of trivializing sequences.
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Definition 10.10. Consider a marked GDF surface πX ∶X → B with a marking z ∈
OB(B) ∖ {0} and a trivializing sequence (8). By a corresponding family of trivializing
sequences we mean a commutative diagram of varieties and morphisms

(97)

X = Xm
rm- Xm−1

- . . . - X1
r1- X0

@
@
@R

@
@
@R

. . . @
@
@R

@
@
@R

id- B - . . . - id- B

S
?

id - S

B
?

- . . . - S
?

id- S

B
?

where

● X0 = S × (B × A1) with the standard projections to the factors S and B;
● Xl → S is a family of GDF surfaces for any l = 0, . . . ,m;
● there is a point s0 ∈ S such that the specialization of the upper line in (97) over
s0 yields the initial trivializing sequence (πXl ∶Xl → B)l=0,...,m.

We say that (97) is an affine deformation family of trivializing sequences if, for any
l = 0, . . . ,m, Xl → S is an affine deformation family of marked GDF surfaces. It is
easily seen that (98) extends to a diagram of trivializing families of SNC completions
which specializes to (9) in each fiber, along with a locally trivial family of extended
divisors (Dext(s))s∈S .

An affine deformation family (97) is called trivial if for any l = 1, . . . ,m there is a
commutative diagram

(98)

S ×Xl
id×%l - S ×Xl−1

@
@
@≅ R

@
@
@≅ R

Xl
rl - Xl−1

S
?

id - S
?

@
@
@id R

@
@
@id R

S
?

id - S
?

where the morphisms in the upper square are defined over B.

10.11 (Deformation families of GDF surfaces over configuration spaces). Given a
triplet (B, z,D) as in Definition 10.2 there is a natural deformation family

F(D) = (Xl(D) → S(D))l=0,...,m

of trivializing sequences (97) of GDF surfaces of type (B, z,D) over the configuration
space S(D) such that the associated family of graph divisors is trivial. The construction
of the latter family proceeds as follows.

We let X0(D) = S(D) × (B × A1) with the canonical projections to the first and the
second factors. Projecting S(D) to the zero level factor

S0(D) =
n

∑
i=1

S(v0,i)v0,ibi

where v0,i is the root of Γi yields a multisection of the first projection X0(D) → S(D).
This multisection defines the center C0(D) of the fibered modification r1(D)∶X1(D) →
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X0(D) fitting in diagram (97). Projecting now to the first level factor

S1(D) =
n

∑
i=1

⎛
⎝ ∑
v∈vert (Γ∗i ) ∣ l(v)=1

S(v)v
⎞
⎠
bi

yields the center C1(D) of the fibered modification r2(D)∶X2(D) → X1(D) fitting in
(97), etc. Continuing in this way one arrives finally at a deformation family F(D) over
S = S(D) of trivializing sequences of marked GDF surfaces (Xl(s))s∈S,l=0,...,m fitting in
(97) with the marking z, the trivial family of graph divisors D(πX(s)) = D, and the
configuration invariant ∆(X(s)) = s ∈ S(D) where X(s) = Xm(s). Clearly, it admits
an extension to a family of complete surfaces with a trivial family of extended divisors.

Any morphism f ∶ S → S(D) induces a family F = f∗(F(D)) of trivializing sequences
over S with a trivial family of graph divisors. Conversely, any such family arises in
this way. This shows that F(D) is a versal family. More precisely, the following holds.

Proposition 10.12. Let F = (Xl → S)l=0,...,m be a family of trivializing sequences over
the same base S. Assume that the associated family of graph divisors over S is trivial:

D(πX(s)) = D ∀s ∈ S .
Then one has F = ∆∗(F(D)), that is, F is induced from F(D) via the morphism

∆∶ S → S(D), s↦∆(X(s))
defined by the configuration invariant. Consequently, the deformation family of trivi-
alizing sequences F(D) is versal with respect to the étale topology.

Proof. We proceed by recursion on m. The assertion is evidently true if m = 0. Suppose
it holds for m = l−1, that is, the lower square in the following diagram is commutative:

(99)

Xl ϕl
- Xl(D)

Xl−1

rl
?

ϕl−1

- Xl−1(D)

rl(D)
?

S
?

∆- S(D)
?

For l = 0, . . . ,m−1 we let ∆l∶ S → Sl(D) be the composition of ∆ with the projection to
the level l component Sl(D) of S(D). The image of ∆l−1 can be seen as a multisection
of Xl−1 → S which defines the center Cl−1 ⊂ Xl−1 of the fibered modification rl∶Xl → Xl−1.
Due to diagram (99) one has Cl−1 = ϕ∗l−1(Cl−1(D)). According to [47, Prop. 2.1], ϕl−1

admits a lift to a morphism ϕl∶Xl → Xl(D) which makes the upper square in (99)
commutative. This gives the recursive step and proves the first assertion.

To show the second one it suffices to notice that any family of graph divisors has a
finite monodromy group. This monodromy becomes trivial after a suitable étale base
change. According to the first part, the resulting family is induced from F(D) via the
morphism given by the configuration invariant. �

Let us study the automorphism group of F(D) over B.

Lemma 10.13. Consider two fibers Xl =Xl(s) and X ′
l =Xl(s′) of Fl(D) where s, s′ ∈

S(D), l = 0, . . . ,m. Assume that there is an isomorphism ϕ∶X =Xm
≅BÐ→X ′ =X ′

m which
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induces the identity on D. Then ϕ induces for any i = 1, . . . , n and l = 0, . . . , hi − 1 =
ht(Γ∗

i ) an affine transformation

(100) ϕi,l∶ tv ↦ αtv + βi,l, αi ∈ k∗, βi,l ∈ k

such that s′(v) = ϕi,l(s(v)) for any v ∈ vert (Γ∗
i ) with l(v) = l.

Proof. Recall that ϕ can be extended first to an isomorphism of pseudominimal com-

pletions ϕ̄∶ X̄ ≅B̄Ð→ X̄ ′, and then to an isomorphism of the trivializing sequences of
completions (9) which yields the identity on Γi for any i = 1, . . . , n, see the proof of
Proposition 8.3(c). By Corollary 9.30 the associated birational transformation ψ of
B ×A1 over B fitting in (82) is biregular. Due to our assumption OB(B)× = k∗. Hence
ψ is of the form

(101) ψ∶ (b, u) ↦ (b,αu + β) where α ∈ k∗ and β ∈ OB(B) .
In particular, ψ∗(z) = z. Using z as a local parameter in B near bi one can write

(102) β(z) = βi,0 + βi,1z + . . . + βi,lzl + . . . with βi,j ∈ k ∀i, j .
Consider the standard local charts U(v) ⊂Xl about F (v) with local coordinates (z, tv)
and U(w) ⊂ Xl+1 about F (w) with local coordinates (z, tw) and, respectively, U ′(v) ⊂
X ′
l about F ′(v) with local coordinates (z, t′v) and U ′(w) ⊂X ′

l+1 about F ′(w) with local
coordinates (z, t′w). We claim that the restriction ϕ∣U(v)∶U(v) ↦ U ′(v) is given by

(103) (z, t′v) = ψ∗(z, tv) = (z,αtv + βi,l + βi,l+1z + . . .) .
Indeed, for l = 0, (103) follows from (101) and (102). Suppose by induction that (103)
holds for a given l ≤ hi − 2. Let v,w ∈ vert (Γ∗

i ) with l(v) = l and l(w) = l + 1 be joint
by an edge, and let c(w) = %l+1(F (w)) ∈ F (v). Applying the inductive hypothesis one
obtains

(104) ϕ∗∶ (z, tv) ↦ (z,αtv + βi,l + βi,l+1z + βi,l+2z
2 + . . .), c(w) ↦ αc(w) + βi,l .

Using (94) and (104) one gets

ϕ(z, tw) = (z, (tv−c(w))/z) ϕ∗z→ (z, α(tv−c(w))/z+βi,l+1+βi,l+2z+. . .) = (z, αtw+βi,l+1+βi,l+2z+. . .) .
This gives the inductive step. Letting z = 0 in (104) yields (100). �

Proposition 10.14. (a) The action of the group G(D) on S(D) defined in 10.8
admits a lift to an action of G(D) on Xl(D) over B making the following
morphisms in (97) G(D)-equivariant:

(105) Xl(D) → S(D), l = 0, . . . ,m and rl∶Xl(D) → Xl−1(D), l = 1, . . . ,m .

(b) Letting X(D) = Xm(D) one has AutB(X(D) → S(D)) = G(D).
(c) For s, s′ ∈ S(D) the surfaces X(s) and X(s′) are isomorphic over B if an only

if s and s′ lie on the same G(D)-orbit.

(d) The retraction η∶ S(D) → So(D) ≅ S(D)/Gh(D)
m , see Definition 10.8, defines a

trivial Gh(D)
m -bundle over So(D).

(e) The family F(D) = (X(D) → S(D)) is isomorphic to the family induced from
the restriction Fo(D) = (Xo(D) → So(D)) via the retraction morphism η. Con-
sequently, the deformation family Fo(D) of GDF surfaces of type (B, z,D) is
versal with respect to the étale topology.
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Proof. (a) We proceed by induction on l. The assertion is trivially true for l = 0.
Suppose it holds for some l ∈ {0, . . . ,m − 1}. Then g ∈ G(D) defines for any s ∈ S(D)
an isomorphism

g∣Xl(s)∶Xl(s)
≅BÐ→Xl(g(s))

satisfying (100), see Lemma 10.13. The component sl ∈ Sl(D) of s is sent to the
component g(s)l ∈ Sl(D) of g(s). It follows that the center Cl(D) ⊂ Xl(D) of the affine
modification rl(D)∶Xl+1(D) → Xl(D) is G(D)-invariant (cf. 10.11). Since its divisor
z∗(0) is G(D)-invariant too, due to Lemma 1.5 the action of G(D) on Xl(D) admits a
lift to Xl+1(D) making the morphisms (105) G(D)-equivariant.

(b) By (a) one has AutB(X(D) → S(D)) ⊃ G(D). Applying the same argument to
g ∈ AutB(X(D) → S(D)) one concludes that g satisfies (100), hence belongs to G(D).

(c) By virtue of (a), if s and s′ lie on the same G(D)-orbit then X(s) ≅B X(s′).
Suppose further that X(s) ≅B X(s′). Composing this isomorphism, say, ϕ with a
suitable α ∈ AutB(D) acting on X(D) one may assume that ϕ induces the identity on
D. Then by Lemma 10.13, ϕ satisfies (100), and so, extends to an element of G(D)
acting on X(D). Since X(D) → S(D) is G(D)-equivariant it follows that s and s′ lie
on the same G(D)-orbit. �

(d) The Gh(D)
a -equivariant isomorphism

Φ∶ So(D) ×Gh(D)
a

≅Ð→ S(D), (s, g) ↦ g(s)
yields the desired equivariant trivialization.

(e) Let η∗(Fo(D)) = (X′(D)) → S(D)) be the induced family. Since So(D) is a

slice for the Gh(D)
a -action on S(D) and the projection πX(D)∶X(D) → S(D) is Gh(D)

a -

equivariant, see (a), then also Xo(D) is a slice for the free Gh(D)
a -action on X(D), cf.

(b). Therefore, one has a commutative diagram of Gh(D)
a -equivariant morphisms

(106)

X(D)o ×Gh(D)
a

Φ̃

≅
- X(D)

So(D) ×Gh(D)
a

?
≅
Φ
- S(D)

?

where Φ̃∶ (x, g) ↦ g(x). Using Proposition 10.12 and the latter diagram the assertions
follow.

Remarks 10.15. 1. The action of the unipotent radical Ru(G(D)) = Gh(D)
a on X(D)

has the following interpretation. The group AutB(B × A1) = U0 ⋊ Gm where U0 =
OB(B) acts naturally on S(D) via (101). For s ∈ S(D) the subgroup UX(s) = Um from
Proposition 10.5 is the stabilizer of s in U. By Proposition 10.5(c) for any s′ ∈ S(D)
one has

UX(s′) = UX(s) ≅H0(B,−Dm) where Dm =
n

∑
i=1

hibi .

By Proposition 10.5(d), UX = UX(s) acts identically on S(D). The quotient U0/UX ≅
Gh(D)
a acts transitively on each orbit of U0 in S(D), and this action coincides with the

Gh(D)
a -action.
2. It can be shown that the quotient M(D) = S(D)/G(D) does not depend on the

choice of a trivializing sequence for πX ∶X → B. Anyway, this fact follows also from the
proof of Theorem 10.3(a) below.
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10.5. Proof of Theorem 10.3. (a) We claim that the desired coarse moduli space is

C(B, z,D) =M(D) = S(D)/G(D) = So(D)/(Gm ×Aut∗B(D)) ,
see (96). Indeed, consider a deformation family F ∶ (η∶X → S, π∶X → B) of marked
GDF surfaces π∣X(s)∶X(s) = η−1(s) → B sharing the common marking z ∈ OB(B) and
the common graph divisor D(π∣X(s)) ≅B D where the latter isomorphism depends on
s ∈ S.

Passing to the Galois covering S ′ → S defined by the monodromy group of the latter
family we obtain the induced family F′ ∶ (X′ → S ′) with a trivial family of graph divisors.
By Proposition 10.12 the configuration invariant defines a morphism ∆∶ S ′ → S(D) such
that F′ = ∆∗(F(D)). The quotient morphism S ′ → S(D)/G(D) is constant on any fiber
of S ′ → S. Hence ∆ can be factorized via a morphism δ∶ S → S(D)/G(D) = M(D).
Due to Proposition 10.14(c) such a morphism δ is uniquely defined and has the desired
properties, see Definition 10.2.

Statement (b) follows from Theorem 0.6.
Statement (c) is immediate by Proposition 7.18. Indeed, by virtue of this proposi-

tion, performing a top level stratching one replaces D by D(k) without changing the
isomorphism class over B of the cylinder X×A1. Since X has a reducible fiber the graph
divisor D(k) of the resulting marked GDF surface X(k) → B with the same marking z
has at least 2k additional edges. So, one has

dimM(D) ≥ card (edges (D)) − h(D) − 1 and dimM(D(k)) ≥ dimM(D) + k ,
which implies the assertion. �

Corollary 10.16. Any deformation family of GDF surfaces whose graph divisors are
chain divisors is trivial.

Proof. Let a GDF surface πX ∶X → B admits a line bundle structure, that is, D(πX) = D
is a chain divisor. Then card (edges (D)) = h(D), S(D) ≅ Ah(D), and the Gh(D)

a -action
on S(D) is simply transitive. Hence So(D) is a singleton, and so, the versal deformation
family X(D) → S(D) is trivial by Proposition 10.14(d). Furthermore, any locally trivial
family of chain divisors is trivial since the group Aut(D) is. Since any deformation
family F ∶ X→ S with the given graph divisor D is induced from X(D) → S(D) via the
morphism ∆ ∶ S → S(D) given by the configuration invariant, see Proposition 10.12(e),
F is trivial as well. �

Remark 10.17. In fact, this corollary holds without any assumption on B. Theorem
10.3 remains valid if one replaces the assumption “OB(B)× = k∗” by the following one:
“z−1(0) is a singleton”. However, in general the coarse moduli space C1(B, z,D) does
not exist in any reasonable category of spaces. Let us give a simple example.

Example 10.18. Let k = C, and let B = A1∖{0, π}, where A1 = Spec C[t], be equipped
with the marking z = t2 −1 so that n = 2 and b1 = 1, b2 = −1. Let also Γi, i = 1,2, be the
rooted tree of height 1 with two vertices on level 1. One has

S(Γi) = S(2), So(Γi) ≅ A1
∗ ∶= A1 ∖ {0}, i = 1,2, and So(D) ≅ (A1

∗)2 .

The group Aut∗(D) is trivial, see Definition 10.8. The infinite discrete group

OB(B)×/k∗ ≅ Z2
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acts naturally on the quotient

So(D)/(Gm ×Aut∗(D)) ≅ (A1
∗)2/Gm ≅ A1

∗

as a subgroup of Gm ⊂ Aut(A1∗) generated by two nonzero complex numbers whose ratio
is transcendental. Its orbits correspond to the isomorphism classes of the associated
GDF surfaces. It is easily seen that the induced complex topology of the quotient
A1∗/Z2 does not satisfy the Kolmogorov T0 axiom. Hence this quotient neither is an
algebraic (or complex) space, nor is an algebraic stack.
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