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CANCELLATION FOR SURFACES REVISITED. I

H. FLENNER, S. KALIMAN, M. ZAIDENBERG

Abstract. The celebrated Zariski Cancellation Problem asks as to when the exis-

tence of an isomorphism X ×An ≅ X ′ ×An for (affine) algebraic varieties X and X ′

implies that X ≅ X ′. In this and the subsequent papers we provide a criterion for

cancellation by the affine line (that is, n = 1) in the case, where X is a normal affine

surface admitting an A1-fibration X → B over a smooth affine curve B. If X does

not admit such an A1-fibration, then the cancellation by the affine line is known to

hold for X by a result of Bandman and Makar-Limanov. We show that, for a smooth

A1-fibered affine surface X over B, the cancellation by an affine line holds if and

only if X → B is a line bundle, and, for a normal such X, if and only if X → B is a

cyclic quotient of a line bundle (an orbifold line bundle). When cancellation does not

hold for X, we include X in a non-isotrivial deformation family Xλ → B, λ ∈ Λ, of

A1-fibered surfaces with cylinders Xλ ×A1 isomorphic over B. This gives large fam-

ilies of examples of non-cancellation for surfaces, which extend the known examples

constructed by Danielewski, tom Dieck, Wilkens, Masuda and Miyanishi. Given two

A1-fibered surfaces with reduced fibers and the same Danielewski-Fieseler quotient

B̆ → B, we provide a criterion as to when the corresponding cylinders are isomorphic

over B. This criterion is expressed in terms of linear equivalence of certain ‘type

divisors’ on B̆.
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Introduction

The paper is divided into two parts addressed to as Part I and Part II. We introduce
here into the results of the both parts.

Let X and Y be algebraic varieties over a field k. The celebrated Zariski Cancellation
Problem, in its most general form, asks under which circumstances the existence of
a biregular (resp., birational) isomorphism X × An ≅ Y × An implies that X ≅ Y ,
where An stands for the affine n-space over k. In this and the subsequent papers,
we are interested in the biregular cancellation problem, hence the symbol ‘≅’ stands
for a biregular isomorphism. We say that X is a Zariski factor if X × An ≅ Y × An

implies that X ≅ Y , whatever is n ∈ N, and a strong Zariski factor if any isomorphism
Φ∶X×An → Y ×An, where Y is another algebraic variety, fits in a commutative diagram

X ×An Φ- Y ×An

X
? ≅

ϕ
- Y
?

where the vertical arrows are the canonical projections. This property is usually called
a strong cancellation. We say that X is a Zariski 1-factor if X ×A1 ≅ Y ×A1 implies
that X ≅ Y , and a strong Zariski 1-factor if the strong cancellation holds for X with
n = 1. The latter means, in particular, that the cylinder structure on X ×A1 is unique,
see [56, Thm. 2.18].

By the Iitaka-Fujita Theorem [49], any algebraic variety X of non-negative log-
Kodaira dimension is a strong Zariski factor. Due to a theorem by Bandman and
Makar-Limanov ([7, Lem. 2]1), the following holds.

Theorem 0.1. The affine varieties which do not admit any effective Ga-action are
strong Zariski 1-factors.

1Cf. [18]; see [13, Thm. 3.1] for the positive characteristic case.
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There are examples of smooth, rational affine surfaces of negative log-Kodaira di-
mension (A1-fibered over P1), which do not admit any effective Ga-action, and so, are
strong Zariski 1-factors (see [7, Ex. 3], [47, 3.7]). Some of these affine surfaces are not
Zariski 2-factors, see [24, 25].

In this paper we concentrate on the Zariski Cancellation Problem for normal affine
surfaces over an algebraically closed field k of characteristic zero. From Theorem 0.1
one can deduce the following criteria.

Corollary 0.2. A normal affine surface X is a strong Zariski 1-factor if and only if
it does not admit any effective Ga-action, if and only if it is not fibered over a smooth
affine curve C with general fibers isomorphic to the affine line A1.

See, e.g., [56, Thm. 2.18] for the first part and [31, Lem. 1.6] for the second.
Recall (see e.g., [31]) that a parabolic Gm-surface is a normal affine surface equipped

with an A1-fibration π∶X → C over a smooth affine curve C and with an effective
Gm-action along the fibers of π. All π-fibers of such a surface are irreducible curves
isomorphic to the affine line A1. The singularities of X are cyclic quotients situated at
the Gm-fixed points on the multiple fibers of π. There is exactly one singular point of
X in each multiple fiber. If a parabolic Gm-surface X → C is smooth, then this is a
line bundle over C. Any parabolic Gm-surface admits an effective Ga-action along the
fibers of π ([32, Thm. 3.12]).

By the celebrated Miyanishi-Sugie-Fujita Theorem ([63, 39]; see also [62, Ch. 3, Thm.
2.3.1]) the affine plane A2 is a Zariski factor, hence also a Zariski 1-factor. An analogous
result holds for the parabolic Gm-surfaces. Moreover, we provide the following criterion.

Theorem 0.3. Let X be a normal affine surface A1-fibered over a smooth affine curve.
Then the following conditions are equivalent:

(i) X is a Zariski factor;
(ii) X is a Zariski 1-factor;

(iii) X is a parabolic Gm-surface.

The implication (i)⇒(ii) is immediate; see Theorem 7.16 for (ii)⇒(iii) and Theorem
6.8 for (iii)⇒(i).

From Theorems 0.1 and 0.3 one can deduce the following characterization.

Corollary 0.4. A normal affine surface X is a Zariski 1-factor if and only if either
X does not admit any effective Ga-action, or X is a parabolic Gm-surface.

The Danielewski surfaces

Xm = {zmt − u2 − 1 = 0} ⊂ A3, m ∈ N ,
are examples of non-Zariski 1-factors ([17, 29]). Indeed, these surfaces are pairwise non-
homeomorphic ([29]), but have isomorphic cylinders: Xm ×A1 ≅ Xm′ ×A1 ∀m,m′ ∈ N.
For non-Zariski 1-factors, one can consider the following problems.

Problems. Given an affine algebraic variety X, describe the moduli space Cm(X)
of isomorphism classes of the affine algebraic varieties Y such that X ×Am ≅ Y ×Am.
Study the behavior of Cm(X) upon deformation of X.

Note that X is a Zariski 1-factor if and only if C1(X) = {X}. We don’t have any
example of an affine non-Zariski 1-factor X, where the moduli space C1(X) were known.
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For the first Danielewski surface X1, the moduli space C1(X1) has infinite number of
irreducible components. In [77] this sequence is extended to a family of surfaces in A3

with similar properties. The example in [77] shows that C1(X1) possesses an infinite
number of components, which are infinite dimensional ind-varieties. Yet another family
of examples including the Danielewski surfaces is considered in [60, Thm. 2.8]. The
latter family has an infinite number of components of the same positive dimension,
which can be chosen arbitrary.

In both Parts I and II, we concentrate on the normal affine surfaces X A1-fibered
over affine curves. In particular, we show that, unless X is a parabolic Gm-surface, X
deforms in a large family of surfaces with isomorphic cylinders (see Theorems 5.7 and
5.9). Moreover, the deformation space contains infinitely many connected components
of positive dimension.

In Part II we prove the following theorem. To an A1-fibered surface π∶X → B
over a smooth affine curve B with reduced fibers one associates a non-separated one-
dimensional affine scheme B̆ over B (the Danielewski-Fieseler quotient) and an effective

divisor tp(D(π)) on B̆, called a type divisor ; see §2.3.

Theorem 0.5. For two A1-fibered surfaces π∶X → B and π′∶X ′ → B with reduced fibers
over the same smooth affine curve B, the cylinders X ×A1 and X ′ ×A1 are isomorphic
over B if and only if the corresponding type divisors tp(D(π)) and tp(D(π′)) on B̆ are
linearly equivalent.

The proofs exploit the affine modifications ([54]), in particular, the Asanuma modifi-
cation ([4]), and as well the flexibility techniques of [1], in particular, the interpolation
by automorphisms. As an illustration, we analize from our viewpoint the examples of
non-cancellation due to Danielewski [17], Fieseler [29], Wilkens [77], tom Dieck [76],
and Miyanishi–Masuda [60].

Remark 0.6. The results of Part I and Part II were reported by the third author
on the conference ”Complex analyses and dynamical systems - VII” (Nahariya, Israel,
May 10–15, 2015), in a seminar at the Bar Ilan University (Ramat Gan, Israel, May 24,
2015), and in the lecture course ”Affine algebraic surfaces and the Zariski cancellation
problem” at the University of Rome Tor Vergata (September–November, 2015; see the
program in [79]). When this paper was written, the third author assisted in the lecture
course by Adrien Dubouloz on the cancellation problem for affine surfaces in the 39th
Autumn School in Algebraic Geometry (Lukecin, Poland, September 19–24, 2016). In
this course, Adrien Dubouloz advertised a result on non-cancellation for smooth A1-
fibered affine surfaces similar to our result (see, in particular, Theorem 1.2 below and
Theorem 0.3 in the case of smooth surfaces), and indicated nice ideas of proofs done by
completely different methods. He also posed the question whether the non-degenerate
affine toric surfaces are Zariski 1-factors, which had been answered in affirmative by
our Theorem 0.3.

1. Generalities

1.1. Cancellation and the Makar-Limanov invariant. The special automorphism
group SAutX of an affine vaiety X is the subgroup of the group AutX generated by
all its Ga-subgroups ([1]). The Makar-Limanov invariant ML(X) is the subring of
invariants of the action of SAutX on O(X). The SAutX-orbits are locally closed
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in X [1]. The complexity κ of the action of SAutX on X is the codimension of its
general orbit, or, which is the same, the transcendence degree of the ring ML(X) ([1]).
We design this integer κ as the Makar-Limanov complexity of X, and we say that X
belongs to the class (MLκ).

By the Miyanishi-Sugie Theorem ([63], [62, Ch. 2, Thm. 2.1.1, Ch. 3, Lem. 1.3.1 and
Thm. 1.3.2]), a normal affine surface X with k̄(X) = −∞ contains a cylinder, i.e., a
principal Zariski open subset U of the form U ≅ C × A1, where C is a smooth affine
curve. It possesses as well an A1-fibration µ∶X → B over a smooth curve B, which
extends the first projection U → C of the cylinder. If B is affine then X admits an
effective action of the additive group Ga = Ga(k) along the rulings of µ.

Conversely, suppose that there is an effective Ga-action on X. Then the algebra
of invariants O(X)Ga is finitely generated and normal ([29, Lem. 1.1]). Hence B =
SpecO(X)Ga is a smooth, affine curve, and the morphism µ∶X → B induced by the
inclusion O(X)Ga ↪ O(X) defines an A1-fibration (an affine ruling) on X. Such an A1-
fibration is trivial over a Zariski open subset of B. It extends the first projection on a
principal cylinder on X. If an A1-fibration on a surface X over an affine base is unique
(non-unique, respectively), then X is of class (ML1) (of class (ML0), respectively). It
is of class (ML2) if X does not admit any A1-fibration over an affine curve. In the
latter case, X could very well admit an A1-fibration over a projective curve, and this
is so if and only if k̄(X) = −∞.

The cancellation problem is closely related to the problem on stability of the Makar-
Limanov invariant under passing to a cylinder. The latter is discussed, e.g., in [5]–[7]
and [12]-[14]. Suppose, for instance, that ML(X) = O(X). Then by [13, Thm. 3.1] (cf.
also [18]), ML(X ×A1) = O(X). This means that the cylinder structure on X ×A1 is
unique. Hence an affine variety X, which does not admit any effective Ga-action, is a
Zariski 1-factor. In particular, any smooth, affine surface of class (ML2) is a Zariski
1-factor. Therefore, in the future we restrict to surfaces of classes (ML0) and (ML1).

In the Danielewski example, Y1 ∈ (ML0), whereas Yr ∈ (ML1) for r ≥ 2. Thus, the
Makar-Limanov complexity is not an invariant of cancellation. By contrast, the Euler
characteristic, the Picard number (for a rational variety), the log-plurigenera, and the
log-irregularity are cancellation invariants, see, e.g., Iitaka’s Lemma in [62, Ch. 2, Lem.
1.15.1] and [39, (9.9)].

1.2. Non-cancellation and Gizatullin surfaces. Let X be a smooth, affine surface.
Recall ([43]) that SAutX acts on X with an open orbit if and only if X ∈ ML0. In
the latter case X is a Gizatullin surface, i.e., a normal affine surface completable by a
chain of smooth rational curves, and different from A1 × (A1 ∖ {0}). Furthermore, the
group SAut(X × A1) also acts with an open orbit in the cylinder X × A1. Thus, the
Makar-Limanov invariant ML(X ×A1) is trivial: ML(X ×A1) = ML(X) = k.

The following conjecture is inspired by [7, §4, Thm. 1] and the unpublished notes
[8] kindly offered to one of us by the authors.

Conjecture 1.1. Let X be a normal affine surface such that the group SAut(X ×A1)
acts with an open orbit in X × A1. Then C1(X) contains (the class of) a Gizatullin
surface.
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Due to [7, Thm. 1] (see also an alternative proof in Part II) this conjecture is true for
the Danielewski-Fieseler surfaces, that is, for the A1-fibered surfaces π∶X → A1 with a
unique degenerated fiber, provided this fiber is reduced.

1.3. The Danielewski–Fieseler construction. The Danielewski–Fieseler examples
of non-cancellation exploit the properties of the Danielewski–Fieseler quotient. Assume
that the Ga-action on X is free. Then the geometric orbit space X/Ga is a non-
separated pre-variety (an algebraic space), obtained by gluing together several copies
of B ∶= SpecO(X)Ga along a common Zariski open subset. The morphism µ can be
factorized into X →X/Ga → B. An ingenious observation by Danielewski is as follows.
Suppose that X and Y are non-isomorphic smooth affine Ga-surfaces with free Ga-
actions and with the same Danielewski–Fieseler quotient F = X/Ga = Y /Ga. Then
the affine threefold W = X ×F Y carries two induced free Ga-actions. Moreover, W
carries two different structures of principal Ga-bundles (torsors) over X and over Y ,
respectively. Since X and Y are affine varieties, by Serre’s Theorem ([73]), both these
bundles are trivial, and so, X ×A1 ≅W ≅ Y ×A1. This is exactly what happens for two
different Danielewski surfaces X =Xr and Y =Xs.

The question arises, how universal is the Danielewski-Fieseler construction. More
precisely,

Question. Let X and Y be non-isomorphic smooth affine surfaces with isomorphic
cylinders X × A1 ≅ Y × A1. Assume that both X and Y possess free Ga-actions. Do
there exist A1-fibrations on X and on Y over the same affine base and with the same
Danielewski–Fieseler quotient?

Recall ([20, Def. 0.1]) that a Danielewski-Fieseler surface is a smooth affine surface
X equipped with an A1-fibration µ∶X → A1, which represents a (trivial) line bundle
over A1 ∖{0}, and such that the divisor µ∗(0) is reduced. Such a surface admits a free
Ga-action if and only if it is isomorphic to a surface in A3 with equation xy − p(z) = 0,
where p ∈ k[z] has simple roots ([20, Cor. 4.13]). Theorem 5.7 below deals, more
generally, with normal affine surfaces A1-fibered over affine curves, such that any fiber
of the given A1-fibration is reduced. Abusing the language, we abbreviate these as
GDF-surfaces, see Definition 2.1. The Danielewski trick does not work for them, in
general, because such a surface does not need to admit a free Ga-action. However, we
show (see Theorems 5.7 and 7.9)

Theorem 1.2. A GDF-surface is a Zariski 1-factor if and only if it is the total space
of a line bundle.

The proof involves affine modifications, in particular, the Asanuma modification.

1.4. Affine modifications. Most of the known examples of non-cancellable affine
surfaces exploit the Danielewski–Fieseler quotient, see, e.g., [60, 77]. By contrast, in
this paper we use an alternative construction of non-cancellation due to T. Asanuma
[4]. Recall first the notion of an affine modification (see [54]).

Definition 1.3 (Affine modification). Let X = SpecA be a normal affine variety,
where A = OX(X) is the structure ring of X. Let further I ⊂ A be an ideal, and
let f ∈ I, f ≠ 0. Consider the Rees algebra A[tI] = ⊕n≥0 tnIn with I0 = A, where t
is an independent variable. Consider further the quotient A′ = A[tI]/(1 − tf) by the
principal ideal of A[tI] generated by 1−tf . The affine variety X ′ = SpecA′ is called the
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affine modification of X along divisor D = f∗(0) with center I. The inclusion A ↪ A′

induces a birational morphism %∶X ′ → X, which contracts the exceptional divisor
E = (f ○ %)−1(0) on X ′ to the center V(I) ⊂ X. Actually, any birational morphism of
affine varieties X ′ →X is an affine modification ([54, Thm. 1.1]).

Remarks 1.4. 1. If I = (a1, . . . , al), where ai ∈ A, i = 1, . . . , l, then A′ = A[I/f] =
A[a1/f, . . . , al/f].

2. Assume that f ∈ I1 ⊂ I, where I1 is an ideal of A. Letting A1 = A[I1/f] we obtain
the equality A′ = A1[I2/f], where I2 is the ideal generated by I in A1. The inclusion
A ↪ A1 ↪ A′ leads to a factorization of the morphism X ′ → X into a composition of
affine modifications (i.e., birational morphisms of affine varieties) X ′ →X1 →X, where
X1 = specA1 (cf. also [54, Proposition 1.2] for a different kind of factorization).

3. Geometrically speaking, the variety X ′ = SpecA′ is obtained by blowing up
X = SpecA at the ideal I ⊂ A and deleting a certain transform of the divisor D on X ′,
see [54] for details. However, in general V(I) can have components of codimension 1,
which are then also components of the divisor f∗(0). These components survive the
modification. Thus, it is worth to distinguish between a geometric affine modification
and an algebraic one.

Indeed, given a birational morphism of affine varieties σ∶X ′ → X with exceptional
divisor E ⊂ X ′ and center C = σ∗(E) of codimension at least 2, the divisor D of the
associated modification can be defined as the closure of X ∖ σ(X ′) in X. However,
this D is not necessarily a principal divisor. So, in order to represent σ∶X ′ →X via an
affine modification, we have to find a principal divisor on X with support containing
D. Thus, although the data (D,C) is uniquely defined for σ, there are many different
affine modifications which induce the same birational morphism σ∶X ′ → X (cf. [19]
and also Remark 2.27 for the case of A1-fibered affine surfaces).

The following lemma will be used on several occasions. It generalizes [54, Cor. 2.2],
with a similar proof.

Lemma 1.5. Let X ′ → X and Y ′ → Y be affine modifications along principal divisors
DX = div fX and DY = div fY with centers IX and IY , respectively, where fX ∈ IX ∖{0}
and fY ∈ IY ∖ {0}. If an isomorphism ϕ∶X ≅Ð→ Y sends fY to fX (hence, DX to DY )

and IY onto IX , then it lifts to an isomorphism ϕ′∶X ′ ≅Ð→ Y ′.

We need also the following version of this lemma.

Lemma 1.6. Let M and N be affine varieties, and let σ∶M → N be an affine modifi-
cation along a principal divisor D = f∗(0) in N with center an ideal I ⊂ ON (N), where
z ∈ I ∖ {0}. If α ∈ AutN with α(f) = f satisfies the congruences 2

α ≡ id mod f s and α−1 ≡ id mod f s for some s ∈ N ,
then α can be lifted to an automorphism α̃ ∈ AutM such that

(1) α̃ ≡ id mod f s−1 and α̃−1 ≡ id mod f s−1 .

Proof. Let A = ON(N) and A′ = OM(M) = A[a1/f, . . . , al/f], where a1, . . . , al are
generators of I. We have α∗(ai) − ai ∈ (f s), that is, α∗(ai) = ai + f sbi for some bi ∈ A,
i = 1, . . . , l. Extending α∗ to an automorphism of the fraction field FracA denoted by

2That is, α and α−1 induce both the identity on the sth infinitesimal neighborhood of D.

7



the same symbol, we obtain α∗(ai/f) = ai/f + f s−1bi, i = 1, . . . , l. Thus, α∗(A′) ⊂ A′

and, similarly, (α−1)∗(A′) ⊂ A′. So, α∗ extends to an automorphism α̃∗ ∈ AutA′ such
that (1) holds. �

In the next remark we discuss a converse to Lemma 1.5.

Remark 1.7. Let σ∶X ′ → X be an affine modification along divisor f∗(0). Let A =
OX(X) and A′ = OX′(X ′), where A ↪ A′. Among all ideals, which give the same
modification σ, the largest one I ⊂ A is given by I = (f)A′ ∩A.

Suppose we have a commutative diagram of birational morphisms

(2)

X1
ϕ - X2

@
@
@σ1 R 	�

�
�
σ2

X

where σ1 and σ2 are affine modifications along the same divisor f∗(0) on X. Letting
I1, I2 ⊂ A be the largest ideals of σ1 and σ2, respectively, we have ϕ∗(I2) ⊂ I1. Fur-
thermore, ϕ∗(I2) = I1 provided ϕ is an isomorphism. The next example shows that
the inclusion ϕ∗(I2) ⊂ I1 does not hold any longer, in general, if σ1 and σ2 are affine
modifications along two different divisors.

Example 1.8. Letting

A = k[u, v], A1 = k[x1, y1] = k[u, v/u2], and A2 = k[x2, y2] = k[u, v/u] ,
we have A↪ A2 ↪ A1. The corresponding morphisms

σ1∶ (x1, y1) ↦ (x1, x
2
1y1), σ2∶ (x2, y2) ↦ (x2, x2y2), and ϕ∶ (x1, y1) ↦ (x1, x1y1)

fit in (2), that is, σ2 ○ ϕ = σ1. We have I1 = (u2, v) ⊂ A, I2 = (u, v) ⊂ A, and (ϕ∗)(I2) =
(u,uv). However, there is no inclusion between the ideals ϕ∗(I2) and I1.

It is easily seen that the affine modification of the linear space An with center in
a linear subspace of codimension ≥ 2 and with divisor a hyperplane is isomorphic to
An. Similarly, certain affine Asanuma modifications of a cylinder give again a cylinder.
This simple and elegant fact is due to Asanuma ([4]); we follow here [52, Lem. 7.9].

Lemma 1.9. Let X be an affine variety, D a principal effective divisor on X, and I
an ideal of OX(X) with support contained in D. Let X ′ →X be the affine modification
of X along D with center I. Consider the cylinder X = X × A1 = SpecOX(X)[v],
the divisor D = D × A1 on X , the ideal Ĩ ⊂ OX (X) generated by I, and the ideal
J = (Ĩ , v) ⊂ A[v] supported on D × {0} ⊂ D. Then the affine modifications of X along
D with center Ĩ and with center J are both isomorphic to the cylinder X ′ ×A1.

Proof. The affine modification of the cylinder X along D with center Ĩ yields the
cylinder X ′ =X ′ ×A1. Let A = OX(X), f and a1, . . . , al be as in 1.3 and 1.4. Then

OX ′(X ′) = A[a1/f, . . . , al/f, v] ≅ A[a1/f, . . . , al/f, v′/f] = OX ′′(X ′′) ,
where v′ = vf is a new variable, and X ′′ → X is the affine modification of X along D
with center J . This gives the desired isomorphism. �
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2. A1-fibered surfaces via affine modifications

2.1. Covering trick and GDF surfaces. Throughout the paper, we deal with the
following class of A1-fibered surfaces.

Definition 2.1 (a GDF surface). Let X be a normal affine surface over k. A morphism
π∶X → B onto a smooth affine curve B is called an A1-fibration if the fiber π∗(b) over
a general point b ∈ B is isomorphic to the affine line A1 over k. An A1-fibered surface
π∶X → B is called a generalized Danielewski-Fieseler surface, or a GDF surface for
short, if all the fibers π∗(b), b ∈ B, are reduced. According to Lemma 2.24(b) below,
any GDF surface is smooth.

We say that a GDF surface π∶X → B is marked if a regular function z ∈ OB(B) is
given such that z ○ π ∈ OX(X) vanishes along any degenerate fiber of π, and has only
first order zeros along fiber components of π. Abusing notation, we often consider z as
a function on X, identifying it with z ○ π.

A GDF surface π∶X → B equipped with actions of a finite group G on X and on B
making the morphism π G-equivariant is called a GDF G-surface. Assume that G = µd
is the group of dths roots of unity, and let z be a µd-quasi-invariant marking on X of
weight 1. Then we say that π∶X → B is a marked GDF µd-surface.

When B = A1 and π−1(0) is the only reducible fiber of π, such surfaces were studied
in [20] under the name Danielewski-Fieseler surfaces.

Lemma 2.3 below is well known; for the sake of completeness, we indicate a proof.
This lemma says that, starting with a normal affine A1-fibered surface and applying a
suitable cyclic Galois base change, one obtains a marked GDF µd-surface. The proof
uses the following branched covering construction.

Definition 2.2 (Branched covering construction). Consider a normal affine A1-fibered
surface π′∶Y → C over a smooth affine curve C. Fix a finite set of points p1, . . . , pt ∈ C
such that for any p ∈ C ∖ {p1, . . . , pt} the fiber π′∗(p) is reduced and irreducible. Let
d be the least common multiple of the multiplicities of the components of the divisor

∑t
i=1 π

′∗(pi) on Y . Choose a regular function h ∈ OC(C) with only simple zeros, which
vanishes in the points p1, . . . , pt.

3 Letting A1 = speck[z], consider the smooth curve
B ⊂ C × A1 given by equation zd − h(p) = 0, where (p, z) ∈ C × A1, along with the
morphism pr1∶B → C and the function z∣B ∈ OB(B); by abuse of notation, we denote
it still by z. Let X be the normalization of the cross-product Y ×CB, and let π∶X → B
and ϕ∶X → Y be the induced morphisms. By abuse of notation, the pullback π∗(z) ∈
OX(X) will be also denoted by z.

Lemma 2.3. In the notation of 2.2 the following holds.

● The cyclic group µd of order d acts naturally on B so that C = B/µd;
● the morphism pr1∶B → C is ramified with order d over the zeros of h, z ∈ OB(B)

is a µd-quasi-invariant of weight 1, and div0 z = pr∗1(div0 h) is a reduced effective
µd-invariant divisor on B;

● the morphism ϕ∶X → Y of A1-fibrations is a Galois covering with Galois group
µd and the reduced branching divisor (h ○π′)∗(0) on Y and ramification divisor
z∗(0) on X;

3These points do not necessarily exhaust the set of zeros of h.
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● the µd-equivariant morphism π∶X → B and the function z ∈ OX(X) define a
structure of a marked GDF µd-surface on X.

Proof. The map νd∶A1 → A1, z ↦ zd, is the quotient morphism of the natural µd-action
on A1. The first three statements follow from the fact that the curve B along with the
morphism z∶B → A1 is obtained using the morphism h∶C → A1 via the base change
νd∶A1 → A1 that fits in the commutative diagram

(3)

X
/µd- Y

B

π

? /µd- C

π′

?

A1

z
?

νd
- A1

h
?

The remaining assertions can be reduced to a simple computation in local charts.
Indeed, let (t, u) be coordinates in a local analytic chart U in Y centered at a smooth
point y ∈ Y , which is a general point of a fiber component F over pi of multiplicity n
in the divisor (π′)∗(pi). We may choose t so that h ○π′∣U = tn and F ∩U = t∗(0). Then
Y ×CB is given locally in A3 with coordinates (z, t, u) by equation zd−tn = 0, where n∣d
by our choice of d. This is a union of n smooth surface germs zd/n−ζt = 0, where ζn = 1,
meeting transversely along the line z = t = 0 that projects in Y onto F ∩ U . After the
normalization we get n smooth disjoint surface germs, say, V1, . . . , Vn in X over U . The
function z ∈ OX(X) gives in each chart Vj a local coordinate such that ϕ∗(F ) = z∗(0)
has multiplicity one in Vj. We leave the further details to the reader. �

2.4 (Cancellation Problem for surfaces: a reduction). The following reasoning is bor-
rowed in [60, 61, 76]. It occurs that, in order to construct (families of) A1-fibered
surfaces with isomorphic cylinders, it suffices to construct (families of) A1-fibered GDF
G-surfaces with G-equivariantly isomorphic cylinders.

Suppose that a Galois base change B → C with a Galois group G applied to two
distinct A1-fibered surfaces π′j ∶Yj → C, j = 0,1, yields two A1-fibered GDF G-surfaces
πj ∶Xj → B, j = 0,1, with G-isomorphic cylinders X0 ×A1 ≅G X1 ×A1 over B, where in
both cases G acts identically on the second factor A1. Clearly, for the quotients we have
(Xj ×A1)/G ≅ Yj ×A1, j = 0,1. Hence passing to the quotients yields an isomorphism
of the cylinders Y0 ×A1 ≅ Y1 ×A1 over C that fits in the commutative diagram

X0 ×A1 ≅G - X1 ×A1

@
@
@/G R

@
@
@/G R

Y0 ×A1 ≅ - Y1 ×A1

B
?

id - B
?

@
@
@/G R

@
@
@/G R

C
?

id - C
?

Thus, in the sequel we will concentrate on the following problem. Consider the
cylinders X×A1 and X ′×A1 over two A1-fibered GDF surfaces π∶X → B and π′∶X ′ → B
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with the same smooth affine base B. Suppose that π and π′ are equivariant with respect
to actions of a finite group G on X,X ′, and B. We extend these actions to G-actions
on the cylinders X ×A1 and X ′ ×A1 identically on the second factor.

Problem 2.5. Find conditions on a pair of GDF G-surfaces X and X ′ which guar-
antee that the cylinders X ×A1 and X ′ ×A1 are G-equivariantly isomorphic.

In Theorems 5.7 and 5.9 we provide such sufficient conditions in the case where G
is a cyclic group. Moreover, these theorems guarantee the existence of an equivariant

B-isomorphism X ×A1 ≅Ð→X ′×A1, that is, an isomorphism which respects the natural
projections X ×A1 → B and X ′ ×A1 → B and induces the identity on B.

2.2. Pseudominimal completion and extended divisor.

Definition 2.6 (Pseudominimal resolved completion). Any A1-fibration π∶X → B on
a normal affine surface X over a smooth affine curve B extends to a P1-fibration
π̃ ∶ X̃ → B̄ on a complete surface X̃ over a smooth completion B̄ of B such that
D = X̃ ∖X is a simple normal crossing divisor carrying no singular point of X̃. Let
% ∶ X̄ → X̃ be the minimal resolution of singularities (all of these singularities are
located in X). Abusing notation, we consider D as a divisor in X̄. We call (X̄,D) a
resolved completion of X.

Consider the induced P1-fibration π̄ ∶= π̃ ○ % ∶ X̄ → B. There is a unique (horizontal)
component S of D which is a section of π̄, while all the other (vertical) components of
D are fiber components. Let B̄ ∖B = {c1, . . . , cs}. Contracting subsequently the (−1)-
components of D different from S we may assume in addition that D does not have
any (−1)-component. Such a resolved completion (X̄,D) is called pseudominimal.4

Definition 2.7 (Extended divisor). Let (X̄,D) be a resolved completion of X along
with the associate P1-fibration π̄∶ X̄ → B̄, and let b1, . . . , bn be the points of B such that
the fibers π̃∗(bi) over bi in X̄ are degenerate, i.e., are either non-reduced, or reducible.
The reduced divisor

(4) Dext =D ∪Λ, where Λ =
n

⋃
j=1

π̄−1(bj) ,

is called the extended divisor of (X̄,D), and the weighted dual graph Γext of Dext the
extended graph of (X̄,D). The graph Γext is a rooted tree with the horizonthal section
S ⊂ D as a root. The dual graph Γ(D) of the boundary divisor D is a rooted subtree
of Γext. The connected components of Dext ⊖ D are called feathers of Dext. Under
the pseudominimality assumption all the (−1)-components of Λ are among the feather
components. In this case we say that Γext is pseudominimal.

Definition 2.8 (Standard completion). The fibers π̄−1(ci), i = 1, . . . , s in a pseudo-
minimal resolved completion π̄∶ X̄ → B̄ are reduced, irreducible 0-curves. Performing,
if necessary, elementary transformations in one of them we may assume that also the
section S is a 0-curve. Such a completion will be called standard, cf., e.g., [34, 5.11]. By
[34, Lem. 5.12], if two A1-fibrations π∶X → B and π′∶X ′ → B are B-isomorphic, then
the corresponding standard extended divisors Dext and D′

ext and the corresponding
extended graphs Γext and Γ′

ext are.

4We do not carry always this assumption; see, e.g., Proposition 2.29 and Corollary 2.30.
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Remark 2.9 (Fiber structure). Recall (see [62, Ch. 3, Lem. 1.4.1 and 1.4.4]) that any
degenerate fiber of π∶X → B is a disjoint union of components isomorphic to A1, any
singular point of X is a cyclic quotient singularity, and two such singular points cannot
belong to the same component. The minimal resolution of a singular point has as
exceptional divisor in X̄ a chain of rational curves without (−1)-component and with
a negative definite intersection form. This chain meets just one other fiber component
at a terminal component of the chain.

Definition 2.10 (Bridges). Any feather F of Dext (see 2.7) is a linear chain of smooth
rational curves on X̃ with dual graph

Γ(F) ∶ cF0 cF1
. . . cFk ,

where the subchain R = F ⊖ F0 = F1 + . . . + Fk (if non-empty) contracts to a cyclic
quotient singularity of X, and the component F0, called the bridge of F, is attached to
a unique component C of D. The bridge F0 is the closure in X̄ of a fiber component
F0 ∖ C ≅ A1 of π. Vice versa, for each fiber component F of π, the closure F̄ in X̄
of the proper transform of F is a bridge of a unique feather. In the case of a smooth
surface X one has k = 0, i.e., any feather F consists in a bridge: F = F0.

2.3. Graph divisors and type divisors.

Definition 2.11 (Fiber trees, levels, and types). Given a completion π̄∶ X̄ → B̄ and a
point b ∈ B, the dual graph Γb = Γb(X̄) of the fiber π̄−1(b) will be called a fiber tree.
It depends on the completion chosen. This is a rooted tree with a root v0 ∈ Γb being
the neighbor of S in Γext. We say that a vertex v of Γb has level l if the tree distance
between v and v0 equals l. Thus, the root v0 is a unique vertex of Γb on level 0. By
a hight ht(Γb) we mean the highest level of the vertices in Γb. The leaves of a rooted
tree are its extremal vertices different from the root. By the type tp(Γb) we mean
the sequence of nonnegative integers (n1, n2, . . . , nh), where h = ht(Γb) and ni is the
number of leaves of Γb on level i.

Definition 2.12 (Graph divisor). Let G be the set of all finite weighted rooted trees
contractible to the root with weight zero. By a graph divisor on a smooth affine curve
B we mean a formal sum

D =
n

∑
b∈B

Γbb, where Γb ∈ G ,

and Γb consists just of the root [[0]] for all but finite set of points b ∈ B. If all the
Γb are chains, then we call D a chain divisor. The height of a graph divisor D is the
maximal hight of the trees Γb, b ∈ B.

To any A1-fibered surface π∶X → B with a marking z ∈ OB(B), a resolved completion

π̄∶ X̂ → B̄, and the corresponding extended graph Γext, we associate the graph divisor
D(π) = ∑n

b∈B Γbb, where for any zero bj of z, j = 1, . . . , n, Γbj is the fiber tree of the
fiber π−1(bj), and Γb = [[0]] otherwise. If π∶X → B is a µd-surface and the marking z
is µd-quasi-invariant, then there is a natural µd-action on the graph divisor D(π).

Definitions 2.13 (Type divisor). 1. Let π∶X → B be a GDF surface, and let (X̄,D)
be its resolved completion with the associated extended graph divisor D(π). Given
a fiber π−1(b) = F1 ∪ . . . ∪ FN , its type is the one of the fiber tree Γb = Γb(X̄), see
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Definition 2.11. This is a sequence n̄b = (ni)i≥0 ∈ Z∞ of nonnegative integers, where ni
is the number of components Fj on level i, so that ni = 0 ∀i > ht(Γb). Thus, n̄b = 0̄ ∈ Z∞

if and only if π−1(b) = F1, where l(F1) = 0, that is, Γb is the zero chain [[0]].
2. By the type divisor of Dext we mean the Z∞-divisor

tp (Dext) = ∑
b∈B

n̄bb

on B, where the sum has a finite number of nonzero terms. We let Div(B,Z∞) be the
Z-module of all Z∞-divisors on B with finite support.

3. Given an effective divisor A = ∑n
i=1 aibi ∈ Div(B), where ai ∈ N ∀i = 1, . . . , n, we

define its action on Div(B,Z∞) via a shift as follows. For T ∈ Div(B,Z∞), we let

● (A.T )(b) = T (b), if b ∉ {b1, . . . , bn};
● (A.T )(bi) = (0, . . . ,0,1ai ,0,0, ....), if T (bi) = 0̄;
● (A.T )(bi) is the sequence T (bi) shifted by ai positions to the right, otherwise.

4. We say that two Z∞-divisors T1 and T2 are linearly equivalent, and we write
T1 ∼ T2, if A1.T1 = A2.T2 for some linearly equivalent effective divisors A1,A2 ∈ Div(B).

This terminology serves to formulate our main results. Namely, Theorem 5.7 says
that

Given two GDF surfaces X,X ′ over B with isomorphic graph divisors, the cylinders
over X and X ′ are isomorphic over B.

In Part II we strengthen this by showing that

The B-isomorphism classes of cylinders over GDF surfaces with base B are in one-to-
one correspondence with the linear equivalence classes of their type divisors.

Remark 2.14. The type divisor can be expressed via a usual divisor on a non-separated
one-dimensional affine scheme. Indeed, given a GDF surface π∶X → B, we define a DF
quotient DF(X) to be the quotient of X by the equivalence relation determined by the
fiber components of π. Thus, π factorizes into the quotient morphism X → DF(X) with
reduced, irreducible fibers followed by the induced morphism DF(X) → B. The latter
morphism is an isomorphism over B ∖ {b1, . . . , bn}, while the preimage of bj in DF(X)
consists of Nj points (bi,j)i=1,...,Nj , where Nj is the number of the fiber components Fi,j
in π−1(bj). It is an isomorphism if and only if π∶X → B admits a structure of a line
bundle.

Letting li,j = l(Fi,j) be the level of Fi,j, the type divisor of X can be defined as
the effective divisor ∑i,j li,jbi,j on DF(X). There is an easy way to reconstruct the
type divisor tp(D(π)) as in Definition 2.13.2 starting with the latter one, and vice
versa. With the new definition, the linear equivalence of type divisors is the usual
linear equivalence, that is, equivalence modulo the principal divisors on DF(X), that
are just principal divisors on B lifted to DF(X). The Picard group Pic DF(X) is
defined in a usual way. To a GDF surface π∶X → B we associate its Picard class
[π] = [− tp(D(π))] ∈ Pic DF(X). If π∶X → B is a line bundle L, then [π] = [L] ∈ PicB.
One can reformulate Theorem 0.5 as follows.

Theorem 2.15. The B-isomorphism classes of cylinders over GDF surfaces with base
B are in one-to-one correspondence with the elements in the Picard group Pic DF(X),
which can be represented in the anti-effective cone.
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Next we define an action of an effective divisor on the set of graph divisors on B via
a stretching.

Definition 2.16. With an effective divisor A = ∑n
i=1 aibi ∈ Div(B), where ai ∈ Z≥0 and

bi ∈ B, we associate a chain divisor D(A) = ∑n
i=1L(ai)bi, where L(ai) is a chain with

weights [[−2,−2, . . . ,−2,−1]] of length ai if ai > 0, and L(0) = ∅. Let D = ∑b∈B Γbb be
a graph divisor such that ht (Γbi) ≥mi ≥ −1 for each i = 1, . . . , n. We let (A.D)m̄ = D′ =
∑b∈B Γ′

bb, where m̄ = (m1, . . . ,mn) and

● Γ′
b = Γb if b ∉ {b1, . . . , bn};

● otherwise, Γ′
bi

is obtained from Γbi by inserting the chain Li between each vertex
v of Γbi on level mi and its neighbors on level mi + 1, so that the left end li
of Li becomes a vertex on level mi + 1 of Γ′

bi
, and its right end ri is joint with

the vertices of Γbi on level mi + 1 over v. The weights change accordingly: the
weight of v decreases by 1, and the weight of ri becomes −1 − s(v), where s(v)
is the number of vertices on level mi + 1 in Γbi joint with v.

Clearly, tp(D′) = A. tp(D). This operation of A on D will be called a (combinatorial)
(A, m̄)-stretching.

2.4. Blowup construction.

Definition 2.17 (Blowup construction). Let as before π∶X → B be an A1-fibration on
a normal affine surface X over a smooth affine curve B, and let (X̄,D) be a resolved
completion of X along with the associate P1-fibration π̄∶ X̄ → B̄ and with a section
‘at infinity’ S. In any degenerate fiber π̄∗(bi) on X̄, i = 1, . . . , n, there is a unique
component, say, Di meeting S. The rest of the fiber π̄−1(bi) ⊖Di can be blown down
to a smooth point. This fact is well known; for the reader’s convenience we provide a
brief argument.

Lemma 2.18. Let C0 be the component of a fiber π̄−1(b), b ∈ B, which corresponds to
the root v0 of Γb. Then the rest of the fiber π̄−1(b)⊖C0 can be blown down to a smooth
point.

Proof. Since S ⋅ π̄∗(b) = S ⋅ C0 = 1, C0 has multiplicity 1 in the fiber. We proceed by
induction on the number n of components in the fiber π̄−1(bi). The statement is clearly
true for n = 2. Suppose now that n > 1. Then there exists a (−1)-component E in the
fiber. If E ≠ C0, then contracting E we can use the induction conjecture. Assume now
that C2

0 = −1, and C0 is the only (−1)-component of π̄−1(bi). Since C0 has multiplicity
1, it appears as a result of an outer blowup on a component, say, C1 of multiplicity
1. Hence after blowing down C0, by the induction hypothesis, the rest of the fiber but
C1 can be blown down. Thus there is a (−1)-component of the fiber disjoint from C0.
However, the latter contradicts our assumption that C0 is a unique (−1)-component of
the fiber π̄−1(bi). �

Performing such a contraction for every i = 1, . . . , n we arrive at a geometrically
minimal ruling (that is, a locally trivial P1-fibration) π̄0∶ X̄0 → B̄. The image of S on
X̄0 is a section of π̄0. Thus X̄ can be obtained starting with a geometrically ruled
surface X̄0 via a sequence of blowups of points

(5) X̄ = X̄m
σmÐ→ X̄m−1 Ð→ . . .Ð→ X̄1

σ1Ð→ X̄0

with centers in the images of Di ∖ S in X̄0 and at infinitely near points, i = 1, . . . , n.
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Definition 2.19 (Well ordered blowup construction). In the rooted tree Γext with a
root S, the (−1)-vertices on a maximal distance from S are disjoint with S and mu-
tually disjoint, due to Lemma 2.18. Hence the corresponding fiber components can be
simultaneously contracted. Repeating this procedure, we arrive finally at a smooth geo-
metrically ruled surface π̄0∶ X̄0 → B̄ along with a specific sequence (5) of blowups, where
every σi, i = 1, . . . , n, is a blowup with center in a reduced zero dimensional subscheme
of X̄i−1 ∖ (F ∪ S). We call such a sequence (5) a well ordered blowup construction.

The following lemma is a generalization of Theorem 2.1 in [29].

Lemma 2.20. Let π∶X → B be an A1-fibered GDF G-surface., where G is a finite
group. Then there is a G-equivariant resolved completion (X̄,D) of X obtained via a
G-equivariant well ordered blowup construction (5).

Proof. By Sumihiro Theorem ([75, Thm. 3]), there exists a G-equivariant projective
completion (X̃, D̃) of X. The singularities of the pair (X̃, D̃) can be resolved via a
minimal G-equivariant resolution. In this way we arrive at a G-equivariant smooth
projective completion (X̄,D) of X by a G-stable simple normal crossing divisor D.
The closures in X̄ of the fibers of π∶X → B form a (nonlinear) G-invariant pencil. Its
base points also admit a G-equivariant resolution. Hence we may assume that X̄ comes
equipped with a G-equivariant P1-fibration π̄∶ X̄ → B̄, along with a G-stable section S
of π̄.

In particular, the root S of the extended graph Γext of (X̄,D) is fixed by the induced
G-action on Γext. This action stabilizes as well the set of all (−1)-vertices on a maximal
distance from S. Therefore, the simultaneous contraction of the corresponding fiber
components is G-equivariant. Continuing by recursion leads to a G-equivariant well
ordered blowup construction. �

Remarks 2.21. 1. Under a (well ordered) blowup construction, no blowup in (5) is
done near the section S of π̄0. We may assume also that no blowup is done with center
over the points ci ∈ B̄ ∖B, i = 1, . . . , s, and so, the fibers in X̄ over these points remain
reduced and irreducible.

2. Let a component F of Dext different from S be created by one of the blowups
σν ∶ X̃ν → X̃ν−1 in (5). We claim that then the center of the blowup σν belongs to the
image of D in X̄ν−1. Indeed, otherwise the last (−1)-curve, say, E over pν would neither
be a bridge of a feather, nor a component of D. Hence E should be a component of a
feather, say, F, different from the bridge component F0. However, the latter contradicts
the minimality of F⊖F0, that is, the minimality of the resolution of singularities of X.

Recall the following notions.

2.22. Let D be a simple normal crossing divisor on a smooth surface Y . A blowup of
Y at a point p ∈D is called outer if p is a smooth point of D, and inner if p is a node.

We use the following notation.

Notation 2.23. Given a blowup construction (5) we let

(6) D0,ext = S0 ∪∆0 ∪Λ0 ⊂ X̄0, where ∆0 =
k

⋃
i=1

π̄−1
0 (ci) and Λ0 =

n

⋃
j=1

π̄−1
0 (bj) .

The following lemma should be well known; see, e.g., [20, (2.2)] for (b).
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Lemma 2.24. 5 Let π∶X → B be a normal affine A1-fibered surface over a smooth
affine curve B. Consider a resolved completion (X̄ = X̄m,D) of X obtained via a well
ordered blowup construction (5) starting with a ruled surface π̄0∶ X̄0 → B̄. Then the
following hold.

(a) X is a GDF surface if and only if all the blowups σν in (5), ν = 1, . . . ,m, are
outer6.

(b) If X is a GDF surface, then X is smooth, and every feather F of Dext =Dm,ext

consists in a single (−1)-component F0, which is a bridge.
(c) For a fiber component F of a GDF surface π∶X → B with a pseudominimal

resolved completion7 (X̄,D) the following are equivalent:
● F̄ is a leave (an extremal vertex) of the rooted tree Γext;
● F̄ is a feather;
● F̄ is a (−1)-vertex of Γext.

Proof. Suppose that for some ν ∈ {1, . . . ,m}, the blowup σν is inner. Assume also that
the center Pν ∈ X̄ν−1 of σν lies on the fiber over bi ∈ B and on the image Dν−1,ext of
Dext. Then all the components of the fiber π̄∗(bi) which appear over Pν , including
the last (−1)-component, say, F̄ , have multiplicities > 1. However, F̄ = F̄0 is a bridge
component of a feather, say, F. Hence F̄ is the closure in X̄ of a component F of the
fiber π∗(bi) ⊂ X. Thus, the fiber π∗(bi) is not reduced. It follows that for a GDF
surface π∶X → B all the blowups σν , ν = 1, . . . ,m, are outer.

To show the converse, suppose that all the blowups σν in (5), ν = 1, . . . ,m, are outer.
Then starting with the reduced divisor D0,ext, all the resulting degenerate fibers π̄∗(bj),
j = 1, . . . , n are reduced as well. Hence π∶X → B is a GDF surface. This proves (a).

Assume further that a feather F of Dext has more than one component. The compo-
nent of F which appears the last in the blowup construction (5) is the bridge component
F0 of F. Hence F0 appears in a blowup σν with center Pν , which belongs to the image
in X̄ν−1 of a component C of D and the component F̄1 of F; see Remark 2.21. Thus Pν
is a nodal point of the divisor Dν−1,ext on X̄ν−1. It follows that the blowup σν is inner.
So, the bridge component F̄0 of F has multiplicity > 1 in its fiber.

This shows that for a GDF surface π∶X → B, every feather F of Dext consists in
a single bridge component F̄0. Consequently, the surface X is smooth. Furthermore,
assuming that F̄ 2

0 < −1, an outer blowup was done in (5) with center on F0 creating
a new component, say, E of D. The graph distance dist(E,S) in Γext is bigger than
dist(F̄0,E). Hence F̄0 disconnects S and E in D. The latter contradicts the facts that
the affine surface X is connected at infinity, i.e., its boundary divisor D is connected.
Therefore, F̄ 2

0 = −1. This shows (b).
The same argument proves that F̄0 is an extremal vertex (a tip) of Γext. Conversely,

if F̄ is a tip of Γext different from S, then F̄ 2 = −1. Indeed, since all the blowups in
(5) are outer, then after creating F̄ no further blowup was done near F̄ . Due to the
pseudominimality assumption, F̄ is a feather of Dext. Now (c) follows. �

Remark 2.25. Let Γb be the fiber tree of a special fiber π−1(b) on a GDF surface π∶X →
B in its pseudominimal completion. It is viewed as an unweighted tree. However, one
can easily reconstruct the weights due to the fact that Γb can be grown up starting

5Cf. the proof of Proposition 6.3.23 in [35].
6With respect to the divisor D0,ext on X̄0 and its subsequent total transforms Dν,ext on X̄ν .
7See Definition 2.6.
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with the root v0 of weight 0 via outer blowups, by Lemma 2.24. Namely, for a vertex
v of weight w(v) and of degree deg(v) in Γb one has w(v) = −deg(v). Thus, the
(−1)-vertices are the leaves, and all linear vertices are (−2)-vertices.

2.5. GDF surfaces via affine modifications. Let X → B be an affine A1-fibered
GDF surface over a smooth affine curve B. In Corollary 2.30 below we describe a
recursive procedure, which allows to recover X starting with the product B × A1 via
a sequence of fibered modifications. This special type of affine modifications (see
Definition 1.3) is defined as follows (cf. [20, Def. 4.2]).

Definition 2.26 (Fibered modification). A fibered modification between two A1-fibered
GDF surfaces π∶X → B and π′∶X ′ → B is an affine modification %∶X ′ → X, which
consists in blowing up a reduced zero-dimensional subscheme of X and deleting the
proper transform of the union of those fiber components of π which carry centers of
blowups. Such a modification is a B-morphism, that is, it fits in the commutative
diagram

X ′ % - X

@
@
@π′ R 	�

�
�
π

B

Remark 2.27. Let F be a reduced curve on a smooth affine surface X, let Σ ⊂ F be
a reduced zero dimensional subscheme, and let σ∶X ′ → X be composed of a blowing
up X with center Σ and deleting the proper transform F ′ of F . We claim that X ′ is
again affine, and so, by [54, Thm. 1.1], the birational morphism X ′ → X is an affine
modification.

Indeed, there exists a completion X̄ of X and an ample divisor A on X̄ with support
suppA = X̄ ∖X. Let X̄ ′ be the surface obtained from X̄ by blowing up with center Σ.
By Kleiman ampleness criterion, the divisor nA′ + F̄ ′ on X̄ ′, where A′ and F̄ ′ are the
proper transforms on X̄ ′ of A and of the closure F̄ of F in X̄, respectively, is again
ample provided that n is sufficiently large. Hence, the surface X ′ = X̄ ′∖supp (nA′+F̄ ′)
is affine, as claimed.

In general, F is not a principal divisor on X. To represent σ∶X ′ → X via an affine
modification, let us choose functions f, g ∈ OX(X) such that f vanishing on F to order
1, and the restriction g∣F vanishes with order 1 on Σ. Let I ⊂ OX(X) be the ideal
generated by f, g, and by all regular functions on X vanishing on Σ∪(V(f)∖F ). Then
σ∶X ′ →X is the affine modification along divisor f∗(0) with center I.

Let π∶X → B be a GDF surface, F be a fiber component of π, and f = π∗z, where
z ∈ OB(B) has a simple zero at the point π(F ) ∈ B. Then π′ = π ○σ∶X ′ → B is again a
GDF surface, and σ∶X ′ →X is a fibered modification. This justifies Definition 2.26.

For a general GDF surface π∶X → B we have the following decomposition.

Proposition 2.28. (a) Any GDF surface π∶X → B can be obtained starting with a
line bundle π0∶X0 → B over B via a sequence of fibered modifications

(7) X =Xm
%mÐ→Xm−1 Ð→ . . .Ð→X1

%1Ð→X0 ,

which can be extended to corresponding completions yielding a well ordered blowup
construction (5).
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(b) Suppose, furthermore, that π∶X → B is a GDF G-surface, where G is a finite
group. Then (7) can be chosen so that the intermediate surfaces Xν come equipped
with G-actions making the morphisms %ν+1∶Xν+1 → Xν and πν ∶Xν → B G-equivariant
for all ν = 0, . . . ,m − 1.

Proof. (a) To construct (7) we exploit a well ordered blowup construction (5), which
starts with a P1-bundle π̄0∶ X̄0 → B̄ and finishes with a pseudominimal completion
π̄m∶ X̄m → B̄ of π∶X → B.

For any ν = 0, . . . ,m we let Dν,ext (∆ν , Sµ, respectively) be the image on X̄ν of the
extended divisor Dext = Dm,ext (the divisor ∆ = ∆m, the section S = Sm, respectively)
on X̄m = X̄. Let Γν,ext be the weighted dual graph of Dν,ext and Λν,max be the union of
the fiber components of π̄ν ∶ X̄ν → B̄ which correspond to the (extremal) vertices of Γν,ext

on maximal distance from Sν . Let also Dν be the union of the remaining components
of Dν,ext. Then Λν+1,max is the exceptional divisor of the blowup σν ∶ X̄ν+1 → X̄ν with
center on Λν,max ∖Dν .

Consider the open surface Xν = X̄ν ∖Dν . We claim that Xν is affine, and σν(Xν+1) ⊂
Xν . Indeed, the latter follows since σν(Λν+1,max ∖Dν+1) ⊂ Λν,max ∖Dν ⊂ Xν due to the
above observation. To prove the former we use the Kleiman ampleness criterion (cf.
Remark 2.27). We say that a component F of Dext has level l if dist(F,S) = l + 1 in
Γext. For any ν ≥ l we attribute the same level l to the image of F in X̄ν ; this has the
same combinatorial meaning. Choose a sequence of positive integers

s0 ≫ a0 ≫ a1 ≫ . . .≫ am−1 ≫ 0 ,

and let Aν be an effective divisor on X̃ν with support Dν such that al is the multiplicity
in Aν of any fiber component of Dν of level l, l = 0, . . . , ν−1, and s0 is the multiplicity of
Sν in Aν . Performing elementary transformations in a fiber over a point ci ∈ B̄ ∖B we
may assume that S2

ν > 0. Suppose to the contrary that there is an irreducible curve C
in X̄ν with C ⋅Aν = 0. If C is not a component of Dν,ext then π̄(C) ⊂ B, hence π̄∣C =cst,
which gives a contradiction. If C = Sν then clearly C ⋅ Aν > 0, which contradicts our
choice of C and Aν . The same contradiction happens if C is a fiber component of
Dν,ext. Due to the Kleiman criterion, the divisor Aν with support Dν is ample. Thus
the surface Xν = X̄ν ∖Dν is affine.

Letting now %ν+1 = σν+1∣Xν+1 ∶Xν+1 →Xν , ν = 0, . . . ,m−1, we obtain a desired sequence
(7) of fibered modifications. This proves (a).

To show (b) it suffices to start with a G-equivariant version of sequence (5) con-
structed in the proof of Lemma 2.20(b). By our construction, σν is G-equivariant and
Dν,ext, Dν , and Xν are G-stable. Hence %ν+1 = σν+1∣Xν+1 ∶Xν+1 → Xν is G-equivariant
too for any ν = 0, . . . ,m − 1. �

The following proposition is an affine analog of the Nagata-Maruyama Theorem
about projective ruled surfaces ([66]; see also [55]). It allows to replace the line bundle
X0 → B in (7) by the trivial bundle B ×A1 → B. For the corresponding completions,
this amounts to a stratching, which extends feathers by chains of type [[−1,−2, . . . ,−2]]
in D near S, so loosing the pseudominimality property.

Proposition 2.29. Let X be the total space of a line bundle π∶X → B over a smooth
affine curve B. Assume that the surface X is affine. Then the following hold.
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(a) X can be obtained starting with the product B × A1 over B via a sequence of
fibered modifications

(8) X = ZM
%MÐ→ ZM−1 Ð→ . . .Ð→ Z1

%1Ð→ Z0 = B ×A1 ,

where for each i = 0, . . . ,M the induced projection πi∶Zi → B yields a line bundle
over B.

(b) If, in addition, π∶X → B is a marked GDF µd-surface, then for i = 0, . . . ,M the
morphisms %i∶Zi → Zi−1 in (8) and πi∶Zi → B can be chosen to be µd-equivariant
with respect to suitable µd-actions on the surfaces Zi and the given µd-action
on B.

Proof. (a) Let A = OX(X). The natural effective Gm-action along the fibers of π
induces a grading A = ⊕i≥0Ai, where A0 = OB(B) and A1 ≠ {0} (the latter fact is well
known, and can be checked without difficulty). If u ∈ A1 then the restriction of u to
a general fiber of π yields a coordinate on this fiber. It follows that ψ = (idB, u)∶X →
B × A1 is a birational morphism of line bundles over B, hence an affine modification
(see [54, Thm. 1.1]). Since ψ is Gm-equivariant, its exceptional divisor E, center C,
and divisor D are Gm-invariant. Since u is a Gm-quasi-invariant of weight 1, it vanishes
along the zero section Z in X with order 1. Thus, we have u−1(0) = Z ∪ F1 ∪ . . . ∪ Fn,
where Fi = π−1(bi), bi ∈ B, i = 1, . . . , n. Then

E = F1 ∪ . . . ∪ Fn, C = {b1, . . . , bn} × {0}, and D = {b1, . . . , bn} ×A1 ⊂ B ×A1 .

So, ψ consists in blowing up a subscheme with support C and deleting the proper
transform of D. Therefore, ψ factorizes through the Gm-equivariant fibered modifi-
cation %1∶Z1 → B × A1, which consists in blowing up the reduced subscheme C and
deleting the proper transform of D. One can factorize in a similar way the resulting
birational morphism of line bundles X → Z1 over B. Proceeding by recursion, after
a finite number of steps we get a desired decomposition of ψ into a sequence (8) of
fibered modifications. Indeed, this process yields actually a Gm-equivariant resolution
of indeterminacies of the inverse birational map ψ−1∶B ×A1 ⇢ X, hence it converges.
This proves (a).

(b) Under the assumptions of (b), consider the induced µd-action on Z0 = B×A1 iden-
tical on the second factor. In order that ψ = (idB, u)∶X → B ×A1 were µd-equivariant
it suffices to choose u ∈ Aµd1 being a µd-invariant. Since µd acts via automorphisms
of the line bundle π∶X → B, it normalizes the Gm-action on X. Hence it induced a
representation of µd via automorphisms of the graded k-algebra A = ⊕i≥0Ai. Let

A
(i)
1 = {a ∈ A1 ∣ ζ.a = ζ ia ∀ζ ∈ µd} .

Any element a ∈ A1 belongs to the µd-invariant subspace E spanned by the orbit µd(a).
The finite dimensional representation of µd in E splits into a sum of one-dimensional
representations. Consequently, a can be written as a sum of µd-quasi-invariants. It

follows that A1 = ⊕d−1
i=0 A

(i)
1 .

We claim that there exists a nonzero invariant u ∈ A(0)1 = Aµd1 . Indeed, for some

i ∈ {0, . . . , d − 1} there exists a µd-quasi-invariant h ∈ A(i)1 ∖ {0} of weight i. Since
by our assumption X is a marked GDF µd-surface, there is also a µd-quasi-invariant
z ∈ A0 = OB(B) of weight 1 (see Definition 2.1). Then u = zd−ih ∈ Aµd1 , as desired.

The resulting birational morphism ψ = (idB, u)∶X → B×A1 over B is µd-equivariant.
So, this is an affine modification with µd-invariant center C and divisor D.
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Hence ψ factorizes through the µd-equivariant fibered modification %1∶Z1 → B ×A1,
which consists in blowing up the reduced zero dimensional subvariety C ⊂ B × {0} on
B ×A1 and deleting the proper transform of D. Continuing by recursion, we arrive as
before at a sequence (8) of µd-equivariant morphisms. �

Letting in (7) G = µd and extending this sequence on the right by those in (8) with
a suitable new enumeration, we arrive at our final sequence of fibered modifications.

Corollary 2.30. (a) Any GDF surface π∶X → B can be obtained starting with a
product X0 = B ×A1 via a sequence of fibered modifications8

(9) X =XN
%NÐ→XN−1 Ð→ . . .Ð→X1

%1Ð→X0 = B ×A1

such that the center of %i is contained in the exceptional divisor of %i−1.
(b) Suppose furthermore that π∶X → B is a marked GDF µd-surface. Then any

intermediate surface Xi, i = 0, . . . ,N − 1, comes equipped with induced µd-actions so
that the morphisms %i+1∶Xi+1 →Xi and πi∶Xi → B are µd-equivariant.

Remarks 2.31. 1. The morphisms in (9) can be extended to suitable completions
yielding a sequence of birational morphisms

(10) X̂ = X̂N
%̂NÐ→ X̂N−1 Ð→ . . .Ð→ X̂1

%̂1Ð→ X̂0 = B̄ × P1 ,

where π̂i∶ X̂i → B̄ is a µd-equivariant P1-fibration extending πi∶Xi → B̄, and %̂i∶ X̂i →
X̂i−1 is a simultaneous contraction of a µd-invariant union of disjoint (−1)-components
of π̂i-fibers, i = 0, . . . ,N . Inspecting the proof of Proposition 2.29, we see that on the
first M steps certain irreducible fibers of pr1∶ B̄ × P1 → B̄ are replaced by chains of
rational curves with sequences of weights of type [[−1,−2, . . . ,−2,−1]]. This yields

a (non-pseudominimal, in general) completion X̂M of XM over B̄ with the boundary

X̂M ∖XM being a simple normal crossings divisor. The remaining m steps can be done
in the same way as in the proof of Proposition 2.28.

2. The section at infinity B̄ × {∞} of pr1∶ B̄ × P1 → B̄ gives rise to a section at

infinity S of X̂ = X̂N → B̄ with S2 = 0. If the line bundle X̄0 → B̄ in (7) is nontrivial,

then the completion (X̂, D̂) of X is different from the pseudominimal completion, say,

(X̄,D). Indeed, let D̂ext and Dext be the extended divisor on X̂ and on X̄, respectively,

and let D̂ and D be the corresponding boundary (sub)divisors. Then Dext is obtained

from D̂ext by contracting the maximal chains of rational curves of type [[−1,−2, . . . ,−2]]
contained in D̂⊖S. Thus, if X̂ ≠ X̄, then the completion (X̂, D̂) is not pseudominimal.

3. Under our procedure, we have to enlarge our initial set of points b ∈ B such that
the fibers π−1(b) are reducible, by the points b ∈ B with reducible fibers π̂−1(b). Since

the completion X̂ of X is µd-equivariant, the latter set is µd-stable. We may enlarge
this set further to the set of zeros b1, . . . , bn of a µd-quasi-invariant function z ∈ OB(B)
of weight 1 with only simple zeros. Choosing for each l = 0, . . . ,N − 1 an appropriate
ideal Il ⊂ OXl(Xl), it will be convenient to take the reduced divisor z∗(0) on Xl for the
divisor of the modification %l+1∶Xl+1 → Xl, cf. Remark 2.27. When mentioning special
fiber components, we always mean the fiber components of the latter divisor.

Definition 2.32 (Trivializing completions). The resolved completion (X̂, D̂) of a GDF
surface X fitting in (10), and the corresponding graph divisor D(π̂) will be called

trivializing. Note that (X̂, D̂) is obtained from the pseudominimal resolved completion

8Notice that there is no direct relation between sequences (5) and (9).
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(X̄,D) by introducing additional chains of rational curves next to the section S, which
amounts in an (A,−1)-stratching D(π̄) ↝ D(π̂). In the sequel, when dealing with this
kind of completions, we often omit the adjective ‘trivializing’.

In the course of the proof of Proposition 2.28 we used a level function on the set of
fiber components of πl∶Xl → B. Let us extend this notion to all surfaces Xl in (9).

Definition 2.33 (Level function). We say that a fiber component F of πm∶Xm → B
has level l if it appears for the first time on the surface Xl (l ≤ m) in (9). Thus, any
fiber of π0∶X0 → B has level 0, and any fiber component F ′ of πl∶Xl → B has level ≤ l.

Remarks 2.34. 1. Note that a fiber component F of π∶X → B has level l if and only
if the vertex F̄ is on distance l from the root v0 of the fiber tree Γb. Hence, on the
leaves of Γb our level function coincides with the one defined in 2.11. If π∶X → B is a
marked GDF µd-surface, then the completion X̂ → B̄ is equivariant and the extended
divisor Dext ⊂ X̂ is µd-stable. Therefore, in this case the level function is µd-invariant.

2. Being defined via the distance function on the extended graph Γext, the level
function l on the set of fiber components depends on the completion (X̂, D̂) of X as
in (10).

3. Inspecting our construction of sequence (9) we see that the center of the blowup
%l+1∶Xl+1 → Xl is situated on the union of top level (that is, level l) fiber components
in Xl.

3. Vector fields and natural coordinates

3.1. Vertical locally nilpotent vector fields.

Lemma 3.1. Let π∶X → B be a marked GDF µd-surface. Then for any l = 0, . . . ,N
there is a locally nilpotent regular µd-quasi-invariant vertical vector field ∂l on the
surface Xl in (9) non-vanishing on the fiber components of the top level l and vanishing
on the fiber components of smaller levels.

Proof. Consider the locally nilpotent vertical vector field ∂0 = ∂/∂u on B ×A1, where
A1 = speck[u]. Clearly, ∂0 is stable under the µd-action onB×A1 identical on the second
factor. The µd-equivariant fibered modification %1∶X1 → B ×A1 over B transforms ∂0

into a µd-invariant rational vertical vector field on X1 with pole of order 1 along the
fiber components of level 1. By induction, ∂0 lifts to a µd-invariant rational vertical
vector field on Xl with pole of order s on any fiber component of level s, where s ≤ l,
and no other pole.

Let z ∈ OB(B) be a µd-quasi-invariant regular function on B of weight 1 with simple
zeros at the points b1, . . . , bn. By abuse of notation, we denote by the same letter z its
lift to the surface Xl. Then ∂l = zl∂/∂u generates a regular, locally nilpotent, µd-quasi-
invariant vertical vector field on Xl of weight l non-vanishing on the fiber components
of level l and vanishing on the fiber components of smaller levels. �

3.2. Standard affine charts.

Notation 3.2. Let π∶X → B be a marked GDF µd-surface with a marking z ∈ OB(B),
and let b1, . . . , bn ∈ B be the zeros of z. For any i = 1, . . . , n consider in B the affine
chart Bi = B ∖ {b1, . . . , b̂i, . . . , bn} around the point bi. So z∣Bi vanishes to order 1 at bi
and has no further zero in Bi.
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For l ∈ {0, . . . ,N} let Fi,1, . . . , Fi,ni be the components of the fiber π−1
l (bi) in Xl.

Consider also the vertical Ga-action Hl on Xl generated by the locally nilpotent regular
vertical vector field ∂l as in Lemma 3.1. In the next proposition we introduce an affine
covering on Xl in (9) by affine charts of product type; we call these standard affine
charts.

Proposition 3.3. In the notation as above the following hold.

● For any l ∈ {0, . . . ,N} and any j ∈ {1, . . . , ni} there is a unique affine chart

Ui,j = U (l)i,j ⊃ Fi,j in Xl isomorphic to Bi × A1 over Bi. All such affine charts
form a covering of Xl;

● we have Ui,j ∩Ui,t = Ui,j ∖ Fi,j = Ui,t ∖ Fi,t for any 1 ≤ j, t ≤ ni;
● the µd-action on Xl induces a µd-action by permutations on the collection (Ui,j);
● every affine chart Ui,j on Xl is Hl-stable. Furthermore, for any t ≤ l and any

fiber component Fi,j of level t on Xl, the Ht-action is well defined and free on
Ui,j;

● for any l, t ∈ Z with 0 ≤ t < l ≤ N the composition %l,t = %t+1 ○ . . . ○ %l∶Xl →
Xt sends the affine chart U

(l)
i,j around a fiber component F

(l)
i,j of level t on Xl

isomorphically over Bi onto a standard affine chart U
(t)
i,j′ in Xt around the fiber

component F
(t)
i,j′ = %l,t(F

(l)
i,j ).

Proof. The assertions are evidently true for the product X0 = B ×A1 in (9) with ni = 1

∀i and U
(0)
i,1 = π−1

0 (Bi) = Bi × A1. Suppose by recursion that they hold for a surface

Xl−1 in (9) and a collection of affine charts (U (l−1)
i,j ) on Xl−1. The µd-equivariant fibered

modification %l∶Xl → Xl−1 in (9) consists in blowing up with center at a union of µd-
orbits situated on fiber components of the top level l − 1 of πl−1∶Xl−1 → B and deleting
the proper transforms of these fiber components, see Remark 2.34. Let F = Fi,j be one

of these components on Xl−1, and let UF = U (l−1)
i,j be the corresponding standard affine

chart in Xl−1 around F . Then the modification %l replaces F with new components,
say, F1, . . . , Fm of level l on Xl over the same point bi ∈ B. Restricted to the chart UF ≅
Bi×A1 around F this gives a fibered modification of UF resulting in a GDF surface over
Bi, with the only degenerate fiber over bi ∈ Bi consisting of the components F1, . . . , Fm.
If instead of blowing up m points, say, x1, . . . , xm on F we blow up just one point, say,
xj, then we replace F by just one component, say, Fj. Without loss of generality we
may choose a coordinate u in A1 so that u(xj) = 0, z(xj) = 0, and xj is the only point
in UF ≅ Bi × A1 verifying these equations. Then the latter affine modification in the
affine chart UF consists in passing from OBi(Bi)[u] to OBi(Bi)[u/z] = OBi(Bi)[u′],
where u′ = u/z. This results again in a product affine chart, say, U

(l)
i,j′ ≅ Bi ×A1 in Xl.

In total, we obtain m such charts on Xl over UF , with intersections as needed. For
each fiber component Fi,j on Xl−1 free from the centers of the modification %l we let

U
(l)
i,j = %−1

l (U (l−1)
i,j ). We leave to the reader to check that the resulting collection of the

affine charts (U (l)i,j ) on Xl still verifies our conditions. �

Remark 3.4. Let Aut○B(Xl) be the identity component (in the sense of [69]) of the
group of B-automorphisms of Xl. Then clearly any α ∈ Aut○B(Xl) stabilizes each
standard affine chart Ui,j on Xl. The same is true for the identity component of the
group AutB(Xl) of all B-automorphisms of the cylinder Xl =Xl ×A1 and the standard
affine charts Ui,j ×A1 on Xl.
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3.3. Natural coordinates. Let as before π∶X → B be a marked GDF µd-surface with
a marking z ∈ OB(B), and let b1, . . . , bn ∈ B be the zeros of z.

Definition 3.5 (Local coordinates). We say that an affine chart U
(l)
i,j around the fiber

component F
(l)
i,j on Xl has level t if F

(l)
i,j is of level t. An isomorphism U

(l)
i,j ≅ Bi × A1

provides sections of πl∣U(l)i,j ∶U
(l)
i,j → Bi. Fixing such a section and using the vertical free

Ga-action on U
(l)
i,j , we obtain a Ga-equivariant isomorphism U

(l)
i,j ≅ Bi × A1, where Ga

acts on the direct product via translations along the second factor. Fixing a coordinate

u in A1 we obtain a coordinate, say, u
(l)
i,j in U

(l)
i,j .

The restriction z∣
U
(l)
i,j

vanishes with order 1 along F
(l)
i,j and has no further zero. Hence

the pair (z, ui,j) yields local coordinates around the fiber F
(l)
i,j in U

(l)
i,j . We call them

natural coordinates. Fixing also a coordinate v in yet another exemplar of the affine

line A1, we get natural local coordinates (z, ui,j, v) in the affine chart U
(l)
i,j ×A1 around

the affine plane F (l)i,j = F (l)i,j ×A1 ≅ A2 in the cylinder Xl =Xl ×A1.

Lemma 3.6. One can choose the natural local coordinates (z, ui,j) in U
(l)
i,j in such a

way that for any ζ ∈ µd, if ζ(U (l)i,j ) = U
(l)
i′,j′ then ζ∗(z) = ζz and ζ∗(ui,j) = ζtui′,j′ for some

t ∈ Z.

Proof. The assertion is evidently true for l = 0. Suppose by recursion that it holds for

some l ∈ {0, . . . ,N −1}. Then it holds for all the affine charts U
(l+1)
i,j of level ≤ l on Xl+1.

Indeed, this follows since the level function is µd-invariant and the morphisms %l+1,s,
s = 0, . . . , l, are µd-equivariant.

Let now U
(l+1)
i,j be an affine chart of level l+1 onXl+1, and let µe ⊂ µd (where e∣d) be the

isotropy subgroup of U
(l+1)
i,j (or, which is the same, of the corresponding fiber component

F
(l+1)
i,j on Xl+1). The µe-action on U

(l+1)
i,j induces a µe-action on Bi ×A1 ≅ U (l+1)

i,j . The

sections of πl+1∣U(l+1)i,j
∶U (l+1)

i,j → Bi are in one-to-one correspondence with the sections of

the canonical projection pr1∶Bi ×A1 → Bi and, in turn, with the functions in OBi(Bi).
Choosing such a section arbitrarily and averaging over its µe-orbit we obtain a µe-stable

section. The latter can be taken for the zero level of a coordinate function u = u(l+1)
i,j

in U
(l+1)
i,j . There is such a unique function u, which satisfies in addition the relation

∂l+1(u) = 1, where ∂l+1 is the vertical µd-quasi-invariant vector field on Xl+1 of weight,
say, m constructed in Lemma 3.1. For ζ ∈ µs the ratio ζ.u/u does not vanish, hence it is
constant along any πl+1-fiber. Thus ζ.u = π∗l+1f ⋅u for some function f ∈ O×

Bi
(Bi). From

the relations ∂l+1 ○ ζ = ζm∂l+1 and ∂l+1π∗l+1f = 0 we deduce that f = ζ−m is a constant,
and so, u is a µs-quasi-invariant of weight −m.

Choose a generator ξ of the quotient group µd/µe. For an affine chart U
(l)
i′,j′ ≠ U

(l+1)
i,j

from the µd-orbit of U
(l+1)
i,j , we define the coordinate functions ui′,j′ on U

(l)
i′,j′ to be the

ξk-image of u with a suitable k ∈ Z. Applying the same procedure to every orbit of the

µd-action in the set (U (l+1)
i,j )l+1 of the level l + 1 affine charts on Xl+1, we arrive finally

at a desired µd-quasi-invariant system of natural coordinates in our collection of affine
charts. �

Remarks 3.7. 1. In the natural coordinates (z, u) in a standard affine chart U in Xl

of level t ≤ l, the vertical vector field ∂l on Xl constructed in Lemma 3.1 coincides with
zl−t∂/∂u. In particular, in a top level chart U we have ∂l∣U = ∂/∂u.
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2. If e > 1, then the natural coordinates as in the lemma are uniquely defined, while
in the case e = 1 our choice of a µe-stable section is arbitrary, and the coordinate u
in the standard affine chart Ui,j is defined up to a shear, that is, up to a shift in the
vertical direction in the z-fibers. In particular, we may fix our choice so that, if such
an affine chart Ui,j is of top level and carries a finite number of centers of the blowup
%l+1∶Xl+1 →Xl, then the natural coordinate u does not vanish in any of these points.

3.4. Examples of GDF surfaces. We start with the classical Danielewski example.

Example 3.8 (Danielewski surfaces). The Danielewski surface X1 results from the
affine modification %1∶X1 → X0 of the affine plane X0 = A2 = Speck[z, u] with divisor
z = 0 and center I = (z, u2 − 1). This consists in blowing up the points x1 = (0,1) and
x−1 = (0,−1) in A2 and deleting the proper transform of the affine line z = 0. Letting
A0 = OX0(X0) = k[z, u] and A1 = OX1(X1) we have

A1 = A0[(u2 − 1)/z] = k[z, u, t1]/(zt1 − u2 + 1) ,
with the projections π0∶X0 → B = Speck[z] and π1∶X1 → B given by the inclusions
k[z] ↪ k[z, u] ↪ k[z, u, (u2 − 1)/z]. Thus, X1 is given in A3 with coordinates (z, u, t1)
by equation

zt1 − u2 + 1 = 0 .

The unique reducible fiber π∗1(0) of the GDF surface π1 = z∣X1 ∶X1 → B = A1 consists
of two disjoint affine lines (components of level one)

F1 = {z = 0, u = 1} and F−1 = {z = 0, u = −1} .
The complement X1 ∖Fj for j ≠ i gives a standard affine chart Ui ≅ A2 around Fi. The
chart U1 can be obtained via the affine modification of X1 along the divisor z∗(0) =
F1 + F−1 with center the ideal V(F1) = (z, u − 1). Thus,

OU1(U1) = A1 [(u − 1)/z] = k[z, u1], where u1 ∶= (u − 1)/z = t1/(u + 1) .
Similarly, an affine chart on X1 near F−1 is

U−1 =X1 ∖ F1 = SpecA1[(u + 1)/z] = Speck[z, u−1] ≅ A2

where z and u−1 = (u + 1)/z = t1/(u − 1) are natural coordinates in U−1. The locally
nilpotent vertical vector field

∂1 = z∂/∂u + 2u∂/∂t1
on X1 restricts to ∂/∂ui in Ui, i = 1,−1. The phase flow of ∂1 yields a free Ga-action
on X1. It is sent under %1 to the field d%1(∂1) = z∂0 = z∂/∂u on X0.

The second Danielewski surfaceX2 is obtained via the affine modification %2∶X2 →X1

with divisor z∗(0) on X1 and center I = (z, t1) ⊂ A1. Thus, %2 consists in blowing up
X1 at the points x1.i = (0, i,0) ∈ Fi, i = 1,−1 (the origins of the affine planes Ui ≅ A2,
i = 1,−1) and deleting the proper transforms of the fiber components F1 and F−1.
Letting t2 = t1/z we obtain

A2 ∶= OX2(X2) = A1[t1/z] = k[z, u, t2]/(z2t2 − u2 + 1) .
Once again, X2 is a GDF surface with a unique reducible fiber z∗(0) consisting of two
components of level 2. Iterating this procedure we arrive at a sequence of Danielewski
surfaces

Xm = Speck[z, u, tm]/(zmtm − u2 + 1), m = 1,2, . . .
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along with a sequence of affine modifications fitting in (9)

%m∶Xm →Xm−1, (z, u, tm) ↦ (z, u, tm−1), where tm−1 = ztm .
The only special fiber z∗(0) in Xm is reduced and consists of two components of level
m. The vector field zm∂/∂u on X0 lifts to the locally nilpotent vertical vector field on
Xm,

∂m = zm∂/∂u + 2u∂/∂tm .
Its phase flow defines a free Ga-action on Xm. In each standard affine chart in Xm, the
latter action restricts to the standard Ga-action via shifts in the vertical direction.

The extended divisor Dext,m of a minimal completion π̄∶ X̄m → P1 has dual graph

(11) Γext,0 ∶ c0
F∞

c0
S̄

c0
F̄0

resp., Γext,m ∶ c0
F∞

c0
S̄

c−2

F̄0

F1

F−1

where m ≥ 1 and a box stands for the chain [[−2, . . . ,−2,−1]] of length m, so that Fi
ends with the (−1)-feather F̄i of level m, i = 1,−1 (see Example 7.7).

Example 3.9. As an immediate generalization of the preceding example, consider a
surface Xm in A3 with equation zmtm−q(u) = 0, where q ∈ k[u] is a polynomial of degree
d ≥ 2 with simple roots. This is a GDF surface with projection πm = z∣Xm ∶Xm → A1.
Letting X0 = A2 we have a sequence of affine modifications (9), where %i∶Xi → Xi−1,
(z, u, ti) ↦ (z, u, ti−1 = zti). The vector field zm∂/∂u on X0 = A2 lifts to the locally
nilpotent vertical vector field on Xm,

∂m = zm∂/∂u + q′(u)∂/∂tm ,
which generates a free vertical Ga-action on Xm. The dual graph Γext,n of the minimal
completion π̄∶ X̄m → P1 differs from the graph in diagram (11) in one aspect: instead
of two contractible chains F1 and F−1, it has d such chains Fj, j = 1, . . . , d of the same
length m. The dual graph Γ(π̄−1

n (0)) is a unibranched rooted tree with the root F̄0 as
a unique possible branching vertex.

Example 3.10. Letting in 3.9 m = 1, consider the GDF surface z∣X1 ∶X1 → B = A1

given in A3 by equation zt1 − q1(u) = 0, where q = q1 ∈ k[u] has simple roots α1, . . . , αd.
Its unique special fiber z = 0 consists of d disjoint components F1, . . . , Fd of level 1.
The fibered modification %1∶X1 →X0 = A2, (z, u, t1) ↦ (z, u), contracts Fi to the point
Pi = (0, αi) ∈X0.

Fix a polynomial q2 ∈ k[u, t1] such that, for each i = 1, . . . , d, either q2(αi, t1) ∈ k[u]
has mi > 0 simple roots βi,1, . . . , βi,mi , or is equal zero (then we let mi = 0). In A4 with
coordinates (z, u, t1, t2) the equations

zt1 − q1(u) = 0, zt2 − q2(u, t1) = 0

define a smooth, irreducible surface X2 and several disjoint affine planes contained in
the hyperplane z = 0. The morphism σ2∶X2 → X1, (z, u, t1, t2) ↦ (z, u, t1), is an affine
modification of X1 along the reduced divisor z∗(0) with center consisting, for each mi >
0, of the reduced zero-dimensional scheme Pi,1 + . . .+Pi,mi , where Pi,j = (0, αi, βi,j) ∈ Fi
and, for each mi = 0, of the whole fiber component Fi. The complement X2 ∖ π−1

2 (0)
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is isomorphic to A1∗ × A1 over A1∗. The unique special fiber z = 0 of the GDF surface
π2 = z∣X2 ∶X2 → A1 has c2 =m1 + ... +md components Fi,j of level 2 and c1 components
Fi of level 1, where c1 = card{i ∈ {1, . . . , d} ∣mi = 0}. The dual graph Γ(π̄−1

2 (0))
of the degenerate fiber π̄−1

2 (0) of a pseudominimal completion π̄2∶ X̄2 → B̄ = P1 is a
rooted tree with a root F̄0 of level 0, d vertices F̄1, . . . , F̄d of level 1, and c2 vertices F̄i,j,
i = 1, . . . , d, j = 1, . . . ,mi of level 2, where for mi > 0, F̄i,j is a neighbor of F̄i. Proceeding
in this way, one can realize any given finite rooted tree Γ of hight 3 as the dual graph
Γ(π̄−1

2 (0)), where the weights of the vertices are uniquely determined by Γ.
The vector field z2∂/∂u on X0 = A2 lifts to X2 and extends to a locally nilpotent

vector field ∂2 on A4, where

∂2 = z2 ∂

∂u
+ zq′1(u)

∂

∂t1
+ (z∂q2

∂u
(u, t1) +

∂q2

∂t1
(u, t1))

∂

∂t2
.

The associated vertical Ga-action on X2 is identical on the fiber components Fi of level
1 (with mi = 0).

Next we chose on each fiber component Fi,j of level 2 in X2 some mi,j distinct points

Pi,j,k = (0, αi, βi,j, γi,j,k), k = 1, . . . ,mi,j ,

where mi,j ≥ 0. Let a polynomial q3 ∈ k[u, t1, t2] be such that, for each (i, j), the
polynomial q3(αi, βi,j, t2) ∈ k[t2] has simple roots {γi,j,k ∣k = 1, . . . ,mi,j} if mi,j > 0 and
is zero otherwise. In A5 with coordinates (z, u, t1, t2, t3) the complete intersection with
equations

zt1 − q1(u) = 0, zt2 − q2(u, t1) = 0, zt3 − q3(u, t1, t2) = 0

has a unique smooth, irreducible component X2 such that π3 = z∣X3 ∶X3 → A1 is a GDF
surface, and several planes contained in the hyperplane z = 0. The surface X3 is a
fibered affine modification of X2 with center in the chosen points Pi,j,k.

Given any GDF surface πN ∶XN → B = A1 with a unique special fiber π−1
N (0) and

with the top level N of its components, proceeding as before one recovers the surface
XN along with a (well ordered) chain (9) of affine modifications.

Proposition 3.11. (a) Any GDF surface π∶X → B = A1 with a unique special
fiber π−1(0) admits a closed embedding X ↪ AN+2 onto a surface XN , which is a
unique irreducible component dominating the z-axis of the complete intersection
surface in AN+2 given in the coordinates (z, u, t1, . . . , tN) by equations

(12) zt1 − q1(u) = 0, zt2 − q2(u, t1) = 0, . . . , ztN − qN(u, t1, . . . , tN−1) = 0 ,

where the polynomials qi ∈ k[u, t1, . . . , ti−1], i = 1, . . . ,N , satisfy the following
conditions:

(∗) for every i = 1, . . . ,N and for any solution P 0 = (u0, q0
1, . . . , q

0
i−2) of the

system
q1(u) = q2(u, q1) = . . . = qi−1(u, q1, . . . , qi−2) = 0

the polynomial qi(P 0, ti−1) ∈ k[ti−1] either is zero, or has simple roots.
(b) Let X0 = A2 and let, for each i = 1, . . . ,N −1, Xi be a surface in Ai+2 with coor-

dinates (z, u, t1, . . . , ti) dominating the z-axis and verifying the first i equations
from (12). Then πi = z∣Xi ∶Xi → A1 is a GDF surface with a unique special fiber
π−1
i (0). Furthermore, the projection Ai+2 → Ai+1 ignoring the last coordinate ti

restricts to an affine modification %i∶Xi →Xi−1 fitting in (9).
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We will not prove this proposition in full generality; see however Part II for some
particular cases.

Example 3.12. For the Danielewski surface Xm as in Example 3.9, system (12) can
be chosen as follows:

zt1 − p(u) = 0, zt2 − t1 = 0, . . . , ztm − tm−1 = 0 .

Actually, this system reduces to a single equation zmtm − p(z) = 0 of Xm in A3.

3.5. Special µd-quasi-invariants. In the sequel we need µd-invariant locally nilpo-
tent derivations on the cylinders over GDF µd-surfaces. To this end, in Corollary 3.14
below we construct on such surfaces quasi-invariant functions of prescribed weights.
Let us start with the following fact (cf. [53, Lemma 2.12]).

Lemma 3.13. Suppose we are given a finite group G, a character λ ∈ G∨, an affine
G-variety Y , and a G-stable closed (not necessarily reduced) subscheme Z of Y . Let
f ∈ OZ(Z) belongs to λ, that is, f ○ g = λ(g) ⋅ f ∀g ∈ G. Then f admits a regular
G-quasi-invariant extension to Y which belongs to λ.

Proof. Letting A = O(Y ) and B = O(Z), the G-action yields graded decompositions
A = ⊕χ∈G∨ Aχ and B = ⊕χ∈G∨ Bχ. The piece Aχ (Bχ, respectively) consists of the G-
quasi-invariants in A (in B, respectively) which belong to the character χ. The closed
embedding Z ↪ Y induces a surjection ϕ ∶ A → B ([48, Thm. III.3.7]). We claim
that ϕ restricts to a surjection ϕ∣Aλ ∶Aλ → Bλ for any λ ∈ G∨. Indeed, any f ∈ Bλ

admits an extension to a regular function f̃ ∈ A such that ϕ(f̃) = f . We have a unique

decomposition f̃ = ∑χ∈G∨ f̃χ. Hence f = ∑χ∈G∨ ϕ(f̃χ). Since f ∈ Bλ the summands ϕ(f̃χ)
with χ ≠ λ vanish, and so, f = ϕ(f̃λ). Hence f̃λ ∈ Aλ is a desired G-quasi-invariant
extension of f which belongs to λ. �

Corollary 3.14. Let π∶X → B be a marked GDF µd-surface, let Xl be one of the
surfaces in (9), and let F be a fiber component of top level in Xl. Let F0 be the µd-orbit

of F in Xl. For a special fiber component F ′ in Xl, let UF ′ = U (l)i,j be the standard affine

chart around F ′ in Xl with coordinate u = u(l)i,j , Then for any s ∈ N one can find a
µd-quasi-invariant function ũ ∈ OXl(Xl) of weight −l such that

(i) ũ ≡ umod zs near F ′ if F ′ ⊂ F0, and
(ii) ũ ≡ 0 mod zs near F ′ otherwise.

Proof. It suffices to apply Lemma 3.13 with Y = Xl, Z = (zs)∗(0) being the sth in-
finitesimal neighborhood of the union of the special fiber components in Xl, G = µd,
λ(ζ) = ζ−l for ζ ∈ µd, and the function f ∈ OZ(Z) defined in the affine charts Z ∩ UF ′
via f ∣Z∩UF ′ = u∣Z∩UF ′ for F ′ ⊂ F0 and f ∣Z∩UF ′ = 0 otherwise. �

Remark 3.15. In the case of a trivial µd-action on X, a function ũ satisfying (i) and
(ii) exists for any collection F0 of (top level) special fiber components in X.

4. Relative flexibility

4.1. Definitions and the main theorem.

Notation 4.1. Let π∶X → B be a GDF surface, let X = X ×A1 be the cylinder over
X, and let (Ui,j) be the system of standard affine charts on X, see Proposition 3.3,
along with their natural coordinates (z, ui,j), see Definition 3.5. We let SAutB(X) be
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the subgroup of the group Aut○(X) generated by all the B-automorphisms9 of X that
are exponentials of locally nilpotent derivations in LND(X). Thus,

SAutB(X) = ⟨exp(∂) ∣∂ ∈ LND(O(X)), ∂(z) = 0⟩ .
Note that any automorphism ϕ ∈ SAutB(X) stabilizes the standard affine chart Ui,j×A1

in X with natural coordinates (z, u = ui,j, v) around any special fiber component Fi,j×A1

in X , see Remark 3.4 and [1, Lemma 4.10]. Furthermore, for any F = Fi,j, the restriction
ϕ∣UF×A1 preserves the volume form dz∧du∧dv on UF×A1, and the Jacobian determinant
of the restriction of ϕ to any fiber component equals 1.

Definition 4.2 (Relative flexibility). We say that the cylinder X =X ×A1 is relatively
flexible (RF, for short) if for any natural s ≥ 1, any collection F of top level special fiber
components in X, and any collection of pairs of ordered finite subsets ΣF = {x1, . . . , xm}
and Σ′

F = {x′1, . . . , x′m} in F = F ×A1 of the same cardinality m =m(F ), where F runs
over F, there exists a B-automorphism ϕ ∈ SAutB X which satisfies the conditions

(α) ϕ(ΣF ) = Σ′
F with prescribed (modulo zs) volume preserving jets at xν , ν =

1, . . . ,m(F ), provided that these prescribed jets preserve locally the fibration
X → B, for any F ∈ F;

(β) ϕ∣U×A1 ≡ id mod zs near F ×A1 for any F ∉ F.

We say that the condition RF(l, s) holds for X if the surface Xl in (9) satisfies the
above assumptions for a given s ≥ 1. Clearly, RF(l, s) ⇒RF(l, s − 1).

Definition 4.3 (Equivariant relative flexibility). Let π∶X → B be a marked GDF µd-
surface, and let X = X(k). Assume that the collection F of fiber components as in
Definition 4.2 along with the finite sets Σ = ⋃F ∈F ΣF and Σ′ = ⋃F ∈F Σ′

F are µd-stable,
and the correspondence ΣF ↦ Σ′

F is µd-equivariant along with the prescribed jets at the
points xi. We say that X(k) is µd-relatively flexible if one can choose a µd-equivariant
automorphism ϕ ∈ SAutB X as in Definition 4.2. If an intermediate cylinder Xl(k)
satisfies the above assumptions for a given s > 1, then we say that the µd-equivariant
condition RF(l, k, s) holds for X. Once again, we have RF(l, k, s) ⇒RF(l, k, s − 1).

The main result of this section is the following theorem.

Theorem 4.4. Given any marked GDF µd-surface π∶X → B, any s > 1 and l ∈
{0, . . . ,N}, the µd-equivariant condition RF(l,−l, s) holds for X.

The proof is done at the end of the section.

4.2. Transitive group actions on Veronese cones.

4.5. Given l, d ∈ N, consider the affine plane A2 with coordinates (u, v) equipped with
the action of the group µd of dth roots of unity,

ζ.(u, v) = (ζ−lu, ζ−lv) ∀ζ ∈ µd .
9 That is, any α ∈ SAutB(X) fits in the commutative diagram

(13)

X α - X
@
@
@R 	�

�
�

B
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This action is not effective, in general, but it restricts to an effective action of the
subgroup µe ⊂ µd, where e = d/gcd(d, l). The quotient A2/µd = A2/µe of the plane by
this action is the Veronese cone Ve.

Consider also the locally nilpotent vector fields σ1 = v ∂
∂u and σ2 = u ∂

∂v on A2. The
associated one-parameter groups (u, v) ↦ (u + tv, v) and (u, v) ↦ (u, v + tu), t ∈ k,
generate the SL2-action on A2. Notice that σ1 and σ2 are µd-invariant, and the µd-
action on A2 commutes with the SL2-action. Hence the SL2-action descends to the
Veronese cone Ve.

We use below certain results of [1] based on the notion of a saturated set of locally
nilpotent derivations. Let us recall this notion. For a vector field ∂ on a variety X and
an automorphism g ∈ AutX, we let Ad(g)(∂) = dg(∂) ○ g−1.

Definition 4.6 (Saturation). ([1, Definition 2.1]) Given an affine variety X = SpecA
over k, a setN of locally nilpotent regular vector fields onX (that is, of locally nilpotent
derivations of the affine k-algebra A) is called saturated if

(i) for any ∂ ∈ N and a ∈ ker∂, the replica a∂ ∈ N , and
(ii) Ad(g)(∂) ∈ N ∀g ∈ G, ∀∂ ∈ N , where G = ⟨exp∂ ∣∂ ∈ N⟩ ⊂ AutA.

Lemma 4.7. Given a set N of locally nilpotent derivations N ⊂ DerA satisfying (i),
consider the group G ⊂ AutA as in (ii) generated by N . Then the set of locally nilpotent
derivations

N1 = {Ad(g)(∂) ∣g ∈ G, ∂ ∈ N}
is saturated and generates the same group G.

Proof. It is not difficult to see that N1 satisfies (i). Let G1 = ⟨exp∂ ∣∂ ∈ N1⟩ be the
group generated by N1. We claim that G1 = G, and so, (ii) follows by the chain rule.
Indeed, an automorphism g ∈ AutX sends a vector field ∂ on X into the vector field
∂′ on X such that ∂′(g(x)) = dg(∂(x)) ∀x ∈ X. Hence ∂′ = Ad(g)(∂). On the other
hand, if ∂ is locally nilpotent with the phase flow exp(t∂) ∈ AutX, t ∈ k, then the
phase flow exp(t∂′) ∈ AutX, t ∈ k, is obtained by the conjugation with g, that is,
exp(t∂′) = g ○ exp(t∂) ○ g−1. Hence for any g ∈ G and ∂ ∈ N one has exp(t∂) ∈ G, and
so, exp(t∂′) = g ○ exp(t∂) ○ g−1 ∈ G. Thus exp(t∂′) ∈ G for any ∂′ ∈ N1. It follows that
G1 = G, as claimed. �

Notation 4.8. Given s ≥ 2, consider the µd-invariant replicas σ1,f = vdsf(vd)σ1 of σ1

and σ2,g = udsg(ud)σ2 of σ2, where f, g ∈ k[t], along with the associated one-parameter
unipotent subgroups Φf and Ψg of the group SAut(A2). The replicas σ1,f vanish mod-
ulo vs on the line v = 0, hence Φf fixes this line pointwise together with its infinitesimal
neighborhood of order s (where Φf = id for f = 0). Let

(14) G = ⟨Φf , Ψg ∣ f, g ∈ k[t]⟩ ⊂ SAut(A2) .
It is easy to see that G is transitive in A2 ∖ {0̄} and commutes with the µd-action in
A2.

Consider also the normal subgroup H ⊲ G of all automorphisms α ∈ G of the from

(15) α = ϕ1 ⋅ ψ1 ⋅ . . . ⋅ ϕν ⋅ ψν ,
where ϕi ∈ Φfi and ψi ∈ Ψgi , i = 1, . . . , ν, verifying the condition

(16) ϕ1 ⋅ ϕ2 ⋅ . . . ⋅ ϕν = Id .
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Proposition 4.9. Let s ≥ 2, and let (O1, . . . ,Om) and (O′
1, . . . ,O

′
m) be two collections

of distinct µd-orbits in A2 with cardOi = cardO′
i for i = 1, . . . ,m. For every i = 1, . . . ,m

choose a representative xi ∈ Oi. In the case where d divides l, that is, e = 1, suppose in
addition that the singletons Oi and O′

i are different from the origin. Then there exists
an automorphism α ∈H such that

(i) α(Oi) = O′
i for i = 1, . . . ,m, and

(ii) α has prescribed values of volume-preserving r-jets at the points xi, i = 1, . . . ,m,
where r ≤ s, provided that, if Oi = {0̄} for some i ∈ {1, . . . ,m} and e ≥ 1, then
this prescribed r-jet at the origin is the r-jet of the identity. 10

Proof. Consider the Veronese cone Ve = A2/µd = Speck[u, v]µd , and let %∶A2 → Ve be
the quotient morphism. The cone Ve is smooth outside the vertex 0̄ ∈ Ve. Since the
G-action on A2 is transitive in A2∖{0̄} and commutes with the µd-action, it descends to
a G-action on Ve transitive in Ve ∖ {0̄}. The µd-invariant locally nilpotent vector fields
σ1,f and σ2,g also descends to Ve. The set N of all these vector fields on Ve satisfies
condition (i) of Definition 4.6. Hence by Lemma 4.7, the group G ⊂ AutVe is generated
as well by a bigger saturated set N1 of locally nilpotent vector fields on the cone Ve.
Therefore one can apply Theorems 2.2 and 4.14 from [1].

Suppose first that {0̄} is not among the Oi’s. By [1, Thm. 2.2], G acts infinitely
transitively in Ve ∖ {0̄}. It follows that there exists α ∈ G which sends the points
yi = %(Oi) ∈ Ve into the points y′i = %(O′

i), i = 1, . . . ,m. Acting in A2, this α transforms
the orbit Oi into O′

i for every i = 1, . . . ,m. Thus α verifies (i).
By [1, Thm. 4.14] one can find α ∈ G verifying (i) with a prescribed volume-preserving

r-jet at each point yi = %(Oi) ∈ Ve, i = 1, . . . ,m. Since % is a local isomorphism near
a chosen point xi ∈ Oi over yi and near its image α(xi) ∈ O′

i, one may prescribe a
volume-preserving r-jet of α at xi with the given zero term α(xi).

In the case that e ≥ 2 and one of the orbits, say, Om consists of the origin: Om = {0̄},
then also O′

m = {0̄}. Indeed, any µe-orbit different from {0̄} contains e > 1 points.
Since σ1,f , σ2,g ≡ 0 mod (u, v)s for any f, g ∈ k[t], see Notation 4.8, one has α ≡ id
mod (u, v)s for any α ∈ G. Thus automatically α(0̄) = 0̄ and, moreover, the r-jet at the
origin of any α ∈ G is the one of the identity map for any r ≤ s.

In the case where e = 1, we have Ve = A2 and every orbit Oi and O′
i is a singleton

different from {0̄} by assumption. Then the argument in the proof works without
change.

It remains to find such an automorphism in the subgroup H. Due to the infinite
transitivity of G in Ve∖{0̄} one can find g ∈ G such that for every i = 1, . . . ,m the image
g(%(O′

i)) is located in the line v = 0 in Ve. Now by the preceding there exists α ∈ G
such that α ○ g(%(Oi)) = g(%(O′

i)) for all i = 1, . . . ,m, and α has prescribed volume
preserving r-jets at these points. Since g is volume-preserving (see [1, Lemma 4.10])
one can find α1 = g−1 ○α ○ g∶%(Oi) ↦ %(O′

i) with prescribed volume preserving r-jets at
the points yi = %(Oi), i = 1, . . . ,m.

Decomposing α as in (15) consider the automorphism ϕ0 = (ϕ1 ⋅ . . . ⋅ ϕν)−1 ∈ G.
Since ϕ0 ⋅ ϕ1 ⋅ . . . ⋅ ϕν = id, replacing ϕ1 by ϕ0 ○ ϕ1 we obtain an automorphism α′ =
ϕ0 ⋅ α ∈H. The r-jet of α′ at each point g(%(Oi)) is the same as the one of α. Indeed,
ϕ0(g(%(O′

i))) = g(%(O′
i)), since g(%(O′

i)) ⊂ {v = 0}, and ϕ0 is identical on the sth

10In fact, instead of prescribing the value of an r-jet in a single point of a µe-orbit, one might

prescribe a µe-equivariant system of r-jets on the whole orbit.
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infinitesimal neighborhood of this line, where s ≥ r. Since the subgroup H ⊲ G is
normal we have α′1 = g−1 ○ α ○ g ∈ H, where α′1∶%(Oi) ↦ %(O′

i), and α′1 has prescribed
volume preserving r-jets at the points %(Oi), i = 1, . . . ,m. Thus, α′1 ∈ H satisfies both
(i) and (ii). �

4.3. Relatively transitive group actions on cylinders.

Notation 4.10. Let π∶X → B be a marked GDF µd-surface, and let Xl be one of the
surfaces in (9). We fix the natural coordinates in the standard affine charts Ui,j in Xl

so that the convention of Remark 3.7.2 is fulfilled. Let further F be a top level special
fiber component in Xl, and let F0 be the µd-orbit of F in Xl. For s ≥ 2, let ũ ∈ OXl(Xl)
be a µd-quasi-invariant function that verify conditions (i) and (ii) of Corollary 3.14.
Consider the vertical vector field ∂l on Xl as in Lemma 3.1 and, for f, g ∈ k[t], the
µd-invariant locally nilpotent derivations of the algebra OXl(Xl),
(17) σ̃1,f = f(vd)∂l and σ̃2,g = ũds+1g(ũd)∂/∂v .
Letting F run over the set of all top level special fiber components in Xl, the cor-
responding automorphisms ϕ̃f = exp(σ̃1,f), ψ̃g = exp(σ̃2,g) ∈ SAutB Xl(−l) generate a
subgroup

(18) G̃ = ⟨ϕ̃f , ψ̃g ∣ f, g ∈ k[t]⟩ ⊂ SAutB Xl(−l) .
Clearly, G̃ is contained in the centralizer of the cylic subgroup in AutB Xl(−l) induced
by the µd-action on Xl(−l).

Consider further the normal subgroup H̃ ⊲ G̃, where

(19) H̃ = {α̃ = ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν ∈ G̃ ∣ ϕ̃1 ⋅ . . . ⋅ ϕ̃ν = id} .
Fix a µd-stable collection F of top level fiber components in Xl. We may restrict in
(18) and (19) to the case where F is running over components in F only. Let G̃F ⊂ G̃
and H̃F ⊂ H̃ be the corresponding subgroups. If ũ as in Corollary 3.14 is associated
to a component F ∈ F, then by virtue of condition (ii) of this corollary we have ũ ≡ 0

mod zs in UF ′ ×A1 near F ′ = F ′ ×A1 for any F ′ ∉ F. Hence ψ̃g ≡ id mod zs in UF ′ ×A1

near F ′ for any F ′ ∉ F and any g ∈ k[t]. Due to (19), for any α̃ ∈ H̃F,

(20) α̃∣UF ′×A1 = (ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν)∣UF ′×A1 ≡ id mod zs ∀F ′ ∉ F .

Definition 4.11 (s-reduced automorphism). Let F be a special fiber component in
Xl, and let UF be the standard affine chart around F in Xl. Consider the affine chart
UF × A1 around the affine plane F = F × A1 ≃ A2 in the cylinder Xl(−l). The group
G̃ ⊂ SAutB Xl(−l) preserves every fiber of the A2-fibration Xl(−l) → B and, moreover,
every fiber component. Hence any automorphism α ∈ G̃ preserves the affine chart
UF ×A1 (cf. Proposition 3.3 and Remark 3.4). The restriction α∣UF×A1 can be written
in the natural coordinates (z, u, v) in UF ×A1 as

α∣UF×A1 ∶ (z, u, v) ↦ (z,
∞
∑
i=0

zifi(u, v),
∞
∑
i=0

zigi(u, v)) .

We say that α is s-reduced if f1 = . . . = fs = g1 = . . . = gs = 0, i.e.

α(z, u, v) ≡ (z, f0(u, v), g0(u, v)) mod (zs)
in any such affine chart UF ×A1 in Xl(−l).

Lemma 4.12. (a) A composition of s-reduced automorphisms is again s-reduced.
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(b) Any automorphism α̃ ∈ H̃ is s-reduced.

Proof. The proof of (a) is straightforward. To show (b), we let ϕ̃ = exp (σ̃1,f) and

ψ̃ = exp (σ̃2,g), where f, g ∈ k[t]. We claim that ϕ̃ and ψ̃ are s-reduced. Indeed, in
a standard affine chart UF of level t ≤ l in Xl we have ∂l∣UF = zl−t∂/∂u (see Remark
3.7.1). Hence

(21) ϕ̃∣UF×A1 = exp (vds+1f(vd)∂/∂u)∶ (z, u, v) ↦ (z, u + zl−tvds+1f(vd), v) .
Since ũ∣UF ≡ u mod zs if t = l, and ũ∣UF ≡ 0 mod zs otherwise, near the affine plane
F ⊂ UF ×A1 we have

(22) ψ̃∣UF×A1 = exp (ũds+1f(ũd)∂/∂v)∶ (z, u, v) ↦ (z, u, v + uds+1g(ud)) mod zs

if t = l, and ψ̃∣UF×A1 ≡ id mod zs otherwise. In particular, any ϕ̃ ∈ G̃ is s-reduced. By
(a) any automorphism

α̃ = ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν ∈ G̃
is s-reduced in any top level affine chart UF ×A1. If F has level t < l, then ψ̃i∣UF×A1 ≡ id

mod zs ∀i = 1, . . . , ν. Hence for any α̃ ∈ H̃,

α̃∣UF×A1 = (ϕ̃1 ⋅ . . . ⋅ ϕ̃ν)∣UF×A1 ≡ id mod zs .

This proves (b). �

Proposition 4.13. Let F be a µd-stable collection of top level special fiber components
F in Xl, and let Σ, Σ′ ⊂ ⋃F ∈FF be two µd-stable finite sets in Xl(−l), which meet every
affine plane F = F × A1, F ∈ F, with the same positive cardinality. Assume that, for
some r ≤ s, we are given a collection of volume preserving r-jets of automorphisms
at the points of Σ, which is µd-stable up to multiplication on a µd-character and such
that the r-jet at 0F ∈ Σ is the r-jet of the identity provided that e(F ) ≥ 0, where
e = d/gcd(d, l) is as in 4.5. Then there exists an automorphism α̃ ∈ H̃F such that its
restriction to any affine chart UF ×A1 in Xl(−l) is s-reduced, and

(i) α̃(Σ) = Σ′;
(ii) α̃ has the prescribed r-jets at the points of Σ;
(iii) α̃∣UF×A1 ≡ id mod zs ∀F ∉ F.

Proof. Let F ∈ F, and let µd(F ) be the µd-orbit of F in Xl. It suffices to construct
such an automorphism α̃ ∈ H̃F assuming that F consists of the components of µd(F ).
Indeed, then α̃ ∈ H̃F coincides with the identity modulo zs near any affine plane F ′ in
Xl(−l) for F ′ ∉ F. Composing such automorphisms α̃ for different top level orbits one
obtains a desired automorphism in the general case.

Furthermore, if our conditions (i) and (ii) hold in the affine plane F , then they
automatically hold in any affine plane F ′ with F ′ ∈ F due to the µd-invariance of the
conditions and the µd-equivariance of the automorphisms α̃ ∈ H̃F. Hence it suffices
to take care just of a particular affine plane F equipped with two collections of orbits
{Oi∩F}i=1,...,ν and {O′

i∩F}i=1,...,ν of the stabilizer of F in µd, cf. Proposition 4.9 11. Let
UF be the standard affine chart around F , and let (z, u, v) be the natural coordinates
in UF ×A1.

11The assumption of Proposition 4.9 that Oi ≠ {0̄} ∀i if e = 1 holds automatically due to our choice

of natural coordinates, see Notation 4.10.
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By virtue of (21) and (22), for f, g ∈ k[t] the automorphisms ϕ̃f , ψ̃g ∈ H̃F restrict to

ϕ̃f ∣F = ϕf and ψ̃g ∣F = ψg ,
respectively, where ϕf , ψg generate the subgroup G ⊂ SAut(F) as in (14). Let H ⊲ G
be as in Notation 4.8. Applying Proposition 4.9 one can find an automorphism α =
ϕ1 ⋅ψ1 ⋅ . . . ⋅ϕν ⋅ψν ∈H satisfying in the affine plane F ≅ A2 conditions (i) and (ii) of this

proposition. Extending every ϕi to ϕ̃i ∈ HF and ψi to ψ̃i ∈ HF, we obtain an s-reduced
automorphism α̃ = ϕ̃1 ⋅ ψ̃1 ⋅ . . . ⋅ ϕ̃ν ⋅ ψ̃ν ∈ H̃F, see Lemma 4.12(b). Since α̃ also satisfies
(20) in Notation 4.10, then (iii) holds, and so, α̃ is a desired automorphism. �

Proof of Theorem 4.4. Let π∶X → B be a marked GDF µd-surface. We have to
show that the µd-equivariant condition RF(l,−l, s) holds for X whatever are s ≥ 2 and
l ∈ {0, . . . ,N}. It suffices to show that, given any µd-stable collection F of top level
special fiber components in Xl and any two finite sets Σ,Σ′ ⊂ ⋃F ∈FF with the same
µd-orbit structure and with card ΣF = card Σ′

F > 0 ∀F ∈ F, where ΣF = Σ ∩ F , there
exists ϕ ∈ SAutB Xl(−l) such that the µd-equivariant versions of conditions (α) and (β)
in Definition 4.2 are fulfilled.

By Proposition 4.13 one can find ϕ ∈ H̃F ⊂ SAutB Xl(−l) verifying (i) and (ii) of
Proposition 4.9 and condition (20). That is, ϕ is µd-equivariant, s-reduced, verifies
(20), sends Σ onto Σ′, and has prescribed 2-dimensional r-jets (in the vertical planes)
in the chosen points on each µd-orbit in Σ. Since ϕ is s-reduced and r ≤ s, it also
has prescribed 3-dimensional r-jets at given points. Hence ϕ satisfies condition (α) of
Definition 4.2. Due to (20), ϕ satisfies also condition (β) of this definition. �

4.4. A parametric Abhyankar-Moh-Suzuki Theorem. We need in the sequel the
following version of the Abhyankar-Moh-Suzuki Epimorphism Theorem.

Proposition 4.14. Let π∶X → B be a GDF surface, let F1, . . . , Ft be fiber components
in X of the top level, and let Fi = Fi ×A1 ≅ A2, i = 1, . . . , t, be the corresponding fiber
components of the induced morphism X = X ×A1 → B. For every i = 1, . . . , t we fix a
curve Ci ⊂ Fi such that Ci ≅ A1. Then there exists a B-automorphism α ∈ SAutB(X)
such that α(Ci) = Fi × {0}, i = 1, . . . , t.

Proof. Choose i ∈ {1, . . . , t}, and let F = Fi, F = Fi, and C = Ci ⊂ F . Our assertion
follows by induction on i from the next claim.

Claim. There exists a B-automorphism β = βi ∈ SAutB(X) such that β(C) = F × {0}
and β(F ′ × {0}) = F ′ × {0} for any special fiber component F ′ ≠ F .

Indeed, to deduce the assertion it suffices to let α = βs ○ . . . ○ β1.

Proof of the claim. By Corollary 3.14 one can find ũ ∈ O(X) such that

(i) ũ∣F = uF , where uF is an affine coordinate on F ;
(ii) ũ∣F ′ = 0 for any F ′ ≠ F .

Consider the locally nilpotent derivations on O(X),

σ1 = ∂l and σ2 = ũ
∂

∂v
,

where l is the highest level of the special fiber components of X, and ∂l is a vertical
locally nilpotent vector field on X as in Lemma 3.1, so that ∂l(z) = 0 and ∂l∣F = ∂/∂uF .
Consider the replicas

σ1,f = f(v)σ1 and σ2,g = g(ũ)σ2, where f, g ∈ k[t] .
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Their exponentials

ϕf = exp(σ1,f) and ψg = exp(σ2,g) ∈ SAutBX
generate a subgroup H of SAutB X . In the coordinates (uF , v) in the affine plane
F ≅ A2 we have

ϕf ∣F ∶ (uF , v) ↦ (uF + f(v), v) and ψg ∣F ∶ (uF , v) ↦ (uF , v + uFg(uF )) .
In particular, H∣F contains all the transvections, hence also the group SL(2, k). For
F ′ ≠ F , by virtue of (ii) the group H∣F ′ is generated by the shears ϕf ∣F ′ . It follows that

● H∣F = SAutF ≅ SAutA2, and
● the coordinate line F ′ × {0} ⊂ F ′ stays H-invariant for any F ′ ≠ F .

Now the claim follows by the Abhyankar-Moh-Suzuki Theorem. �

The next lemma allows to interchange the u- and v-axes in the top level special fiber
components of X → B.

Lemma 4.15. Let π∶X → B be a marked GDF µd-surface, and let Xl be one of the sur-
faces in (9). Given s > 1, there exists a µd-equivariant automorphism τ ∈ SAutB Xl(−l)
such that, in the natural coordinates in local charts, one has

● τ ∣UF×A1 ∶ (z, u, v) ↦ (z, v,−u) mod zs for any top level special fiber component
F , and

● τ ∣UF×A1 = id mod zs for any special fiber component F of lower level.

Proof. Likewise in (17) we let

(23) σ̃1 = v∂l and σ̃2 = −ũ∂/∂v ,
where ∂l is the vertical vector field on Xl as in Lemma 3.1 and ũ ∈ OXl(−l)(Xl(−l))
is a µd-quasi-invariant verifying conditions (i) and (ii) of Corollary 3.14. Letting ϕ̃ =
exp (σ̃1) and ψ̃ = exp (σ̃2), by virtue of (i) and (ii) we obtain

ϕ̃∣UF×A1 ∶ (z, u, v) ↦ (z, u + v, v) mod zs

and
ψ̃∣UF×A1 ∶ (z, u, v) ↦ (z, u, v − u) mod zs

if F is of top level, and ψ̃∣UF×A1 ≡ id mod zs otherwise, cf. (21) and (22). Letting

τ = ϕ̃ψ̃ϕ̃ we obtain
τ ∣UF×A1 ∶ (z, u, v) ↦ (z, v,−u) mod zs

if F is of top level and τ ∣UF×A1 ≡ id mod zs otherwise. �

Using this lemma and Proposition 4.14 we arrive at the following conclusion.

Corollary 4.16. Under the assumptions of Proposition 4.14 there exists a B-automorphism
α′ ∈ SAutB(X) such that α′(Ci) = {pi} ×A1, where pi ∈ Fi, i = 1, . . . , s.

We need as well the following versions of Lemma 4.15.

Lemma 4.17. Under the assumptions of Lemma 4.15, let π−1
l (Υ), where Υ ⊂ {b1, . . . , bn},

be a µd-stable union of special fibers of πl∶Xl → B, and let FΥ be the collection of all
their fiber components. Consider the subset of top level components

(24) FΥ(l′) = {F ∈ FΥ ∣ l(F ) = l′}, where l′ = l(FΥ) = max{l(F ) ∣F ∈ FΥ} .
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Then there is a µd-equivariant automorphism τ ∈ SAutB Xl(−l) such that

(25) τ ∣UF×A1 ∶ (z, u, v) ↦ (z, v,−u) mod zs

if F ∈ FΥ(l′) and τ ∣UF×A1 ≡ id mod zs otherwise.

Proof. Consider a µd-invariant f ∈ π∗OB(B) ⊂ OX(X) such that the restriction f ∣π−1
l
(bi)

vanishes if bi ∉ Υ, and equals 1 otherwise. Note that ∂l′(f) = 0 = ∂/∂v(f), and ∂l′ is
regular near the fibers π−1

l (bi), bi ∈ Υ, and has poles at most along the fibers π−1
l (bi),

bi ∉ Υ. Hence for any sufficiently large d > 0, the replicas

(26) σ̃f,d = fdv∂l′ and σ̃f,d = −fdũ∂/∂v
are locally nilpotent derivations on OXl(Xl). Using these derivations and proceeding
as in the proof of Lemma 4.15 yields the result. �

Corollary 4.18. Let π∶X → B be a GDF surface with a marking z ∈ OB(B) and with
the special fibers π−1(bi), i = 1, . . . , n. Assume that for any i = 1, . . . , n, all the fiber
components in π−1(bi) are of the same level, say, li. Then for any s ≥ 1 there exists
a B-automorphism τ ∈ SAutB X such that for any special fiber component F , in the
natural coordinates in the local chart UF ×A1 on the cylinder X =X ×A1, one has

(27) τ ∣UF×A1 ∶ (z, u, v) ↦ (z, v,−u) mod zs .

Furthermore, if π∶X → B is a GDF µd-surface then there is a µd-equivariant auto-
morphism τ ∈ SAutB Xl(−l) such that (27) holds for any special fiber component F .

Proof. For i ∈ {1, . . . , n}, letting in Lemma 4.17 Υ = Υi = {bi}, by our assumption
FΥ(l′) = FΥ is the set of all fiber components in the fiber π−1(bi), where l′ = li. By
Lemma 4.17, there exists τi ∈ SAutB X such that (27) holds for any F ∈ FΥi , and
τ ∣UF×A1 ≡ id mod zs otherwise. Then the composition τ = τ1 ○⋯○ τn ∈ SAutB X verifies
(27) for any special fiber component F . The proof of the last assertion is similar. �

5. Rigidity of cylinders upon deformation of surfaces

5.1. Equivariant Asanuma modification. In the next lemma we introduce an equi-
variant version of the Asanuma modification. For the reader’s convenience, we repeat
in (a) the statement of Lemma 1.9.

Lemma 5.1. Let π∶X → B be a GDF surface, and let %∶X ′ → X be a fibered modifi-
cation along a reduced principal divisor div f , where f ∈ π∗OB(B) ∖ {0} with a reduced
center I, see Definition 2.26. Consider the principal divisor D = V(f)×A1 on the cylin-
der X =X ×A1 and the ideal J = (I, v) ⊂ OX (X) with support contained in V(f)×{0}.
Then the following holds.

(a) The cylinder X ′ = X ′ ×A1 is naturally isomorphic to the affine modification Z
of X along divisor D with center J . This isomorphism fits in the commutative
diagram

(28)

X ′ ≅- Z - X
@
@
@R 	�

�
�

B
?

where the vertical arrows define A2-fibrations over B.
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(b) Assume that the modification %∶X ′ →X is equivariant with respect to actions of
a finite group G on X,X ′, and B and, moreover, the ideal I is G-invariant and
the function f is G-quasi-invariant and belongs to a character χ ∈ G∨. Define
the G-action on the factor A1 of the cylinder X =X ×A1 via the multiplication
by a character λ ∈ G∨. Then all the morphisms in (28) are G-equivariant, where
G acts on the factors A1 of the cylinder X ′ =X ′ ×A1 via multiplication by λ/χ.
In particular, if G = µd, χ∶ ζ ↦ ζt, and λ∶ ζ ↦ ζk, then λ/χ∶ ζ ↦ ζk−t ∀ζ ∈ µd.

Proof. For the proof of (a), see Lemma 1.9. Statement (b) follows since under its
assumptions, the variable v′ in the proof of Lemma 1.9 belongs to λ, hence v = v′/f
belongs to λ/χ. �

Notation 5.2. Let πl∶Xl → B be a marked GDF µd-surface as in (9). We let Xl(k)
denote the cylinder Xl = Xl ×A1 equipped with a product µd-action, where µd acts on
the second factor via (ζ, v) ↦ ζkv for all v ∈ A1 and ζ ∈ µd. By abuse of notation, we
still denote by πl the µd-equivariant projection of the induced A2-fibration Xl(k) → B,
and by z the lift to Xl(k) of the µd-quasi-invariant z ∈ OB(B) of weight 1.

Definition 5.3 (Asanuma modification). By Lemma 5.1(b), the upper line of (28)
reads as a µd-equivariant affine modification of cylinders Xl+1(k − 1) → Xl(k). The
latter modification will be called an Asanuma modification of the first kind.

An Asanuma modification of the second kind is the affine modification X ′′ → X of
the cylinder X = X ×A1 over a marked GDF surface π∶X → B with divisor D = z∗(0)
on X and center I = (z, v) ⊂ OX (X). Due to the next lemma, this modification results
again in a cylinder.

Lemma 5.4. (a) There is a B-isomorphism X ′′ ≅B X .
(b) If π∶X → B is a µd-surface and X = X(k), then X ′′ = X ′′(k − 1).

Proof. Let A = OX(X), A = OX (X), and A′′ = OX ′′(X ′′). The modification in (a)
amounts to the extension

A = A[v] ↪ A′′ = A[v/z] = A[v′′] ≅A A[v] = A, where v′′ = v/z .
This proves (a). Under the assumptions of (b) we have ζ.v′′ = ζk−1v′′ for any ζ ∈ µd,
which yields (b). �

Remark 5.5. Let %∶X ′ →X be a fibered modification as in Lemma 5.1. Consider the
product modification of cylinders σ = % × id∶ X ′ → X followed by the Asanuma modifi-
cation of the second type X ′′ → X ′. This yields an affine modification X ′′ → X along
divisor D with a zero-dimensional center, factorized as in Remark 1.4.2. Identifying
X ′ and X ′′ via the isomorphism of Lemma 5.4 yields an affine modification %̃∶ X ′ → X
along divisor D with a zero-dimensional center such that % = %̃∣X′×{0}.

5.2. Rigidity of cylinders under deformations of GDF surfaces. Using Lemma
5.1 and Notation 5.2 we deduce the following proposition.

Proposition 5.6. (a) Given l ∈ {1, . . . ,N}, consider the µd-equivariant fibered mod-
ification %l∶Xl → Xl−1 over B in (9). Then for any k ∈ Z, %l induces a µd-
equivariant affine modification %̃l∶ Xl(k) → Xl−1(k + 1) over B along divisor Dl
with center Jl as defined in Lemma 5.1 and Remark 5.5.
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(b) Consequently, (9) yields a sequence of µd-equivariant affine modifications

(29) XN(−N) %̃NÐ→ XN−1(−N + 1) Ð→ . . .Ð→ X1(−1) %̃1Ð→ X0(0) = (B ×A2)(0)
with zero-dimensional centers.

Proof. The statement of (a) follows by Lemma 5.1, and (b) is immediate from (a). �

The next theorem is our first main result in this section.

Theorem 5.7. Let π∶X → B and π′∶X ′ → B be two marked GDF µd-surfaces over
B with the same µd-quasi-invariant marking z ∈ OB(B) of weight 1. Assume that

for some trivializing µd-equivariant completions (X̂, D̂) and (X̂ ′, D̂′) of X and X ′,
respectively, the graph divisors D(π̂) and D(π̂′) 12 are µd-equivariantly isomorphic.
Then for any k ∈ Z there is a µd-equivariant B-isomorphism of cylinders X(k) ≅µd,B
X ′(k). In particular, for k = 0 the cylinders X(0) = X × A1 and X ′(0) = X ′ × A1 are
µd-equivariantly B-isomorphic.

Proof. Both sequences (29) associated with the GDF surfaces X and X ′, respectively,
start with the same product X0(0) = (B ×A2)(0) = X ′

0(0). Using Proposition 5.8 below
with s > N , it follows by induction that for l = 0, . . . ,N there is a µd-equivariant B-
isomorphism Xl(−l) ≅µd,B X ′

l (−l). For l = N we obtain X(−N) ≅µd,B X ′(−N). By
Lemma 5.4, X(k) ≅µd,B X ′(k) for any k ∈ Z. �

The following proposition provides the induction step in the proof of Theorem 5.7.

Proposition 5.8. Under the assumptions of Theorem 5.7, suppose that for some l ∈
{0, . . . ,N − 1} there exists a µd-equivariant B-isomorphism ψl∶ Xl(−l) → X ′

l (−l) such
that

(il) ψ∗l (v′) ≡ vmod(zs), where v (v′, respectively) is the coordinate in the A1-factor
of the cylinder Xl(−l) (X ′

l (−l), respectively), and
(iil) the induced correspondence between the fiber components of πl and π′l is restric-

tion of the isomorphism of graph divisors D(π) ≅Ð→ D(π′).

Then there exists a µd-equivariant B-isomorphism ψl+1∶ Xl+1(−l−1) → X ′
l+1(−l−1) such

that

(il+1) ψ∗l+1(v′) ≡ vmod(zs−1), and
(iil+1) the induced correspondence between the fiber components of πl+1 and π′l+1 is

restriction of the isomorphism of graph divisors D(π) ≅Ð→ D(π′).

Proof. The morphism %l+1∶Xl+1 → Xl in (9) is an affine modification along reduced
divisor V(z) = z∗(0) with center I, where V(I) is union of a finite set Σ and the
components of V(z) disjoint from Σ, cf. Remark 2.27. Let FΣ be the set of the top
level components of V(z) which meet Σ. By Lemma 5.1, %l+1 induces an Asanuma
modification %̃l+1∶ Xl+1(−l−1) → Xl(−l) with divisor V(z)×A1 and center V(I)×{0} in
Xl(−l), which consists of the finite set Σ × {0} and the union C of curves isomorphic
to A1 and such that in each component F = F × A1 ≅ A2 of V(z) × A1 disjoint from
Σ × {0}, CF = C ∩ F is given by equation v = 0 (thus, C ⊂ {z = v = 0} in Xl(−l)). For
any F ∈ FΣ we let

(30) ΣF = F ∩ (V(I) × {0}) = F ∩ (Σ × {0}) = {x1, . . . , xm(F )} .
12See Definition 2.12.

37



There is a similar collection of objects related with X ′ instead of X. In particular,
we have a modification %̃′l+1 ∶ X ′

l+1(−l − 1) → X ′
l (−l) with divisor V(z) ×A1 and center

V(I ′) × {0} consisting of a finite set Σ′ × {0} and a union C ′ of curves C ′
F ′ ≅ A1.

By virtue of (il) the isomorphism ψl sends the pair (Xl(−l),V(z) × A1) to the pair
(X ′

l (−l),V(z) ×A1) and C to C ′, but not in general Σ × {0} to Σ′ × {0}. However, by

virtue of (iil) the µd-equivariant isomorphism D(π) ≅Ð→ D(π′) of graph divisors yields
a one-to-one correspondence F ↝ F ′ between the components in FΣ and in F′Σ′ , so that

mF = card ΣF = card ΣF ′ =mF ′

for any F ∈ FΣ. One can get a bijection between the centers Σ and Σ′ of modifications,
replacing ψl by a composition ϕl ○ ψl with a suitable µd-equivariant automorphism
ϕl ∈ SAutB X ′

l (−l) as in Definition 4.3.
Indeed, let in (30), xν = (0, uν ,0) in the natural coordinates (z, u, v) in the standard

affine chart U(F ) ×A1 around F . Similarly, for F ′ = ψl(F) we let

F ′ ∩ (V(I ′) × {0}) = F ′ ∩ (Σ′ × {0}) = {x′1, . . . , x′m(F )} ,
where x′ν = (0, u′ν ,0) in the natural coordinates (z, u′, v′) in the standard affine chart
around ψl(F ′). By (il) we obtain

ψl(xν) = x′′ν = (0, u′′ν ,0) ∈ ψl(F), ν = 1, . . . ,m(F ) .
Due to Theorem 4.4, the surface X ′ verifies the µd-equivariant condition RF(l,−l, s).
Hence one can find a µd-equivariant automorphism ϕl ∈ SAutB X ′

l (−l) as in Definition
4.3 with suitable prescribed µd-equivariant s-jets at the points x′′i chosen so that

(1) up to reordering, ϕl(x′′ν) = x′ν , ν = 1, . . . ,m(F );
(2) (ϕl ○ ψl)∗(z, u′, v′) = (z, u + cν , v)mod(zs) near x′ν , ν = 1, . . . ,m(F );
(3) ϕl ○ ψl(V(z) ×A1) = V(z) ×A1;
(4) ϕl ○ ψl(V(I) × {0}) = V(I ′) × {0}.

For (2) we use the fact that ψl satisfies (il), and we choose cν = u′ν − uν . Due to
(3) and (4) the composition ϕl ○ ψl sends the center and the divisor of %̃l+1 onto the
center and the divisor of %̃′l+1. By Lemma 1.5 this composition lifts to a µd-equivariant
B-isomorphism ψl+1∶ Xl+1(−l − 1) → X ′

l+1(−l − 1).
Now condition (il+1) holds for any special fiber components F in Xl+1 of level ≤

l. Indeed, let ψl(F) = F ′, and let (z, ul, vl) ((z, u′l, v′l), respectively) be the natural
coordinates in a special affine chart UF × A1 in Xl(−l) around F (in a special affine
chart UF ′ × A1 in X ′

l (−l) around F ′, respectively). By (2) we have (ϕl ○ ψl)∗(v′) ≡ v
mod zs, or, in other words,

(31) (ϕl ○ ψl)∗(v′) = v + zsf(z, u, v)
for some f ∈ k[z, u, v]. Since vl+1 = vl/z and v′l+1 = v′l/z, we obtain from (31)

ψ∗l+1(v′l+1) = vl+1 + zs−1f(z, zul+1, zvl+1) ,
and so, (il+1) holds.

Let further F̃ be a special fiber component in Xl+1 of level l + 1 born as a result of
blowing up of a point on F in Xl. Thus the divisor F̃ in Xl+1(−l − 1) is contracted by
%̃l+1 to a point xν = (0, uν ,0) ∈ UF × A1 ⊂ Xl(−l), and its image F̃ ′ = ψl+1(F̃) to the
point x′ν = ϕl ○ ψl(xν) = (0, u′ν ,0) ∈ UF ′ ×A1 ⊂ X ′

l (−l). We let (z, ul, vl) be the natural
coordinates in UF × A1, and (z, u′l, v′l) be the natural coordinates in UF ′ × A1. Let

UF̃ ×A1 be the standard affine chart in Xl+1(−l−1) around F̃ with natural coordinates
38



(z, ul+1, vl+1), and let UF̃ ′ × A1 be the standard affine chart in X ′
l+1(−l − 1) around F̃ ′

with natural coordinates (z, u′l+1, v
′
l+1). We have

(32) (z, ul+1, vl+1) = (z, (ul − uν)/z, vl/z) and (z, u′l+1, v
′
l+1) = (z, (u′l − u′ν)/z, v′l/z) .

From (32) and condition (2) we deduce

ψl+1∶ (z, ul+1, vl+1) ↦ (z, u′l+1, v
′
l+1) ≡ (z, (ul + cν − u′ν)/z, v′l/z) ≡ (z, ul+1, vl+1)mod zs−1 .

In particular, condition (il+1) holds for ψl+1. As to (iil+1), it holds up to choosing a
correct ordering of points in (1). �

5.3. Rigidity of cylinders under deformations of A1-fibered surfaces. Using
Theorem 5.7 we obtain our second main result in this section.

Theorem 5.9. Let π∶Y → C and π′∶Y ′ → C be two A1-fibered normal affine surfaces
over a smooth affine curve C. Let Ŷ → Ĉ be an SNC completion of the minimal
resolution of singularities of Y , and let D̂ext be the extended divisor of this completion.
Let a pair (Ŷ ′, D̂′

ext) plays the same role for Y ′. Suppose that

● the degenerate fibers of π and π′ are situated over the same points p1, . . . , pt ∈ C;
● the corresponding fiber graphs Γpi and Γ′

pi
are isomorphic for all i = 1, . . . , t13;

● making similar contractions in D̂ext and D̂′
ext we can reduce both Ŷ and Ŷ ′ to

the direct product Ĉ × P1 with a section Ĉ × {∞}.

Then the cylinders Y ×A1 and Y ′ ×A1 are isomorphic over C.

Proof. By Lemma 2.3, applying a suitable cyclic Galois base change B → C of order d
ramified over the points p1, . . . , pt ∈ C, we can replace our A1-fibered surfaces π∶Y → C
and π′∶Y ′ → C by two marked GDF µd-surfaces X → B and X ′ → B, respectively,
using as a marking the same µd-quasi-invariant function z ∈ OB(B), see Remark 2.4.
Due to our assumptions, the extended graphs of the resulting GDF surfaces X and
X ′ are isomorphic under a µd-equivariant isomorphism, which respects the branches
corresponding to degenerate fibers. Moreover, these surfaces admit completions veri-
fying the assumptions of Theorem 5.7. Due to this theorem, there is a µd-equivariant
B-isomorphism X(0) ≅µd,B X ′(0). Passing to the quotients X(0)/µd = Y × A1 and
X ′(0)/µd = Y ′ ×A1 yields a desired C-isomorphism Y ×A1 ≅C Y ′ ×A1. �

Corollary 5.10. Let C be a smooth affine curve with marked points p1, . . . , pt ∈ C.
Consider the set H = H(C,p1, . . . , pt) of all A1-fibered normal affine surfaces π∶X → C
with degenerate fibers at most over p1, . . . , pt. Then the set of all C-isomorphism classes
of cylinders X =X ×A1, where X runs over H, is at most countable.

Proof. Indeed, the set of the isomorphism classes of finite trees is countable. The same
is true for the set of all ordered t-tuples of such trees as in Theorem 5.9. Now the
assertion follows from this theorem. �

Remark 5.11. Let π∶X → C and π′∶X ′ → C be A1-fibered normal affine surfaces. If
C /≅ A1, then any isomorphism of cylinders X ≅ X ′ over X and X ′, respectively, is a
C-isomorphism (cf. Lemma 6.11).

13This condition ensures that the corresponding fiber components of π and π′ have the same

multiplicities. Indeed, under our assumptions the isomorphism respects the feathers along with their

bridges.
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5.4. Rigidity of line bundles over affine surfaces. In unpublished notes [9], kindly
provided to us by the authors, the study of cylinders over affine surfaces is extended to
the total spaces of line bundles over affine surfaces. In Theorem 5.19 below we extends
Theorem 5.7 in this wider context. Since we do not use this extension in the subsequent
sections, we just indicate the necessary modifications in the proof of Theorem 5.7.

Notation 5.12. Let X be an affine algebraic variety. For a Cartier divisor T ∈ CDivX
we let πT ∶ X T →X be the associated line bundle on X with a zero section ZT ⊂ X T .

Definition 5.13. Given an effective, reduced Cartier divisor D ∈ CDivX, by an
Asanuma modification of the second kind of X T we mean the affine modification σD∶ X T,D →
X T along the principal divisor DT = (πT )∗(D) on X T with center DT ⋅ZT .

We have the following analogue of Lemma 5.1 (the latter corresponds to the case
T ∼ 0).

Lemma 5.14. In Notation 5.12, πT,D = πT ○σD∶ X T,D → X admits a structure of a line
bundle such that X T,D ≅X X T−D.

Proof. Choose an open covering X = ⋃iUi such that

● D ∩Ui = f∗i (0) and T ∩Ui = divhi, where fi ∈ OUi(Ui) and hi ∈ FracOUi(Ui).
Then

● αi,j = fj/fi, βi,j = hj/hi ∈ O×
Ui,j

(Ui,j), where Ui,j = Ui ∩ Uj, are Čech 1-cocycles

on X associated with the line bundles XD →X and X T →X, respectively.

Letting Vi = (πT )−1(Ui), there are local trivializations Vi ≅Ui Ui × A1 of πT ∶ X T → X,
where A1 = Speck[vi] with vj = βi,jvi over Ui,j. Consider the restriction V ′

i → Vi of the
morphism σ∶ X T,D →XT over Vi induced by the natural inclusion OVi(Vi) ↪ OV ′

i
(V ′

i ) =
OVi(Vi)[vi/fi]. We have V ′

i ≅Ui U ′
i × A1, where A1 = Speck[v′i] with v′i = vi/fi. This

defines local trivializations of the projection πT,D∶ X T,D →X, hence a structure of a line
bundle on X T,D over X. Note that v′j = (α−1

i,jβi,j)v′i, where {α−1
i,jβi,j} is a Čech 1-cocycle

on X associated with the line bundle πT−D∶ X T−D →X. �

Notation 5.15. Let X be an affine variety acted by a finite group G, and let T,D ∈
DivX be G-invariant divisors, where D is reduced. Then the line bundle X T → X
admits a G-linearization, that is, a structure of a G-equivariant line bundle. This
structure is not unique, in general. It is defined modulo the multiplication by a charac-
ter, see, e.g., [65]. Choosing a G-linearization, say, X T (1) →X with the corresponding
linear equivariant G-action ϕ∶ (g, v) ↦ g.v on X T , for a character χ ∈ G∨ consider a
new such action ϕχ∶ (g, v) ↦ χ(g) ⋅ g.v. This yields a new G-linearization denoted by
X T (χ) →X.

In the case of a cyclic group G = µd, fixing a primitive character χ of µd, we write
X T (k) → X for the µd-linearization on X T → X associated with the character χk.
With this notation, X T (0) → X corresponds to the given G-linearization. Clearly, the
sequence (X T (k))k∈Z is periodic with period d. For any G-invariant divisors T1, T2 ∈
DivB and any characters χ,λ ∈ G∨, there is a G-equivariant isomorphism X T1(χ) ⊗
X T2(λ) ≅X X T1+T2(χλ).

In the sequel we need the following simple lemma.

Lemma 5.16. Let B be a smooth affine curve acted by a finite group G, and let ξ ∶ L→
B be a line bundle over B, which admits a G-linearization. Then for any b1, . . . , bn ∈ B
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there are a G-stable open set U containing these points and a G-equivariant trivializa-
tion of ξ∣U .

Proof. It suffices to find a non-zero G-stable (that is, G-equivariant) rational section
s∶B → L of ξ, which has neither pole nor zero in b1, . . . , bn, and take U = B∖supp (div s).
Given any non-zero G-stable rational section s0∶B → L of ξ, one can find a G-invariant
rational function f ≠ 0 on B such that div f restricts to div s on b1, . . . , bn. Then
s = s0/f is a desired G-stable section of ξ. �

Notation 5.17. Let π∶X → B be a marked GDF µd-surface over a smooth affine curve
B with a µd-quasi-invariant marking z ∈ OB(B) of weight 1. Then the principal divisor
D = z∗(0) ∈ DivB is µd-invariant. Given a µd-invariant divisor T ∈ DivB, consider
the line bundle X T ∗ → X, where T ∗ = π∗(T ) ∈ DivX. By abuse of notation, we let
X T = X T ∗ . If ξ∶L→ B is the line bundle associated with T , then X T →X is induced by
ξ via the morphism π∶X → B. Hence both ξ and X T →X admit µd-linearizations such
that the natural morphism X T → L is µd-equivariant. Choosing such a µd-linearization
of ξ and the one of X T →X, we observe that L(k) naturally corresponds to X T (k).

We have the following equivariant version of Lemma 5.14.

Lemma 5.18. Let things be as in 5.17. Then for any k ∈ Z there exists a µd-action
on X T,D and a µd-equivariant B-isomorphism of line bundles X T,D ≅µd,B X T−D(k − 1)
such that the induced morphism σD∶ X T−D(k − 1) → X T (k) is µd-equivariant.

Proof. The µd-action on X T (k) stabilizes the divisor DT = (πT )∗(D) ∈ DivX T and the
center DT ⋅ ZT of the affine modification σD∶ X T,D → X T (k). By [54, Cor. 2.2] (see
Lemma 1.5), it lifts to a µd-action on X T,D making σD equivariant.

Choose a trivializing open set U ⊂ B as in Lemma 5.16, and let V = π−1
X (U) ⊂ X.

Then X T (k) → X admits over V a µd-equivariant trivialization X T (k)∣V ≅µd,V (V ×
A1)(k +m), where A1 = Speck[v], and m is the weight of an equivariant trivialization
of X T (0)∣V . Recall that D = div z, where z has weight 1, and there is a natural iso-
morphism X T,D∣V ≅V V ×A1, where A1 = Speck[v/z], compatible with an isomorphism
X T,D ≅B X T−D of Lemma 5.14 (see the proof of this lemma). This gives an equivariant
trivialization X T−D∣V ≅µd,V (V ×A1)(k +m − 1), and shows that the induced µd-action
on X T−D has weight k − 1. Now the assertions follow. �

The following is an analog of Theorem 5.7 in our more general setting.

Theorem 5.19. Let πX ∶X → B and πY ∶Y → B be two marked GDF µd-surfaces over B
with the same µd-quasi-invariant marking z ∈ OB(B) of weight 1. Assume that for some

trivializing µd-equivariant completions (X̂, D̂X) and (Ŷ , D̂Y ) the graph divisors D(π̂X)
and D(π̂Y ) are µd-equivariantly isomorphic. Let T ∈ DivB be a µd-invariant divisor.
Then for any k ∈ Z there is a µd-equivariant B-isomorphism X T (k) ≅µd,B YT (k).

We need an analog of the Asanuma modification of the first kind for line bundles
over surfaces (see Definition 5.21 below). To this end, we use the following notation.

Notation 5.20. Let z−1(0) = {b1, . . . , bn} ⊂ B. Consider a trivializing sequence (9) of
fibered modifications %l+1∶Xl+1 → Xl, l = 0, . . . ,N , along divisors Dl = z∗(0) ∈ Div(Xl),
where πl∶Xl → B are marked GDF µd-surfaces over B with a common marking z ∈
OB(B). Given a µd-invariant divisor T ∈ PicB, replacing T by T + div f , where f ∈
OB(B) is a µd-quasi-invariant such that (div f)(bi) = −T (bi), i = 1, . . . , n, we may
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assume that bi ∉ suppT ∀i = 1, . . . , n. For every l = 0, . . . ,N we let Tl = π∗l (T ) ∈ DivXl.
Since Tl+1 = %∗l+1(Tl), the modification %l+1∶Xl+1 → Xl induces an affine modification

%Tl+1∶ X
Tl+1
l+1 → X Tl

l , which fits in the commutative diagram

(33)

X Tl+1−Dl+1
l+1

%T−Dl+1 - X Tl−Dl
l

@
@
@πT−Dl+1 R

@
@
@
πT−Dl

R

Xl+1
%l+1 - Xl

X Tl+1
l+1

σDl+1

?

%Tl+1
- X Tl

l

σDl?

@
@
@πTl+1 R

@
@
@
πTl
R

Xl+1

id

?

%l+1
- Xl

id

?

For a fiber component Fi ⊂ Dl we let Ci be the intersection of Fi with the center of
modification %l+1∶Xl+1 → Xl. Then %Tl+1∶ X

Tl+1
l+1 → X Tl

l is an affine modification along
divisor Dl = ⋃iFi with center Cl = ⋃i Ci, where Fi = (πTl)−1(Fi) ≅ Fi × A1 ≅ A2 and
Ci ≅ Ci ×A1 ⊂ Fi ×A1. There is an alternative: either

(i) Ci is finite, or
(ii) Ci = Fi.

In case (i), Fi is a top level component. In case (ii), Xl+1 → Xl (X Tl+1
l+1 → X Tl

l , respec-
tively) is an isomorphism near Fi (near Fi, respectively).

Definition 5.21. By analogy, we call an Asanuma modification of the first kind the
birational morphism

κl+1∶ X Tl+1−Dl+1
l+1 → X Tl

l ,

where κl+1 = %Tl+1○σDl+1 = σDl ○%T−Dl+1 is the diagonal composition of morphisms in the back

square of (33). Then κl+1 is an affine modification along divisor Dl = ⋃iFi on X Tl
l with

center ⋃i(Ci×{0}). In case (i), Ci×{0} ⊂ Ci ≅ A2 is zero-dimensional, while in case (ii)
this is just the coordinate axis v = 0 in Ci ≅ A2. Due to Lemma 5.18 and by analogy
with (29), we have the following sequence of equivariant Asanuma modifications of the
first kind:

(34) X TN−NDN
N (−N) %̃NÐ→ . . .Ð→ X T2−2D2

2 (−2) Ð→ X T1−D1
1 (−1) %̃1Ð→ X T0

0 (0) .

Proof of Theorem 5.19. For the given GDF surfaces πX ∶X → B and πY ∶Y → B,
consider the corresponding sequences (34) of affine modifications of the line bundles

X Tl−lDl
l (−l) and YTl−lDll (−l), l = 0, . . . ,N −1. These sequences start both with the same

line bundle X T0
0 (0) = (B×A1)T0(0) = YT00 (0); one may suppose that µd acts trivially on

the factor A1. Using Proposition 5.22 below with s > N , it follows by induction that
for l = 0, . . . ,N there is a (non-linear14) µd-equivariant B-isomorphism

X Tl−lDl
l (−l) ≅µd,B Y

Tl−lDl
l (−l) ,

14This is not an isomorphism of line bundles, in general.
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which sends the zero section Z(X Tl−lDl
l (−l)) of the first line bundle to such a section

of the second one. Replacing T by T +ND we obtain for l = N ,

X T (−N) = X TN
N (−N) ≅µd,B YTNN (−N) = YT (−N)

via a (µd,B)-isomorphism ϕ respecting the zero sections Z(X T (−N)) and Z(YT (−N))
and the divisors DT (X T ) and DT (YT ). Hence ϕ respects also the centers DT (X T ) ⋅
Z(X T (−N)) and DT (YT ) ⋅ Z(YT (−N)) of the Asanuma modifications of the second
kind. Applying these modifications on both sides, by Lemma 5.18 we decrease by 1 the
weights of the µd-actions. Due to Lemma 1.5, ϕ admits a lift to a (µd,B)-isomorphism
ϕ̃ fitting in the commutative diagram

(35)

X T−D(−N − 1) ϕ̃

≅µd,B
- YT−D(−N − 1)

X T (−N)

σD

?

ϕ
- YT (−N)

σD

?

and respecting the zero sections. Choose m ≥ 1 such that −(N+m) ≡ k mod d. For s≫
1, after m iterations one arrives at a (µd,B)-isomorphism X T−mD(k) ≅µd,B YT−mD(k).
This holds for an arbitrary µd-stable divisor T ∈ DivB. Replacing the initial T by
T +mD, one gets an isomorphism X T (k) ≅µd,B YT (k), as required. �

In the proof we used the following analog of Proposition 5.8. By abuse of notation,
we let vi and ṽi be the local fiber coordinates of the line bundles X T

l →X and YTl → Y ,
respectively.

Proposition 5.22. Under the assumptions of Theorem 5.19, let

ψl∶ X T
l (−l)

≅µd,BÐ→ YTl (−l)
be a µd-equivariant B-isomorphism such that

(il) ψ∗l (ṽi) ≡ vi mod zs ∀i.
Then there exists a µd-equivariant B-isomorphism

ψl+1∶ X T−D
l+1 (−l − 1)

≅µd,BÐ→ YT−Dl+1 (−l − 1)
such that

(il+1) ψ∗l+1(ṽi) ≡ vi mod zs−1 ∀i.

Hint. The proof of Proposition 5.8 goes verbatim modulo the existence of an automor-
phism ϕ, which is guaranteed by Theorem 4.4. Thus, it suffices to prove the following
analog of Theorem 4.4.

Theorem 5.23. Let a GDF µd-surface πX ∶X → B, z ∈ OB(B), and T ∈ DivB be as in
Theorem 5.19. Then X T satisfies an analog of the µd-equivariant condition RF(l,−l, s).

Proof. It suffices to reproduce mutatis mutandis the proof of Theorem 4.4 (see subsec-
tion 4.3). The modifications are as follows.

The coordinate v that was used when working with cylinders, may not exist on
the total space of the line bundle πT ∶ X T → X. Hence, we cannot consider on X T

the locally nilpotent derivations σ̃1,f and σ̃2,g as in (17). However, one can use instead
their analogs, which coinside with these to a given order on any special fiber component
Fi = (πT )−1(Fi) in X T .
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Indeed, let ξ ∶ L → B be the line bundle associated with T , and let U ⊂ B be a µd-
stable dense open subset as in Lemma 5.16, which contains z−1(0) = {b1, . . . , bn} and
such that ξ∣U is trivial as a µd-line bundle. Then also the induced line bundle πT ∶ X T →
X is trivial over V = π−1(U) ⊂ X. Thus, X T ∣V ≅µd,V V × A1, where A1 = Speck[v].
Via this isomorphism, v yields a rational µd-quasi-invariant function on X T , which we
denote by the same letter.

Choose a regular µd-quasi-invariant function h ∈ OB(B) such that h − 1 ≡ 0 mod zs

and h∣B∖U ≡ 0 mod zs. Consider the lift h̃ ∈ OXT (X T ) of h. For s ≫ 1, the product

ṽ = h̃v ∈ OXT (X T ) is a regular µd-quasi-invariant, which coinsides with v to order s on
any special fiber component Fi = (πT )−1(Fi) in X T . Letting σ̂1,f = f(ṽd)∂∗l for f ∈ k[t],
where ∂∗l = (πT )∗(∂l), yields a µd-invariant locally nilpotent derivation on OXT (X T ),
which coinsides to order s with σ̃1,f on any fiber component Fi.

Furthermore, for s ≫ 1 the product h̃d+1∂/∂v is a µd-invariant locally nilpotent

derivation on OXT (X T ). Letting σ̂2,g = ũdsg(ũd)h̃d∂/∂v for g ∈ k[t], where ũ is as
defined in 4.10, yields a µd-invariant locally nilpotent derivation on OXT (X T ), which
coinsides to order s with σ̃2,g on any fiber component Fi.

Using the locally nilpotent derivations σ̂1,f and σ̂2,g instead of σ̃1,f and σ̃2,g, respec-
tively, the rest of the proof of Theorem 4.4 applies and gives the desired µd-equivariant
relative flexibility. �

6. Basic examples of Zariski factors

6.1. Line bundles over affine curves.

Proposition 6.1. Let π∶X → B be a line bundle over a smooth affine curve B. Then
the surface X is a Zariski factor.

Proof. If B ≅ A1, then π∶X → B is a trivial line bundle, and so, X ≅ A2 is a Zariski
factor by the Miyanishi-Sugie-Fujita Theorem ([39, 63]; see also [62, Ch. 3, Thm. 2.3.1]).

We will suppose in the sequel that B /≅ A1, and so, any morphism A1 → B is constant.
Letting X = X × An, the natural projection π̃∶ X → B defines on X a structure of a
vector bundle of rank n + 1 isomorphic to the Whitney sum ξ ⊕ 1n, where ξ stands for
the given line bundle π∶X → B and 1n for the trivial vector bundle of rank n over B.

Consider a second smooth affine surface X ′, and let X ′ =X ′×An. Assume that there

is an isomorphism ϕ∶ X ′ ≅Ð→ X . The vector bundle structure π̃∶ X → B is transferred
by ϕ to such a structure π̃′ = π̃ ○ ϕ∶ X ′ → B on X ′. It is easily seen that π̃′ admits a
factorization

(36) π̃′∶ X ′ pr1Ð→X ′ π′Ð→ B ,

where π′∶X ′ Ð→ B is an A1-fibration with reduced and irreducible fibers only, because
the fibers of π̃′∶ X ′ → B are. Therefore, π′∶X ′ Ð→ B is a line bundle, say, ξ′. Due
to (36) the vector bundle π̃′∶ X ′ → B of rank n + 1 is isomorphic to the Whitney sum
ξ′ ⊕ 1n.

The fiberwise biregular map of the total spaces

ϕ∶ X ′ = tot(ξ′ ⊕ 1n) → X = tot(ξ ⊕ 1n)
identical on the base B sends the zero section Z ′ ≅ B of ξ′ ⊕ 1n onto a section, say, Z
of ξ⊕1n. Composing ϕ with a shift by −Z in ξ⊕1n we may assume that Z is the zero
section of ξ ⊕ 1n. The differential dϕ∣Z yields an isomorphism of the normal bundles
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N ′ of Z ′ in tot(ξ′ ⊕ 1n) and N of Z in tot(ξ ⊕ 1n). Since N ′ ≅ ξ′ ⊕ 1n and N ≅ ξ ⊕ 1n

as vector bundles, we have ξ′⊕1n ≅ ξ⊕1n, that is, the line bundles ξ and ξ′ are stably
equivalent. In fact, these are equivalent. Indeed, by [74, §8, Corollary] one has

ξ ≅ det(ξ ⊕ 1n) ≅ det(ξ′ ⊕ 1n) ≅ ξ′ .
So, X ′ ≅B X, as required. �

As for an equivariant version of this proposition, see Lemma 6.9.

Remark 6.2. In [40, 9.10.1] Fujita asks whether the cylinder over the surface (A1 ∖
{k points})×A1 depends essentially on the isomorphism type of the factor A1∖{k points}.
Proposition 6.1 answers this question in affirmative.

Let us give a first application of this proposition.

Remark 6.3. Let π∶X → B be a normal A1-fibered surface over a smooth affine curve
B. Let B∗ = B ∖ {b1, . . . , bs} be the maximal Zariski open subset of B over which π
is locally trivial. Letting X∗ = π−1(B∗) we consider the line bundle ξX∗ = (π∣X∗ ∶X∗ →
B∗). Let [ξX∗] be the class of ξX∗ in the Picard group Pic(B∗).

Let z ∈ OB(B) be a marking, that is, a regular function on B with simple zeros
b1, . . . , bn vanishing in the points bj, j = 1, . . . , s, and also in all points of B over

which the fibers of the trivializing resolved completion (X̂, D̂) of X as in (10) are
reducible. The fiber graph Γbj over a point bj with j > s is a chain, say, Lj of hight
aj = ht (Lj) ≥ 0. The divisor ∑n

j=s+1 ajbj on B∗ belongs to the class [ξX∗] in PicB∗; it
has support contained in the principal reduced divisor div(z∣B∗).

Lemma 6.4. The class [ξX∗] is cancellation invariant.

Proof. Let πX ∶X → B and πY ∶Y → C be two normal A1-fibered surfaces, and let ξX
and ξY be the associated line bundles as in Definition 6.3. Suppose that for some m ≥ 1
there is an isomorphism of cylinders

ϕ∶ X =X ×Am ≅Ð→ Y = Y ×Am .

We have to show that then [ξX∗] = [ξY ∗].
If at least one of the curves B and C is not isomorphic to A1, then ϕ induces an

isomorphism C ≅ B (cf. Remark 5.11). Identifying B and C via this isomorphism, we
may assume that C = B and ϕ is a B-isomorphism.

In particular, B and C are simultaneously rational or not. If they are, then PicX∗ =
PicY ∗ = 0, and so, [ξX∗] = 0 = [ξY ∗], as stated. In the other case, assuming that ϕ is
a B-isomorphism, it induces a B-isomorphism between the total spaces of the vector
bundles ξX∗ ⊕ 1m and ξY ∗ ⊕ 1m. As in the proof of Proposition 6.1, this implies an
isomorphism of line bundles ξX∗ ≅ ξX∗ , and so, the equality [ξX∗] = [ξY ∗]. �

6.2. Parabolic Gm-surfaces: an overview.

Definitions 6.5 (DPD presentation for parabolic Gm-surfaces). ([31]) A parabolic Gm-
surface is a normal affine surfaceX endowed with an effective Gm-action along the fibers
of an A1-fibration π∶X → C over a smooth affine curve C. The Gm-action on X defines
a grading

OX(X) =⊕
n≥0

An, where An =H0(C,OC(⌊nDX⌋) ∀n ≥ 0
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for a Q-divisor DX on C. This is called a Dolgachev-Pinkham-Demazure presentation,
or a DPD presentation for short, see [31, Thm. 3.2]. The Q-divisor DX on C is uniquely
defined by π∶X → C up to a linear equivalence. Any fiber π∗(p), p ∈ C, is irreducible
of multiplicity m, where DX(p) = (e/m)[p] with coprime e,m ∈ Z. The reduced fiber
π−1(p) is smooth and isomorphic to A1 ([32, Rem. 3.13(iii)]). The projection π∶X → C
admits a section consisting of the fixed points of the Gm-action on X. The singularities
ofX are the fixed points in the multiple fibers of π. More precisely, ifDX(p) = (e/m)[p],
where m > 1 and e,m are coprime, then the unique fixed point xp over p is a cyclic
quotient singularity of type (m,e′), where e′ ∈ {1, . . . ,m − 1} and e′ ≡ e mod m, see
[31, Prop. 3.8].

Lemma 6.6. Given a parabolic Gm-surface π∶X → C and a branched covering µ∶B →
C, let π′∶X ′ → B be obtained from the cross-product B ×C X via normalization. Then
π′∶X ′ → B is again a parabolic Gm-surface, and the Q-divisors DX on C and DX′ on
B in the corresponding DPD presentations are related via DX′ = µ∗DX .

Proof. The projection π∶X → C is the orbit morphism of a parabolic Gm-action, say,
Λ on X, with only smooth, irreducible fibers. Hence the fibers of π′∶X ′ → B are
also irreducible, and Λ lifts to a parabolic Gm-action Λ′ on the cross-product B ×C X,
where λ∶ (b, x) ↦ (b, λ.x) ∀λ ∈ Gm. This lifted action survives in the normalization
X ′ → B ×C X. Thus Λ lifts to a parabolic Gm-action Λ′ on X ′ such that π′∶X ′ → B is
the orbit morphism, and the induced morphism µ′∶X ′ →X is Gm-equivariant.

On the other hand, consider the Q-divisor DX′′ = µ∗DX on B and the correspond-
ing parabolic Gm-surface π′′∶X ′′ → B with the DPD presentation related to the pair
(B,DX′′). For any n ≥ 0 there is a natural embedding An =H0(C,OC(⌊nDX⌋)) ↪ Ân =
H0(B,OB(⌊nDX′′⌋)). This yields a monomorphism of graded rings

OX(X) =⊕
n≥0

An ↪ OX′′(X ′′) =⊕
n≥0

A′′
n

and the induced Gm-equivariant surjection µ′′∶X ′′ → X that fits in the commutative
diagram

X ′′ µ′′- X

B

π′′

?

µ
- C

π

?

By the universal property of the cross-product, µ′′ can be factorized as

µ′′∶X ′′ → B ×C X
πÐ→X .

Since X ′′ is normal, we have as well a factorization µ′′∶X ′′ ψÐ→X ′ πÐ→X, where ψ is a
Gm-equivariant B-surjection15. Since all fibers of a parabolic Gm-surface are irreducible
([32, Rem. 3.13(iii)]), ψ is a bijection. Due to the normality of both X ′′ and X ′, this
is an isomorphism. Now the conclusion follows. �

15That is, ψ fits in the commutative diagram

X ′′
ψ - X ′

@
@
@π′′ R 	�

�
�
π′

B .

46



It is known that a Gizatullin Gm-surface X is toric if and only if the associated
extended graph Γext is linear, see [33, Lem. 2.20]. A similar criterion is available for
parabolic Gm-surfaces, since these are locally infinitesimally toric over the base.

A finite rooted tree Γ will be called a star if any branch of Γ at the root vertex is a
linear chain.

Proposition 6.7. Let π∶X → C be an A1-fibration on a normal affine surface X over
a smooth affine curve C, and let π′∶X ′ → B be a marked GDF µd-surface obtained from
π∶X → C via a suitable cyclic base change with the Galois group µd after a subsequent
normalization, see Lemma 2.3. Then the following are equivalent.

(i) π′∶X ′ → B is a line bundle;
(ii) π∶X → C is a parabolic Gm-surface;

(iii) the extended graph Γext of a resolved minimal completion π̄∶ X̄ → C̄ is star-
shaped with the root vertex S as the center, that is, any fiber tree of a special
fiber in X is a chain.

Proof. (i)⇒(ii). Suppose that π′∶X ′ → B is a line bundle. In this case all fibers of
the A1-fibration X → C are irreducible. The µd-action on X ′ preserves the fibration
∂′i∶X ′ → B. Hence it sends sections of π′ to sections. Taking the fiberwise barycentre
Z of the µd-orbit of the zero section yields a µd-invariant section of π′ (cf. the proof of
Lemma 3.6). The shift by Z in the vertical direction on X ′ conjugates the standard
parabolic Gm-action on X ′ along the fibers of π′ with the zero section as the fixed
point set to such an action, say, Λ′ with Z as the fixed point set. The new Gm-action
Λ′ commutes with the µd-action on X ′, hence descends to a parabolic Gm-action Λ on
X along the fibers of π∶X → C, so that C is the orbit space for this action. Thus Λ
converts X into a parabolic Gm-surface over C. This proves (i)⇒(ii).

(ii)⇒(i). Conversely, suppose that π∶X → C is the orbit morphism of a parabolic Gm-
action Λ on X. Then Λ lifts to a parabolic Gm-action Λ̃ on the cross-product B ×C X,
where λ∶ (b, x) ↦ (b, λ.x) ∀λ ∈ Gm. This lifted action survives in the normalization
X̃ → B ×C X. Thus Λ lifts through the branching covering construction X ′ → X as in
2.2. In this way the GDF surface π′∶X ′ → B inquires a parabolic Gm-action along the
fibers of π′. Hence all these fibers are reduced and irreducible, see [32, Rem. 3.13(iii)].
It follows that π′∶X ′ → B is a line bundle. This proves the equivalence (ii)⇔(i).16

For the implication (ii)⇒(iii) we send the reader to [33, Prop. 3.22]. To end the
proof, it is enough to show the implication (iii)⇒(i).

(iii)⇒(i). Suppose that the extended graph Γext with S is a star with center at the
root vertex S. We claim that in this case any fiber π−1(p), p ∈ C, is irreducible. Indeed,
let π−1(p) be a special fiber. The branch B of Γext at the root S, which is the dual
graph of π−1(p), is linear. Hence the components F1, . . . , Fs of the fiber π−1(p) can
be ordered according to the distance from S of the corresponding feather components
F̄1, . . . , F̄s of B. Let F̄1 meet the boundary divisor D, and F̄2 be the feather component
of B closest to F̄1. The components of cB ⊖D different form F̄1, . . . , F̄s are contracted
to singular points of X. Assuming that s ≥ 2 we deduce that F1 meets F2 in X, which
is impossible due to the fact that the fiber components of an A1-fibration are disjoint,
see [62, Ch. 3, Lem. 1.4.1(1)]. This proves the claim.

16The Q-divisor D′ on B in the corresponding DPD presentation is integral and represents the class

of the line bundle π′∶X ′ → B in the Picard group PicB, cf. Lemma 6.6.
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Under the branch covering construction, the morphismB → C is ramified to full order
d over each point p ∈ C such that the fiber π∗(p) =mpπ−1(p) is multiple. Furthermore,

the multiplicity mp divides d. It follows that on the GDF surface π̃∶ X̃ → B, all the

fibers of π̃ are reduced and irreducible. Hence π̃∶ X̃ → B is a line bundle. Thus, (i)
holds. �

6.3. Parabolic Gm-surfaces as Zariski factors.

Theorem 6.8. Any parabolic Gm-surface is a Zariski factor.

The proof is divided into several steps, see Lemmas 6.9-6.19 below.

Lemma 6.9. Let π∶X → C and π′∶X ′ → C ′ be A1-fibered normal affine surfaces over
smooth affine curves, where π∶X → C is a parabolic Gm-surface. Suppose that for some

n ≥ 1 there is an isomorphism ϕ∶X ′×An ≅Ð→X ×An sending the induced An+1-fibration
X ′ ×An → C ′ into the one X ×An → C. Then the surfaces X and X ′ are isomorphic.

Proof. By abuse of notation, we let π∶ X → C and π′∶ X ′ → C ′ be the induced An+1-
fibrations on the n-cylinders X = X ×An and X ′ = X ′ ×An, respectively. Clearly, the
isomorphism ϕ fits in the commutative diagram

(37)

X ′ ϕ- X

C ′

π′
?

≅
- C

π

?

Identifying C ′ and C in this diagram one can deduce that the special fibers of both
A1-fibrations π′∶X ′ → C and π∶X → C are irreducible multiple fibers situated over the
same points and having the same multiplicities. Hence applying to both surfaces the
branched covering construction with the same cyclic base change B → C, one gets the
GDF µd-surfaces X̃ ′ and X̃ with cyclic coverings X̃ ′ →X ′ and X̃ →X. By Propositiona
6.7, π̃∶ X̃ → B is a line bundle, and so, X̃ is a Zariski factor by virtue of Proposition
6.1. The same branched covering construction applied to the n-cylinders X ′ and X
(which are isomorphic over C) gives µd-equivariantly isomorphic (over B) n-cylinders
X̃ ′ ≅ X̃ . It follows that X̃ ′ ≅ X̃, hence X̃ ′ inherits a µd-equivariant structure of a line
bundle over B.

Assume first that this line bundle structure on X̃ ′ is compatible with the original
structure of a GDF surface π̃′∶ X̃ ′ → B. Then the µd-quotients π′∶X ′ → C and π′∶X ′ →
C are isomorphic as parabolic Gm-surfaces over C. In particular, X ′ ≅X, as required.

Otherwise, X̃ ′ (and then also X̃ ≅ X̃ ′) possesses two different A1-fibrations over
affine bases. Then X̃ is a Gizatullin surface, B ≅ A1, and X̃ ≅ A2 with π̃∶ X̃ → B being
the standard linear projection A2 → A1. This morphism is µd-equivariant, hence the
induced µd-action on A2 is equivalent in the natural coordinates on X̃ ≅ A2 to a diagonal
action ζ ∶ (x, y) ↦ (ζx, ζey), where ζ ∈ µd and e ∈ {0, . . . , d− 1}. So X = X̃/µd ≅ A2/µd is
a non-degenerate affine toric surface.

With the same reasoning, π̃′∶ X̃ ′ → B is equivalent to the standard linear projection
A2 → A1, and X ′ = X̃ ′/µd ≅ A2/µd is a non-degenerate affine toric surface, where the
µd-action on A2 is ζ ∶ (x, y) ↦ (ζx, ζe′y) with ζ ∈ µd and e′ ∈ {0, . . . , d− 1}. The induced
linear diagonal µd-actions on X̃ ≅ An+2 and on X̃ ′ ≅ An+2 have weights (1, e,0, . . . ,0)
and (1, e′,0, . . . ,0), respectively. Since the n-cylinders X̃ and X̃ ′ are µd-equivariantly
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isomorphic, these sequences of weights coincide; in particular, e = e′. It follows that
X ′ ≅X. �

6.10. In the next lemma we use the following terminology. An affine variety is called
A1-uniruled if a general point of X belongs to the image of a nonconstant morphsim
A1 → X. Given a morphism π∶X → C onto a smooth curve C, the fiber over a
point p ∈ C is called multiple if d > 1, where d is the greatest common divisor of the
multiplicities of the components of the divisor π∗(p).

One can find in the literature different versions of the following results, see, e.g., [70]
and [46, Thm. 4.1].

Lemma 6.11. Let X be an affine variety, and let π∶X → B be a morphism onto a
smooth affine curve B. Assume that one of the following conditions is fulfilled.

(i) B /≅ A1;
(ii) B ≅ A1 and π has at least two multiple fibers.

Then the following hold.

(a) If general fibers of π are A1-uniruled, then any automorphism α ∈ AutX pre-
serves the fibration π∶X → B, that is, sends the fibers onto fibers.

(b) If X is normal, then there is no surjective morphism An →X with finite fibers.

Proof. (a) In case (i) any morphism A1 → B is constant, hence the assertion follows.
Assuming (ii), suppose on the contrary that there exists α ∈ AutX which does not
preserve the fibration π∶X → B. In this case there is a morphism ϕ∶A1 →X such that
the composition f = π ○ϕ ∈ k[t] is a nonconstant polynomial with at least two multiple
fibers, say, f∗(0) and f∗(1). Thus f = pr = 1 − qs, where pr + qs = 1, r, s ≥ 2, p, q ∈ k[t],
and deg p = d/r, deg q = d/s, where d = deg f . The derivative f ′ vanishes to order r − 1
at any root of p and to order s − 1 at any root of q. This yields the inequality

(r − 1)/r + (s − 1)/s ≤ (d − 1)/d .
Since r, s ≥ 2 this implies in turn

1 ≤ (1 − 1

r
) + (1 − 1

s
) ≤ (1 − 1

d
) ,

which give a contradiction.
(b) Assuming that ν∶An → X is a surjective morphism with finite fibers, consider

the restriction of ν to a general line l ≅ A1 in An. Since l is general, X is normal, and
ν is finite, the image ν(l) does not meet the singular locus of X and π ○ ν∶ l → B is
dominant. Hence B ≅ A1. Now the same argument as before applies and gives the
result. �

In the proof of Theorem 6.8 we use the following fact.

Lemma 6.12. Let π∶X → P1 be an A1-fibration on a normal affine surface X. Assume
that the group PicX is finite and π(X) ⊃ A1, where A1 = P1∖{∞}. Then π(X) = A1, all
fibers of π are irreducible, and the divisor class group ClX is generated by the classes
of the multiple fibers of π.

Proof. Let π̄∶ X̄ → P1 be a resolved completion of π∶X → P1 with extended graph Γext.
Then Γext is a rooted tree with the horizonthal section S as a root. Let B1, . . . ,Bm be
the degenerate fibers of π̄ over the points bi ∈ P1, i = 1, . . . ,m, respectively. Suppose

49



that Bi cosists of ni +mi components, where ni is the number of components of Bi
which are at the same time components of the boundary divisor D = X̄ ∖ Xresolved

or of the exceptional divisor E of the resolution of singularities of X, and mi is the
number of components of the fiber π−1(bi). Suppose to the contrary that the map
π∶X → P1 is surjective. Then mi > 0 ∀i = 1, . . . ,m. Contracting subsequently (−1)-
fiber components we arrive finally at a Hirzebruch surface Fs. Note that we contracted
in this way ni +mi − 1 components of Bi, i = 1, . . . ,m. Since rk PicFs = 2, we have
rk Pic X̄ = 2 +∑m

i=1(ni +mi − 1). Letting ♮P be the number of components of a divisor
P , we obtain

rk PicX = rk Pic X̄ − ♮(D +E) =

(2 +
m

∑
i=1

(ni +mi − 1)) − (1 +
m

∑
i=1

ni) = 1 +
m

∑
i=1

(mi − 1) ≥ 1 ,

which contradicts our assumption on finiteness of PicX. Thus, π(X) = A1.
Letting b1 = ∞ we obtain that m1 = 0. Assuming further that the fiber, say, π−1(b2)

has at least 2 components, that is, m2 > 1, the same computation yields again the
inequality rk PicX ≥ 1, a contradiction.

Let ω ⊂ A1 be a Zariski open dense subset such that U = π−1(ω) is isomorphic over
ω to the cylinder ω ×A1, and so, ClU = 0. For D = X ∖ U one has the exact sequence
DivD → ClX → ClU → 0, where DivD is the subgroup of Weil divisors on X supported
by D, see [62, p. 206]. Thus ClX is generated by the fibers of π contained in D. Any
reduced fiber of π represents the zero class in ClX. Hence ClX is generated by the
classes of the multiple fibers of π. �

Lemma 6.13. Let π∶X → C be a parabolic Gm-surface, and let X ′ be a normal affine

surface. Suppose that there is an isomorphism ϕ∶ X ′ ≅Ð→ X of the n-cylinders X =X×An

and X ′ =X ′ ×An. If the induced An+1-fibration π∶ X → C satisfies one of conditions (i)
and (ii) of Lemma 6.11, then X ′ ≅X.

Proof. Extending the standard n-torus action on An by the identity on the factor X ′

we obtain a Gn
m-action on the n-cylinder X ′ = X ′ × An and as well the ϕ-conjugate

Gn
m-action on X ≅ X ′. By Lemma 6.11(a) this action respects the fibration π∶ X → C,

and so, induces a Gn
m-action on C. The latter is fixed-pointed, since the fiber of π

through any fixed point in X is Gn
m-stable, and the multiple fibers of π are as well.

This implies that under any one of the conditions (i) and (ii) the induced Gn
m-action

on C is identical. Thus, for any c ∈ C the Gn
m-action on X restricts to a Gn

m-action on
the fiber Fc = π−1(c) ≅ An+1. The latter action is effective on a general fiber, and so, by
a theorem of Bia lynicki-Birula [10], is equivalent to a linear Gn

m-action on An+1. After
such a linearization the fixed point set in An+1 becomes a linear subspace. We claim
that this subspace is one-dimensional.

Indeed, the fixed point set of our Gn
m-action on X is the surface X ′′ = ϕ(X ′×{0}) ⊂ X .

The weights of the tangent action at any fixed point are non-negative, and the fixed
point subspace at a smooth point of X ′′ has dimension 2. Thus, for a general c ∈ C,
the fixed point set ϕ(X ′×{0})∩Fc of the Gn

m-action on the fiber Fc ≅ An+1 is a smooth
curve lc ≅ A1.

Letting X ′′ = ϕ(X ′×{0}) ≅X ′ the restriction π∣X′′ ∶X ′′ → C yields an A1-fibration on
X ′′ and, in turn, an An+1-fibration π′∶ X ′ → C, where π′ = π ○ ϕ. It follows by Lemma
6.9 that X ≅X ′. �
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6.14. Thus, in order to prove Theorem 6.8 we may suppose in the sequel that, under
the assumptions of Lemma 6.13, neither (i) nor (ii) of Lemma 6.11 holds, that is, C = A1

and the fibration π∶X → A1 has at most one multiple fiber. By virtue of Proposition
6.1 we may suppose as well that the parabolic Gm-surface π∶X → A1 has exactly one
multiple fiber π−1(0) of multiplicity d > 0, and so, X has a unique singular point, say,
x, which is the unique fixed point of the Gm-action on the multiple fiber π−1(0) and a
cyclic quotient singularity. Then X ′ has as well a unique singular point, say, x′.

Lemma 6.15. In the setup of 6.14, the germs (X,x) and (X ′, x′) of surface singular-
ities are isomorphic.

Proof. Let σ1∶X1 →X be the blowup of the maximal ideal of the unique singular point
x ∈X followed by a normalization. The induced morphism of n-cylinders σ1×id∶ X1 → X
consists in the blowup of the ideal of the singular ruling singX = {x} × An and a
subsequent normalization. By a theorem of Zariski ([80]; see also [57]), a sequence of
blowups in maximal ideals and subsequent normalizations

Xm
σmÐ→Xm−1 → . . .→X1

σ1Ð→X0 =X ,

resolves the singularity of X. It induces a similar sequence of blowups in rulings of our
n-cylinders and subsequent normalizations

Xm
σmÐ→ Xm−1 → . . .→ X1

σ1Ð→ X0 = X
resulting in a resolution of singularity of the variety X ≅ X ′. The exceptional divisor
of the resolution Xm → X is E = E × An, where E is the exceptional divisor of the
resolution Xm →X.

Let further σ′1∶X ′
1 → X ′ be the blowup of the maximal ideal of the unique singular

point x′ ∈ X ′ followed by a normalization. Then σ′1 × id∶ X ′
1 → X ′ is the blowup of the

ideal of the singular ruling singX ′ = {x′} ×An followed by a normalization. Under an

isomorphism ϕ∶ X ′ ≅Ð→ X this ruling goes to the ruling singX = {x} × An. Hence ϕ

lifts to an isomorphism ϕ1∶ X ′
1

≅Ð→ X1. Continuing in this way, we arrive at a resolution
X ′
m → X ′, where X ′

m =X ′
m×An ≅ Xm, with exceptional divisor E ′ = E′×An ≅ E = E×An,

where E′ is the exceptional divisor of the induced resolution of singularity X ′
m → X ′.

Under this procedure, the singularities of the embedded surfaces X × {0} ⊂ X and

X ′ ×{0} ⊂ X ′ are simultaneously resolved, and there is an isomorphism ϕm∶ X ′
m

≅Ð→ Xm
such that ϕm(E ′) = E . The only irreducible complete curves in E (in E ′, respectively)
are of the form Ei × {v} (E′

i × {v′}, respectively), where Ei and E′
i are components of

E and E′, respectively, and v, v′ ∈ An. Given such a curve E′
i × {v′} there is a curve

Eσ(i) ×{v} such that ϕ(E′
i ×{v′}) = Eσ(i) ×{v}. It follows that ϕ(E′

i ×An) = Eσ(i) ×An.
The image ϕ(X ′

m×{v′}) is a smooth surface in Xm which meets the exceptional divisor
E ⊂ Xm transversely along the curve ϕ(E′×{v′}) = E×{v} ⊂Xm×{v}. The same is true
for Xm ×{v}, namely, this is a smooth surface in Xm which meets E transversely along
the same curve E × {v}. Projecting both surfaces to Xm via the canonical projection
Xm → Xm yields a local isomorphism of the surface germs (ϕ(X ′

m × {v′}),E × {v})
and (Xm × {v},E × {v}) near the common exceptional divisor E × {v}. Contracting
the divisor E × {v} yields an isomorphism between the singular germs (X,x) and
(X ′, x′). �

Remind that a toric variety X is called non-degenerate if OX(X)× = k∗.
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Lemma 6.16. Under the assumptions of 6.14, X is a non-degenerate toric affine
surface.

Proof. The branch covering construction for X done via the base change A1 → A1,
z ↦ zd, leads to a GDF µd-surface π̃∶ X̃ → A1. By Proposition 6.7, π̃ is a line bundle
over A1. This bundle is trivial since PicA1 = 0. Taking as a zero section a µd-invariant
section of π̃, one obtains a new µd-equivariant line bundle structure. A trivialization
gives a µd-equivariant isomorphism X̃ ≅ A2, where the cyclic group acts on A2 via
ζ ∶ (z, u) ↦ (ζz, ζeu) ∀ζ ∈ µd for some e ∈ {0, . . . , d − 1} coprime with d, and with the
standard projection A2 → A1, (z, u) ↦ z. Thus X ≅ A2/µd is a toric affine surface of
type (d, e). �

In the proof of the next lemma we use the notion of the Cox ring (see [2], [15]). Let
us recall a simple version of this notion adapted to our particular setting.

Definition 6.17 (Cox ring). Let X be a normal affine variety with a cyclic divisor class
group ClX ′ ≅ Z/dZ. Let F ∈ WDivX be a Weil divisor such that its class generates
ClX. Consider the (Z/dZ)-graded Cox ring

CoxOX(X) =
d−1

⊕
j=0

H0(X,OX(jF ))ζj ,

where ζ is a primitive dth root of unity in k×. Then X̃ = Spec CoxOX(X) is a
normal affine surface equipped with a µd-action defined by the (Z/dZ)-grading on

OX̃(X̃) = CoxOX(X). The embedding OX(X) ⊂ CoxOX(X) onto the subalgebra of

µd-invariants yields the quotient morphism X̃ →X = X̃/µd. We call this a Cox covering
construction.

If X = X ×An is the n-cylinder over X, then the divisor class group ClX ≅ ClX ≅
Z/dZ is generated by the class of the Weil divisor F = F ×An on X , see [37, Thm. 8.1].

The Cox covering construction applied to (X ,F) yields the n-cylinder X̃ = X̃ ×An over

X̃.

Lemma 6.18. Under the assumptions of 6.14, X ′ is a non-degenerate toric affine
surface.

Proof. Consider the Weil divisor F0 = π−1(0) on X. Its class generates the group
ClX ≅ Z/dZ. By [3, Thm. 3.1] the branch covering A2 → X = A2/µd as in Lemma
6.16 coincides with the Cox covering defined by the pair (X,F0), see Definition 6.17.
Letting F0 = F0 × An and applying the cyclic covering Cox construction to the pair
(X ,F0) we obtain the n-cylinder X̃ = A2 × An = An+2. Recall (see [37, Thm. 8.1]; cf.
[39, (9.9.8)]) that ClX is a cancellation invariant. Hence there are isomorphisms

(38) ClX ′ ≅ ClX ′ ≅ ClX ≅ ClX ≅ Z/dZ .
Choose a Weil divisor F ′

0 on X ′ whose class in ClX ′ gives the class of F0 in ClX via
the sequence of isomorphisms (38). Applying the Cox covering construction to the

pair (X ′, F ′
0) leads to a cyclic µd-covering X̃ ′ →X ′. Letting F ′

0 = F ′
0 ×An and applying

the Cox covering construction to the pair (X ′,F ′
0) yields the n-cylinder X̃ ′ = X̃ ′ ×An.

We claim that X̃ ′ is isomorphic to X̃ ≅ An+2. Indeed, we have F ′
0 ∼ (ϕ−1)∗F0 on X ′.

However, up to an isomorphism, the Cox covering construction does not depend on
the choice of a divisor in the class generating the group ClX ′ ≅ Z/dZ. Hence, this

construction applied to the pair (X ′, (ϕ−1)∗F) yields a variety isomorphic to X̃ ′. On
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the other hand, this variety is also isomorphic to X̃ , because it is obtained by a similar
construction applied to the pair (X ,F).

It follows that X̃ ′ ×An ≅ An+2. By the Miyanishi-Sugie-Fujita Theorem ([62, Ch. 3,

Thm. 2.3.1]), X̃ ′ ≅ A2. Thus, X ′ ≅ A2/µd. Since any action of a finite group on the
affine plane can be linearized (see, e.g., [39, Thm. 2] and the references therein), the
result follows. �

The next lemma completes the proof of Theorem 6.8.

Lemma 6.19. Under the assumptions of 6.14 one has X ′ ≅X.

Proof. Two non-degenerate toric affine surfaces are isomorphic if and only if their
singularities are. By Lemma 6.15, the singularities (X,x) and (X ′, x′) are isomorphic.
Now the assertion follows from Lemmas 6.16 and 6.18. �

Remark 6.20. It is worth mentioning that there is a somewhat longer proof of
Lemma 6.19, which avoids the reference to the difficult Miyanishi-Sugie-Fujita the-
orem. Namely, one has first to establish an isomorphism of germs (X,x) and (X ′, x′)
(see Lemma 6.15), and then consider the multiplicities d and d′ of singular fibers of
natural projections X → A1 and X ′ → A1, respectively. If X ′ is toric then the local
isomorphism of singularities implies that d′ = d and, therefore, X ≅ X ′. However, in
the case of X ′ being non-toric, using the local isomorphism of singularities one can
show that d′ > d (more precisely, X ′ is an affine modification of a toric surface with a
singular fiber of multiplicity k ≥ 2, and d′ is divisible by dk). This implies, as before,
that ClX ′ ≅ ClX ′ ≅ Z/d′Z, while ClX ≅ ClX ≅ Z/dZ. In particular, the cylinders X ′

and X cannot be isomorphic, which yields the desired contradiction.

7. Zariski 1-factors

7.1. Stretching and rigidity of cylinders. We use in the sequel the following aux-
iliary fact.

Lemma 7.1. Let X be a normal affine surface, that admits an A1-fibration X → C
over a smooth affine curve C, and let X̄ → C̄ be a pseudominimal completion with the
corresponding extended graph Γext. Then the number v(Γext) of vertices of Γext does not
depend on the choice of an A1-fibration on X over an affine base. So, v(X) ∶= v(Γext)
is an invariant of X.

Proof. Recall (see [36, Def. 2.16]) that every feather component F of the extended divi-
sor Dext is born under a blowup at a smooth point of the boundary divisor D = X̄ ∖X.
The unique component Di of D containing the center of this blowup is called the mother
component of F . The normalization procedure as defined in [36, Def. 3.2] replaces Γext

by the normalized extended graph Γext,norm, such that any feather component F in Γext

becomes an extremal (−1)-vertex in Γext,norm attached at its mother component Di. Un-
der this procedure the total number of vertices remains the same: v(Γext,norm) = v(Γext).
Furthermore, these graphs are assumed to be standard; the standartization procedure
does not affect the number of vertices, see [36, §1]. By [36, Thm. 3.5] the standard
normalized extended graph Γext,norm of X is unique (i.e., does not depend on the choice
of an A1-fibration on X over an affine base) unless X is a Gizatullin surface. The
latter means that the minimal dual graph Γ of D is linear. In the case of a Gizatullin
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surface, Γext,norm is unique up to a reversion Γext,norm ↝ Γ∨
ext,norm. However, the rever-

sion neither changes the number of vertices in Γ, nor does it in Γext,norm. The latter is
due to the Matching Principle ([36, Thm. 3.11]), which establishes a one-to-one corre-
spondence between the feather components of Γext,norm and Γ∨

ext,norm along with their
mother components. In conclusion, v(Γext) = v(Γext,norm) is an invariant of the surface
X. �

Definition 7.2 (Geometric stretching). Given an effective divisor A = ∑n
i=1 aibi ∈ DivB

and an integer vector m̄ ∈ Zn≥0, a fibered modification θ ∶ X ′ → X between two GDF
surfaces πX′ ∶X ′ → B and πX ∶X → B over the same base will be called a (geometric)
(A, m̄)-stretching if its effect on the graph divisors D(π) ↝ D(π′) is a (combinatorial)
(A, m̄)-stretching as in Definition 2.16.

An (A, m̄)-stretching will be called a principal top-level stretching if it satisfies the
conditions

(i) A = div f is a principal effective divisor, where f ∈ OB(B) is nonzero, and
(ii) mi = ht (Γbi) ∀i = 1, . . . , n.

Remark 7.3. The action of an effective principal divisor A = div f = ∑n
i=1 aibi ∈ Div(B),

where f ∈ OB(B), on a type divisor tp (D(πX)) via an (A, m̄)-stretching with mi = −1
∀i = 1, . . . , n amounts to asserting in the fiber Γbi the chain [[−1,−2, . . . ,−2]] of length ai
below the root, so that in the new extended divisor Γ′

ext, the (−1)-vertex is a neighbor
of the section S. This operation does not affect the GDF surface X, but only its
special completion (X̂, D̂) as in (10). Indeed, this amounts to perform in (5) an affine
(Asanuma-type) modification L → X0 = B × A1 with divisor (f ○ π)∗(0) and center
f∗(0) × {0}. The latter leads in turn to a trivial line bundle L ≅B B ×A1, because, for
A1 = Speck[u],

OL(L) = OB(B)[u/f] = OB(B)[u′], where u′ = u/f .
Thus, performing the remaining fibered modifications in (5) gives again the same sur-
face X =Xm.

Lemma 7.4. Let π∶X → B be a GDF surface with a graph divisor D(π) = ∑b∈B Γbb.
Consider also a pair (A = div f, m̄) satisfying conditions (i) and (ii) of Definition 7.2.
Let F be the set of all the top level mi fiber components F ⊂ π−1(bi) for i = 1, . . . , n.
Choose a function ũ ∈ OX(X) such that

(i) ũ∣F is an affine coordinate on F ≅ A1 for any F ∈ F, and
(ii) ũ∣F = 0 for any F ∉ F.

Define X ′ = SpecOX(X)[ũ/f]. Then X ′ → B is a GDF surface, and the morphism
X ′ → X induced by the embedding OX(X) ↪ OX′(X ′) is a principal top-level (A, m̄)-
stretching.

Proof. If F ∉ F, then, clearly, X ′ →X is a B-isomorphism over the standard neighbor-
hood UF in X. For F ∈ F with π(F ) = bi, in the standard coordinate chart (z, u) in
UF we may assume that ũ ≡ u mod z and f ○ π ≡ zai near F . In this chart X ′ → X
amounts to an ai-iterated affine modification with a reduced divisor F and center in
the maximal ideal (u, z) and its infinitesimally near points. This corresponds to joining
the left end of the chain Li = [[−2, . . . ,−2,−1]] of length ai to the feather F̄ (a tip of
Γbi on the top level mi), while decreasing the weight of F̄ by 1. Now the assertion
follows. �
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The following proposition shows that a principal top-level stretching does not affect
the B-isomorphism type of the cylinder.

Proposition 7.5. Let π∶X → B be a marked GDF surface with a marking z ∈ OB(B),
where z−1(0) = {b1, . . . , bn}. Suppose that

(α) all the fiber components of z−1(bi) are of the same (top) level mi for i = 1, . . . , n.

Let θ∶X ′ → X be a principal top-level (A, m̄)-stretching as in Definition 7.2, where
A = div zd, d ≥ 0. Then the following hold.

(a) If π∶X → B is not a line bundle, then X ′ /≅X.
(b) Given s > 1, there is a B-isomorphism of cylinders

ϕ∶ X ≅BÐ→ X ′

over X and X ′, respectively, such that, for any special fiber components F in
X and F ′ in X ′ with ϕ(F ×A1) = F ′ ×A1, one has

(39) (ϕ∣UF×A1)∗∶ (z, u, v) ↦ (z, u′, v′) mod zs−1

in the natural coordinates (z, u, v) and (z, u′, v′) in the standard affine charts
UF ×A1 ⊂X ×A1 and UF ′ ×A1 ⊂X ′ ×A1, respectively.

Proof. (a) Assuming that π∶X → B is not a line bundle, let us show that X /≅ X ′.
By Lemma 7.4 the pseudominimal extended graphs Γext and Γ′

ext of the (minimal)
completions π̄∶ X̄ → B̄ and π̄′∶ X̄ ′ → B̄ of X and X ′, respectively, have different number
of vertices. By Lemma 7.1 the latter number is an invariant of the surface. It follows
that X /≅X ′, as claimed.

(b) Applying induction on d, it suffices to establish the assertion for d = 1. Let
κ∶ X ′′ → X be the Asanuma modification of the second kind (see Definition 5.3). By
Lemma 5.4(a) there is a B-isomorphism X ≅B X ′′. Thus, it is enough to establish the
existence of a B-isomorphism X ′ ≅B X ′′. Let

A = OX(X), A′ = OX′(X ′), A = OX (X), and A′′ = OX ′′(X ′′) ,
where A′ = A[ũ/z] and A′′ = A[v/z]. Since

OX ′(X ′) = A[ũ/z][v] = A[ũ/z] ,
it suffices to show that A[v/z] ≅ A[ũ/z].

By our assumption, all special fiber components in X are of top level in their fibers.
Hence by Corollary 4.18 there exists an automorphism τ ∈ SAutB X such that

(τ ∣UF×A1)∗∶ (z, u, v) ↦ (z, v,−u) mod zs

for any special fiber component F in X, see (27). Since ũ ≡ u mod zs in UF , we have

(40) τ∗∶ (z, ũ, v) ↦ (z, v,−ũ) mod zs .

Therefore, τ∗ sends the ideal I = (z, v) ⊂ A onto the ideal I ′ = (z, ũ) ⊂ A preserving the
principal ideal (z) = I∩I ′. By Lemma 1.5, τ∗ induces a B-isomorphism of modifications
A[v/z] ≅OB(B) A[ũ/z], as desired.

Letting ũ1 = ũ/z and v1 = v/z we obtain by (40)

τ∗∶ (z, ũ1, v) ↦ (z, v1,−ũ) mod zs−1 .

Let
β∶ X ≅BÐ→ X ′′, (z, ũ, v) ↦ (z, ũ, v1) ,
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be a B-isomorphism as in Lemma 5.4. Letting ϕ̃ = τ−1 ○ β∶ X ≅BÐ→ X ′ yields a B-
isomorphism of cylinders such that

ϕ̃∗∶ (z, ũ, v) ↦ (z,−v, ũ1) mod zs−1 .

Since all the special fiber components in X ′ are of top level in their fibers, by Corollary
4.18 there is a B-automorphism τ ′ ∈ SAutB (X ′) preserving every special affine plane
F ′ = F ′ ×A1 in X ′ and such that

τ ′∗∶ (z, u′, v′) ↦ (z,−v′, u′) mod zs−1

in the natural coordinates (z, u′, v′) in the standard affine chart UF ′ ×A1. The compo-
sition

ϕ = (τ ′)3 ○ ϕ̃∶ X ≅BÐ→ X ′

sends the natural coordinates (z, u, v) in any standard affine chart UF × A1 ⊂ X into
the natural coordinates (z, u′, v′) modulo zs−1 in UF ′ ×A1 ⊂ X ′, where F ′ = ϕ(F). �

Remark 7.6. The proof in (b) of the fact that X ≅B X ′ applies actually to a top-
level stretching X ′ → X defined by an arbitrary principal effective divisor A = div f ,
f ∈ OB(B) ∖ {0}, instead of the divisor A = div zd defined by a marking z.

Let us illustrate Proposition 7.5 on the example of the Danielewski surfaces.

Example 7.7. Recall that the nth Danielewski surface Xn is given in A3 with coordi-
nates (z, u, tn) by equation zntn − u2 + 1 = 0, see Example 3.8. The function tn = t0/zn
gives (modulo z) the natural coordinate on each component of the special fiber z = 0.
Letting ũ = tn the morphism %n∶Xn → Xn−1, (z, u, tn) ↦ (z, u, tn−1 = ztn), becomes a
stretching, and the composition Xn → X1 an iterated stretching. Proposition 7.5 pro-
vides an alternative proof of Danielewski’s theorem [17], which says that the cylinders
Xn ×A1, n ∈ N, are all isomorphic. The extended graph Γext,n as in (11) of a minimal
completion π̄n∶ X̄n → B̄ can be recovered starting with Γext,0 and using Lemma 7.4.

The next result is an equivariant version of Proposition 7.5.

Proposition 7.8. Let π∶X → B be a marked GDF µd-surface with a µd-quasi-invariant
marking z ∈ OB(B) of weight 1, where z−1(0) = {b1, . . . , bn}. Suppose that condition
(α) of Proposition 7.5 holds, and let m̄ = (m1, . . . ,mn), where mi = ht Γbi, i = 1, . . . , n.
Consider a principal top-level µd-equivariant (A, m̄)-stretching %∶X(d) →X, where A =
div zd, and for any surface Xl in (9), l = 0, . . . ,N , a similar stretching X

(d)
l →Xl. Then

for any k ∈ Z there exists a µd-equivariant B-isomorphism of cylinders ϕ∶ Xl(k)
≅BÐ→

X (d)l (k) satisfying (39). Furthermore, X
(d)
l /≅ Xl provided that πl∶Xl → B is not a line

bundle.

Proof. Recall that the sequence (Xl(k))k∈Z is periodic with period d, where a µd-

equivariant B-isomorphism η∶ Xl(k − d)
≅BÐ→ Xl(k) is provided by the iterated Asanuma

modification of the second type

Al(k) ↪ Al(k)[v/zd] ≅B Al(k − d), where Al(k) = OXl(k)(Xl(k)) ,
see Lemma 5.4(b). By Corollary 4.18 one can choose an µd-equivariant automorphism
τ ∈ SAutXl(−l) interchanging ũ and v modulo zs (up to a sign) and leaving z invariant,
where ũ ∈ Al = OXl(Xl) is a µd-quasi-invariant function of weight −l, which yields
(modulo zs) the natural coordinate u on any special fiber component F in Xl. Then
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the argument in the proof of Proposition 7.5 gives the existence of a µd-equivariant
isomorphism

Al(−l)[v/zd] ≅ Al(−l)[ũ/zd] ,
where

SpecAl(−l)[v/zd] = Xl(−l − d) ≅µd Xl(−l)
and

SpecAl(−l)[ũ/zd] = SpecAl[ũ/zd][v](−l) = X (d)l (−l) .
It follows that

Xl(−l) ≅µd X
(d)
l (−l) .

Let n ∈ N be sufficiently large so that nd > k + l. Applying on the both sides the
(nd − k − l)-iterated Asanuma modification of the second kind, by Lemma 5.4(b) we
obtain finally a desired µd-equivariant isomorphism

Xl(k) ≅µd X
(d)
l (k) .

The non-isomorphism X
(d)
l /≅Xl was established in Proposition 7.5(a). �

7.2. Non-cancellation for GDF surfaces. The main result of this section is the
following theorem.

Theorem 7.9. Let π∶X → B be a GDF surface. Then the surface X is a Zariski
1-factor if and only if π∶X → B is a line bundle.

Proof. The ‘if’ part follows from Proposition 6.1, and the ‘only if’ part from the next
version of Proposition 7.5, which does not assume condition (α). �

Proposition 7.10. Let π∶X → B be a marked GDF surface with a marking z ∈ OB(B),
where z−1(0) = {b1, . . . , bn}. Suppose that π∶X → B is not a line bundle, and π1∶X1 → B
in (7) is not a line bundle either17. Let θ∶X ′

1 → X1 be a principal top-level (A, m̄)-

stretching, where A = div zd, d ≥ 1, and m̄ = (m1, . . . ,mn) with mi = ht Γbi(X̂1). Then
there exists a sequence of GDF surfaces

(41) X ′
m

%′mÐ→X ′
m−1 Ð→ . . .Ð→X ′

2

%′2Ð→X ′
1

similar to (7) without its first term X0 such that the cylinders Xi and X ′
i over Xi and

X ′
i , respectively, are B-isomorphic, and tp(D(πX′

i
)) = A ⋅ tp(D(πXi)), while X ′

i /≅ Xi

for any i = 1, . . . ,m.

Proof. The GDF surface π0∶X0 → B in (7) is a line bundle. So, the corresponding graph
divisor D(π0) is a chain divisor. It is easily seen that π1∶X1 → B satisfies condition
(α), while D(π1) is not a chain divisor. If the fiber graph Γbi is not a chain, then
its minimization is not a chain either. Hence the pseudominimal extended divisors
Γext(X̂1) and Γext(X̂ ′

1) have different number of vertices. By Lemma 7.1, the surfaces
X1 and X ′

1 are not isomorphic. By Proposition 7.5, the cylinders X1 and X ′
1 over X1 and

X ′
1, respectively, are B-isomorphic. Given s≫ 1, let ϕ∶ X1

≅BÐ→ X ′
1 be a B-isomorphism

as in Proposition 7.5. By (39), ϕ sends the special fiber components of X1×{0} to such
components of X ′

1 × {0}. If F1, . . . , Fm are the special fiber components in X1, then
for any i = 1, . . . ,m there is a unique special fiber component F ′

i in X ′
1 born under the

17Otherwise (7) can be shorten.
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stretching θ∶X ′
1 →X1 as the result of a d-iterated blowing up with center over a point

of Fi. Then ϕ(Fi ×{0}) = F ′
σ(i) ×{0} for some permutation σ of the indices {1, . . . ,m}.

Proceeding by recursion, we will construct a sequence (41).
Let Σi ⊂ Fi be the set of centers of blowups on Fi in the affine modification %2∶X2 →

X1 in (7), let Σ = ⋃i Σi, F = ⋃Σi≠∅Fi, and Z = Σ × {0} ⊂ F × {0}. Let Σ′
σ(i) ×

{0} = ϕ(Σi × {0}) ⊂ F ′
σ(i) × {0}, i = 1, . . . ,m, and let Z ′ = ϕ(Z) = Σ′ × {0}, where

Σ′ ⊂ F ′ ∶= ⋃Fi⊂F F ′
σ(i) ⊂X ′

1.

Let %′2∶X ′
2 →X ′

1 be the geometric affine modification with center Σ′ ⊂ F ′ and divisor
F ′, see Remark 1.4.3. For an algebraic modification which yields %′2, one may take the
affine modification with center Σ′ ∪ ⋃F ′i /⊂F ′ F

′
i and divisor z∗(0) ⊂ X ′

1. Let %̃2∶ X2 → X1

and %̃′2∶ X ′
2 → X ′

1 be the Asanuma modifications of the first kind as in Lemma 5.1(a),
which correspond to %2 and %′2, respectively. Since the isomorphism ϕ1 ∶= ϕ∶ X1 Ð→ X ′

1

sends the center Z and the divisor D of the affine modification %̃2 to the center Z ′
and the divisor D′ of %̃′2, by Lemma 1.5 it lifts to an isomorphism ϕ2∶ X2 Ð→ X ′

2 of
the cylinders over X2 and X ′

2, respectively. By Lemma 7.1, the surfaces X2 and X ′
2

are not isomorphic, since the numbers of vertices in the corresponding pseudominimal
extended graphs Γext and Γ′

ext are different. Inspecting the proof of Lemma 1.9 shows
that ϕ2 satisfies again (39) with the exponent s − 1 replaced by s − 2. Now we can
apply the same argument to the isomorphism ϕ2∶ X2 Ð→ X ′

2 instead of ϕ1∶ X1 Ð→ X ′
1.

By recursion, we arrive at a sequence (41) with desired properties. �

Next we give an equivariant version of Proposition 7.10.

Proposition 7.11. Let π∶X → B be a marked GDF µd-surface which is not a line
bundle. Then there exists a sequence of pairwise non-isomorphic, marked GDF µd-
surfaces X(nd) with µd-equivariantly B-isomorphic cylinders: X ×A1 ≅µd,B X(nd) ×A1

∀n ∈ N.

Proof. Following the lines of the proof of Proposition 7.10, consider sequence (7) with
Xm = X and the marked GDF µd-surface π1∶X1 → B in (7). Proceeding as in the

proof of Proposition 7.10, for n ∈ N we let X
(nd)
1 be the GDF µd-surface obtained from

X1 via a principal top-level (A, m̄)-stretching, where A = div znd. By Lemma 7.4, the

number of vertices of the corresponding pseudominimal extended graph Γ
(nd)
ext,1 strictly

grows to infinity with n. Hence, by Lemma 7.1, the GDF surfaces X
(nd)
1 , n = 1,2, . . .,

are pairwise non-isomorphic.
By Proposition 7.8, given s > 1 there is a µd-equivariant isomorphism of cylinders

ϕ∶ X1(−1) ≅BÐ→ X (nd)1 (−1) satisfying an analog of (39). Lemma 4.15 provides a µd-

equivariant automorphism α′ ∈ SAutB X (nd)1 (−1) such that the B-isomorphism ψ1 =
α′ ○ ϕ1∶ X1(−1) ≅BÐ→ X (nd)1 (−1) sends the natural coordinates (z, u, v) in any standard
affine chart UF × A1 ⊂ X1(−1) into the natural coordinates (z, u′, v′) modulo zs−1 in

UF ′×A1 ⊂ X (nd)1 (−1), where F ′×A1 = ϕ1(F ×A1). It follows that F ′ = ψ1(F ). Repeating
for any n ∈ N in a µd-equivariant fashion the construction from the proof of Proposition
7.10, we arrive at a sequence of pairwise non-isomorphic marked GDF µd-surfaces

X(nd) = X(nd)m with µd-equivariantly B-isomorphic cylinders X (nd)m (−m) ≅B Xm(−m).
Applying now the (Nd −m)-iterated Asanuma modification of the second kind with
N ∈ N sufficiently large, by Lemma 5.4(b) we obtain finally a desired µd-equivariant
B-isomorphism X(0) ≅(µd,B) X (nd)(0) . �
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7.3. Extended graphs of Gizatullin surfaces. Here we recall some facts on Gizat-
ullin surfaces, which will be used in the sequel. We start by introducing the notation
for the covering trick extended to completions.

Notation 7.12. Let πY ∶Y → C be an A1-fibration over an affine curve C, Ȳ → C̄ be a
completion of πY ∶Y → C, and π̄Y ∶ Ȳresolved → C̄ be a pseudominimal resolved completion
of πY ∶Y → C with associated extended graph Γ = Γext. Contracting the exceptional
divisor E of the minimal resolution of singularities of Y yields a birational morphism
σ∶ Ȳresolved → Ȳ . Given a branched covering B → C as in 2.2, consider the normalizations
of the cross-products Ȳresolved×C̄B̄ and Ȳ ×C̄B̄, the respective minimal desingularizations
X̂resolved → (Ȳresolved ×C̄ B̄)norm and X̂ → (Ȳ ×C̄ B̄)norm, and the induced P1-fibrations

X̂resolved → B̄ and X̂ → B̄. Recall that a similar branch covering construction starting
with πY ∶Y → C leads to the GDF surface πX ∶X → B as in Definition 2.2, where X is a
smooth surface by Lemma 2.24(b). Hence, X̂ → B̄ is a completion of X → B dominated

by X̂resolved → B̄. The induced morphism σ̂∶ X̂resolved → X̂ contracts the preimage of the
exceptional divisor E of σ∶ Ȳresolved → Ȳ .

Definition 7.13 (Gizatullin surfaces). Recall (see e.g., [36]) that a Gizatullin surface
X is a normal affine surface of class (ML0) 18. Such a surface X admits at least two
A1-fibrations over the affine line. Actually, the base C of any A1-fibration π∶X → C is
isomorphic to A1, provided C is a smooth affine curve. Such a fibration has at most
one degenerate fiber. One may assume that this is the fiber π−1(0).

In the proof of Theorem 7.16 we use the following fact.

Lemma 7.14. Given a Gizatullin surface X, the following hold.

(a) The set Ω(X) of isomorphism classes of the pseudominimal extended graphs
Γext of all possible A1-fibrations X → A1 is a finite set. Furthermore, there
exists d ∈ N such that the multiplicities of the fiber components in any such
fibration divide d.

(b) For any A1-fibration X → C = A1, consider a branch covering construction
with a cyclic Galois base change B = A1 → C of degree d with d as in (a), the
resulting A1-fibration X̃ → B, and the associated pseudominimal extended graph
Γ̃ext. Then the set Ω̃(X,d) of isomorphism classes of all such graphs is finite.

Proof. By Lemma 7.1 all graphs in Ω(X) have the same number v(X) of vertices.
However, the number of non-isomorphic graphs on a given set of vertices is finite. Fur-
thermore, given an A1-fibration π∶X → A1, the multiplicities of the fiber components
of π can be deduced in a combinatorial way from the associated extended graph Γext.
Since the number of all such graphs in Ω(X) is finite, there is d ∈ N divisible by all
such multiplicities for all possible A1-fibrations π∶X → A1. This yields (a).

To show (b) it suffices, by virtue of (a), to restrict just to the A1-fibrations on X
with a fixed pseudominimal extended graph Γext = Γ. Let π∶X → C = A1 be such
an A1-fibration. Recall that π has at most one degenerate fiber. Up to a choice of a
coordinate z in A1 one may assume that this fiber is π−1(0) and the base change B → C
is z ↦ zd.

In notation 7.12, the extended graph Γ̂ext is dominated by Γ̂ext,resolved. In turn,

the pseudominimal extended graph Γ̃ext in Ω̃(X,d) is dominated by Γ̂ext and also by

18Thus, in our definition X is different from A1
∗
×A1, were A1

∗
= A1 ∖ {0}.

59



Γ̂ext,resolved. This yields an upper bound v(Γ̃ext) ≤ v(Γ̂ext,resolved) for the number of

vertices. We claim that v(Γ̂ext,resolved) is bounded above by a function depending only
on d and on Γext, and so, only on X, as desired.

To show the claim, note that for any vertex of Γext = Γ there is at most d ver-
tices of Γ̂ext,resolved such that the corresponding curves in X̂resolved dominate the one in
X̄resolved. Hence it suffices to find an upper bound on the number of remaining vertices
of Γ̂ext,resolved, which correspond to the curves in X̂resolved contracted in X̄resolved.

Let E′ and E′′ be two fiber components of the extended divisor Dext that meet in X̄,
with respective multiplicities m′ and m′′. Let (x, y) be local coordinates in an analytic
chart in X̄ centered at the intersection point E′ ∩ E′′ = {p} with E′ and E′′ as the
axes. Then the local equation of a germ of the cross-product X̄ ×C̄ B̄ near p is given by
equation zd − xm′

ym
′′ = 0. Likewise, letting E′′ = S the germ of X̄ ×C̄ B̄ near p is given

by equation zd = zxm′
. In both cases, normalizing such a surface germ produces several

(anyway, ≤ d) cyclic quotient singularities of type uniquely determined by d,m′, and
m′′. The resolution graphs of these singular points, that are Hirzebruch-Jung strings,
are also uniquely determined by d and Γ. It follows that the number of vertices in
the total preimage in Γ̂ext,resolved of the edge [E,E′] of Γext is bounded above in terms

of d and Γ. Finally, v(Γ̂ext,resolved) is bounded above by a function of d and Γ, as
claimed. �

Remarks 7.15. 1. There is a remarkable sequence (Xn)n∈N of Gizatullin surfaces,
called the Danilov-Gizatullin surfaces. In [35, Thms. 1.0.1, 1.0.5, and Ex. 6.3.21]
we constructed deformation families of pairwise non-equivalent (modulo the AutXn-
action) A1-fibrations Xn → A1 on a given Danilov-Gizatullin surface Xn with bases
of dimensions growing with n. We wonder whether there exists such a collection of
families with bases of infinitely growing dimensions on some fixed Gizatullin surface
X. Lemma 7.14 indicates that the negative answer is more plausible.

2. See Part II for a more thorough analysis of the extended graph Γ̂ext,resolved.

7.4. Zariski 1-factors and affine A1-fibered surfaces. The following is one of the
main results of this section.

Theorem 7.16. Let π∶X → C be a normal A1-fibered affine surface over a smooth
affine curve C. Then X is a Zariski 1-factor if and only if π∶X → C is a parabolic
Gm-surface.

The “if” part follows from Theorem 6.8 (see also Proposition 6.1 for the smooth
case). The “only if” part is proven in the next proposition.

Proposition 7.17. Let π∶X → C be an A1-fibration on a normal affine surface X over
a smooth affine curve C. If X is a Zariski 1-factor, then π∶X → C admits a structure
of a parabolic Gm-surface.

Proof. Consider all possible A1-fibrations X → Z on X over smooth affine curves, along
with the corresponding pseudominimal extended graphs Γext. We claim that the set
Ω(X) of the isomorphism classes of such graphs is finite. Indeed, if there are at least
two different such fibrations, then X is a Gizatullin surface and Z ≅ A1. Now the claim
follows by Lemma 7.14(a).

Let d be the least common multiple of the multiplicities of the multiple fibers in the
A1-fibrations X → Z. This number can be deduced in a combinatorial way from the
extended graphs Γext in Ω(X), hence it is finite.
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By Lemma 2.3, applying to the given A1-fibration X → C a suitable Galois base
change B → C with the Galois group µd and a subsequent normalization, we obtain a
marked GDF µd-surface X̃ → B. Suppose that X → C is not a parabolic Gm-surface.
Then by Proposition 6.7, X̃ → B is not a line bundle. We are going to construct an
infinite sequence of normal affine surfaces X(nd) non-isomorphic to X such that the
cylinders X(nd) × A1 and X × A1 are isomorphic, thus showing that X cannot be a
Zariski 1-factor.

Indeed, by Proposition 7.11 there is a sequence of pairwise non-isomorphic marked
GDF µd-surfaces X̃(nd) → B such that for all n ∈ N the cylinders X̃ (nd)(0) and X̃ (0)
are µd-equivariantly B-isomorphic, while v(X̃(nd)) → ∞ as n → ∞. Passing to the
quotients under the µd-action yields a sequence of A1-fibered normal affine surfaces
X(nd) = X̃(nd)/µd → C with isomorphic over C cylinders:

X(nd) ×A1 = X̃ (nd)(0)/µd ≅C X̃ (0)/µd =X ×A1, ∀n ∈ N .
We claim that under our assumptions, for all n ∈ N sufficiently large, the surfaces X(nd)

are not isomorphic to X.
To show the claim, suppose to the contrary that X(nd) ≅ X for an infinite set, say,

I of values of n > 1. Then X admits at least two different A1-fibrations over affine
bases, hence, X ∈ (ML0) is a Gizatullin surface. Indeed, otherwise any isomorphism

ϕ∶X(nd) ≅Ð→ X sends the A1-fibration X(nd) → C to the unique A1-fibration X → C.
So, after the base change B → C it can be lifted to an isomorphism of the normalized

cyclic coverings ϕ̃∶ X̃(nd) ≅Ð→ X̃. This gives a contradiction, since v(X̃(nd)) > v(X̃).
Thus, under our assumptions X and also X(nd) ≅ X, n ∈ I, are Gizatullin surfaces

different from A1∗ ×A1. Hence C ≅ A1. One may suppose that the covering B → C = A1

is unramified off the origin, and so, B ≅ A1 too. By Lemma 7.14 the set Ω̃(X,d) =
Ω̃(X(nd), d), n ∈ I, is finite. In particular, for any n ∈ I the pseudominimal extended

graph Γ̃
(nd)
ext associated with the GDF surface π̃∶ X̃(nd) → B (which is a cyclic cover over

X(nd)) belongs to the finite set Ω̃(X(nd), d) = Ω̃(X,d). Since the set I ⊂ N is infinite,

this contradicts the fact that v(Γ̃(nd)ext ) = v(X̃(nd)) → ∞ as n→∞. Hence X /≅X(nd) for
all n≫ 1, as required. �
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