Discrete $p$-robust H(div)-liftings and a posteriori estimates for elliptic problems with $H^{-1}$ source terms
Résumé
We establish the existence of liftings into discrete subspaces of H(div) of piecewise polynomial data on locally refined simplicial partitions of polygonal/polyhedral domains. Our liftings are robust with respect to the polynomial degree. This result has important applications in the a posteriori error analysis of parabolic problems, where it permits the removal of so-called transition conditions that link two consecutive meshes. It can also be used in a the posteriori error analysis of elliptic problems, where it allows the treatment of meshes with arbitrary numbers of hanging nodes between elements. We present a constructive proof based on the a posteriori error analysis of an auxiliary elliptic problem with $H^{−1}$ source terms, thereby yielding results of independent interest. In particular, for such problems, we obtain guaranteed upper bounds on the error along with polynomial-degree robust local efficiency of the estimators.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...