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Abstract—In modern electronic products, the printed circuit
board (PCB) traces may well form the dominant coupling path
in radiated immunity problems. Therefore, an understanding of
the designable parameters that influence the worst-case induced
voltages can be of use to the PCB designer, together with rapid
simulations.

Therefore, a modified single (unmeshed) Taylor cell is com-
bined with transmission line theory to predict the terminal
voltages induced by a grazing, vertically polarized plane wave,
incident on a multi-segment trace with arbitrary terminal
impedances. The resulting model is closed-form and therefore
suitable for rapid simulations. Furthermore, the model is ge-
ometrically approximated to provide understanding on how
designable PCB parameters determine the worst-case induced
voltage. Finally, the model is compared to measurement results.

Index Terms—field-to-trace coupling, modified Taylor model,
closed-form solution, full-wave simulation, GTEM cell

I. INTRODUCTION

In modern, unshielded wireless electronics, PCB traces are
amongst the largest metallic structures. Therefore, they may
well be the major contributors to a coupling path for incident
electromagnetic disturbances. Simple predictive models for
field-to-trace coupling could therefore be of use to the EMC-
aware PCB designer.

To clearly discuss the quality of these models, some ter-
minology will first be introduced. Using this terminology, the
state of the art will be evaluated. Then, the gap this article
tries to close will be presented. Finally, the structure of the
article remainder will be outlined.

A. Transparent Models

Engineers have a number of degrees of freedom to solve
a problem: the design parameters (e.g. resistor value, trace
length or circuit topology). These design parameters span the
design space D, which contains every possible design. The
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Figure 1. Reality maps design space into performance space. One successful
design and one unsuccessful design are shown.

problem is solved when the performance of the design com-
plies with the requirements, expressed in terms of performance
metrics (e.g. immunity, speed, bandwidth, cost or development
time). These performance metrics span the performance space
P, of which compliance C is a subspace (e.g. immunity meets
or exceeds DO-160F and development time is shorter than one
month). Reality determines the performance of each design
candidate, reality : D → P. To successfully design is to
find a design, of which the performance p is compliant with
the requirements: any d ∈ D, such that reality(d) ∈ C, as
illustrated by Figure 1.

As the dimension of design space is generally high and
reality is too hard to understand, let alone invertible, simpli-
fied models are always employed. One modeling technique
is design-oriented approximation: reality is approximated to
become easily invertible. For example, a resistive voltage
divider is required to have a voltage transfer H = 1/3, when
loaded by an unknown load RL > 10 kΩ. The real relation
between design parameters (R1 and R2) and the performance
metric (H) is given by

H =
R1//RL

R1//RL + R2
=

R1RL

R1R2 + R1RL + R2RL
. (1)

Suppose that RL and R1 (R2) would be given, it is not obvious
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to find R2 (R1). The equation is true, but one cannot ‘see
through’ it, the relation is opaque [1].

Conversely, when R1 is chosen much smaller than RL , the
transfer becomes approximately:

H ≈
R1

R1 + R2
→

R2

R1
≈

1
H
− 1, (2)

and R2 follows naturally. Moreover, one sees directly that only
the ratio between R1 and R2 is fixed by H . Hence, the relation
is considered transparent.

To summarize, the relation between design parameters and
performance metrics can become more transparent by approx-
imation. The price paid is reduction in accuracy and in validity
domain (above approximation only holds for R1 � RL).

Note that transparency is subjective: experienced engineers
will also see through (1). However, even these subjects will
consider (2) more transparent than (1). Therefore, relative
transparency is objective.

B. State of the Art

There are currently three equivalent formulations of field-to-
bifilar transmission line coupling: [2]: that of Taylor et al. [3],
Agrawal et al. [4] and that of Rachidi [5]. These formulations
suppose weak coupling, i.e. no interaction from transmission
line to incident field is considered. The coupling is modeled
with distributed voltage and/or current sources along the line.
In particular cases, the resulting terminal voltages can be cast
in a closed form, for example using the Baum-Liu-Tesche
(BLT) equation [6]. Generally, however, the terminal voltages
must be obtained using a circuit simulator.

Paul has very well elaborated the coupling of an arbitrary
polarized, arbitrary incident field to a lossy, multi-conductor
transmission line (MTL) in a homogeneous medium [7]. How-
ever, a PCB trace is not homogeneous, and his analysis does
not apply in the general case. Nevertheless, Paul’s solution
served as a cross-validation of the analysis presented in the
present article [8].

Leone has studied the case of an arbitrary polarized, arbi-
trary incident plane wave to a single microstrip segment [9].
Based on Agrawal’s formulation and the BLT equation, he
found a closed-form, opaque solution for arbitrary loads and
a transparent solution for characteristic loads, showing that
the latter solution is a reasonable approximation for moder-
ately mismatched loads. Moreover, in this approximation, he
showed that the low-frequency worst case voltage occurs at
the near-end terminal for endfire illumination.

Based on Leone’s opaque solution, Lagos et al. have studied
the worst-case induced voltage on a single microstrip seg-
ment, by means of fast numerical optimisation [10]. However,
this method only yields a result for particular loads and a
particular frequency, and no general insight is obtained: the
method is opaque. Vanhee et al. accelerated load optimisation
for an MTL line with a given geometry [11]. They only
perform the time-consuming finite elements simulation once,
with open terminations. With the results, they can quickly
calculate the worst case induced voltages or currents for any
set of terminations. Therefore, this method is interesting for
a designer who optimizes MTL terminations, but not for

the PCB designer who optimizes routing, because the latter
keeps modifying the geometry. Moreover, because it involves
finite element simulation, the results are opaque. Magdowski
explored the typical-case coupling of a randomly incident,
randomly polarized field to a homogeneous transmission line
with arbitrary loads [12]. His results are closed-form, but only
transparent for electrically short lines with particular loads.

Approaching industrial reality, Leone has successfully ap-
plied the equivalent wire method and the Method of Moments
(MoM) to quickly simulate the coupling to a multi-segment,
branched trace with mismatched loads [13]. As his method
relies on numerical simulation, it is opaque as well.

In order to gain understanding, Op ’t Land started to develop
a transparent upper bound for the coupling of a grazing, verti-
cally polarized plane wave to a microstrip with characteristic
loads [14]. This model is transparent, but somewhat limited
with regards to real-life PCB traces.

C. Contribution

In order to understand real-life coupling problems, the
limitations (elevation, polarization and termination) should be
removed one by one, without losing transparency. The authors
started to analyze the case of a one-sided arbitrary termination
[15].

Firstly, the present article aims to finish the analysis and
measurements, by considering either-end arbitrary loads. Sec-
ondly, this article uses novel geometric reasoning to find a
transparent strict upper bound.

D. Article Structure

Op ’t Land’s existing modified Taylor model for field-
to-trace coupling with characteristic terminal loads will be
recalled in Section II. Building on top of that, the more
general case of arbitrary loads at both terminals will be studied
in Section III to extend the existing model. The resulting,
accurate but opaque model will then be approximated to
become pessimistic but transparent in Section IV. In order
to gain confidence in both the accurate and the pessimistic
models, they will both be compared to measurement in Sec-
tion V. Based on these results and on actual model limitations,
conclusions and recommendations for future research will be
given in Section VI.

II. CHARACTERISTIC LOADS

The coupling of a far field to a bifilar, electrically short line
will first be considered. Then, the line will be made electrically
long. Finally, the case of a multi-segment microstrip trace will
be considered. This development is a quick summary of the
author’s earlier work, a mathematical derivation can be found
in [14] and an intuitive explanation in [15].

Consider a far field illumination impinging on a bifilar,
lossless transmission line of length `, terminated at both
sides in its characteristic impedance (Figure 2a). According to
Taylor’s formulation [3], the line needs to be meshed in small
slices ∆z, such that the illuminating field can be considered
uniform along each slice. Consequently, for an electrically
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short line (or low frequencies), a single cell of ∆z = ` suffices.
The induced terminal voltages can be found by inspecting
Figure 2b and neglecting the transmission line:

VLF = −
1
2

jω cEt Zc h` ∓
1
2

jω µ0Hn h`, (3)

where c is the per-unit-length (pul) capacitance of the line.
Unless otherwise noted, the near-end and far-end results are
presented simultaneously throughout the paper; e.g. ∓ means
minus for the near end and plus for the far end.

For an electrically long line (or high frequencies), the field is
no longer uniform along the line, so more slices should be
used, causing the solution to be no longer closed-form. Al-
ternatively, the low-frequency solution of (3) can be corrected
with a factor K for long-line effects.

Consider the far-end induced voltage under endfire illumi-
nation (E = Et , H = Hn and kp = ω/c0). Because of the
characteristic terminations, there are no reflections on the line
and only the forward-going eigenwave needs to be considered.
Notice that although the endfire illumination and the forward-
going eigenwave are no longer spatially uniform, they are
going in the same direction at the same speed. Consequently,
the illumination and the eigenwave have the same phase at
every position z. Therefore, the far-end induced voltage still
is that of (3).

Now imagine that the line slows down waves to phase speed
v (the wave number becomes β = ω/v). The normalized
eigenwave amplitude w is just a phasor:

w(z) = e±jβz, (4)

where z is the position on the line with respect to the near end.
Similarly, the illuminating wave has normalized amplitude i:

i(z) = e−jkp z . (5)

At the near end (z = 0), the illuminating wave and the
eigenwave are in phase, so the slice dz will contribute as in

Zc Zc h

Hn

Et

`

kp

x

zy

(a) Line geometry: subscripts t , n and p (or, for this segment, x, y
and z) denote endfire excitation field components, respectively transversal,
normal and parallel to the line segment. Zc denotes the line’s characteristic
impedance.

+–

ZcZc

+

–

Vne

+

–

j!µ0Hn hDz

j!cEt hDz

e�j�Dz

Vfe

(b) Taylor’s cell: approximation of passive transmission line slice ∆z , with a
voltage source representing the electromotive force (emf) and current source
representing the electrostatic force (electric induction). c denotes the per-unit-
length (PUL) capacity of the line, β is line’s wavenumber.

Figure 2. Modeling the coupling of an electromagnetic wave to a two-wire
transmission line.

+(dz/`)VLF. Little by little, they run out of phase; imagine a
position z where both waves are in opposition of phase. For
this slice dz, the contribution will be opposite: −(dz/`)VLF.
Integrating these contribution factors along the line gives the
cross-correlation:

K =
1
`

∫ `

0
i(z) · w∗(z) dz =

1
j(−kp ∓ β)`

(
ej(−kp∓β)` − 1

)
.

(6)
The either-end terminal voltages are now simply

Vne = KneVLF,ne (7)

Vfe = KfeVLF,fee−jβ`, (8)

which holds for any angle of incidence and polarization. The
e−jβ` serves to move the phase reference to the far end.

Practical PCB traces are more complicated than a bifilar
transmission line in vacuum. For simplicity, only a finite series
of straight microstrip segments of equal width, with negligible
parasitics at the transitions over an infinite ground plane,
illuminated by a grazing incident, vertically polarized plane
wave will be considered, as shown in Figure 3.

Under these conditions the field in the substrate is like those
shown in Figure 4: both field components are doubled because
of the ground plane, and the electric field is weaker because
of the substrate’s permittivity. The wave in the substrate needs
to follow that imposed in free space, so the wave vector is the
same.

The coupling to N straight line segments can be found by
superposition, because the segments are matched. That is, for
each segment u, the contribution to the low-frequency induced
terminal voltages Vu

LF needs to be calculated, multiplied with
the correction factor Ku :

Vne =

N∑
u=1

Ku
neV

u
LF,ne (9)

Vfe =

N∑
u=1

Ku
feV

u
LF,fee−jβ`, (10)

where Vu
LF,fe (Vu

LF,ne) denotes the low-frequency far-end (near-
end) voltage of the uth segment according to (3), taking into
account the field orientation with respect to each line segment.
` is a shorthand for the line’s total length

∑N
u=1 `u . Ku

fe is the
far-end correction factor of the uth line segment, which also
needs to take into account the relative orientation of the field.
It can be shown that

Ku =
1

j(−ks ∓ β)`u

(
ej(−kr rend∓βsend) − ej(−kr rbegin∓βsbegin)

)
,

(11)

near end far end

1

2

3

Ei

�

!

c0

Hi
eastwest

north

south

Figure 3. Example of the class of PCB traces considered in this paper: this
particular trace has 3 segments.



4

where s denotes length along the line segment (distance from
the near end) and r denotes length in the propagation direction
of the illuminating wave. ks is the incident wave vector along
the line segment and kr is the incident wave number.

III. MISMATCHED LOADS

Basic transmission line theory will now be applied to
obtain the either-end induced voltages for arbitrary (generally
mismatched) loads.

From the foregoing Section II, Vne and Vfe are known, which
can be considered voltage waves coming out of a transmission
line of characteristic impedance Zc . These voltage waves
will then generally be reflected by the either-end terminal
impedances Zee according to their voltage reflection coeffi-
cients:

Γee =
Zee − Zc

Zee + Zc
. (12)

As illustrated in Figure 5, the far-end induced voltage wave
Vfe will be reflected by the far-end terminal impedance, then
delayed by the transmission line. Together with the near-end
induced voltage Vne, it can be considered a voltage wave Vinc,ne
incident on the near-end terminal impedance:

Vinc,ne = Vne + ΓfeVfee−jβ` . (13)

If the near-end would be characteristically terminated (Zne =

Zc ), this is exactly the final near-end voltage [15].
In general, however, a near-end reflection will occur:

Vrefl,ne = ΓneVinc,ne =
Zne − Zc

Zne + Zc
Vinc,ne, (14)

that is, the near-end reflected wave would induce a voltage
Vrefl,ne on a characteristic load. With this knowledge, the
reflected wave can also be represented as an equivalent near-
end voltage source as shown in Figure 6a:

Vrefl,ne,equiv = Vrefl,ne
Zc + Zne

Zc
= Vinc,ne

Zne − Zc

����Zne + Zc

����Zc + Zne

Zc
(15)

µ0,"0

µ0,"0"r

Ei

2Hi cos�
2Ei/"r !

c0
cos�

!

c0
cos�Hi cos�

Ei

!

c0
cos�Hi cos�

2Ei

2Hi cos�
!

c0
cos�

Figure 4. The far-away plane wave source (top left) is reflected by the
microstrip’s ground plane (image source at the bottom left). This results in
the fields shown at the right.

To avoid having to consider infinite reflections going up and
down the line, the far-end terminal impedance is translated to
the near end:

Γfe@ne = e−2jβ`
Γfe (16)

Zfe@ne = Zc
1 + Γfe@ne

1 − Γfe@ne
, (17)

where ‘@ne’ denotes ‘as seen at the near end’. Now, the final
near-end reflected voltage can be calculated using the voltage
divider of Figure 6b:

Vrefl,ne,final = Vrefl,ne,equiv
Zfe@ne

Zne + Zfe@ne
. (18)

The total near-end voltage is the sum of the incident and the
final reflected voltage:

Vne,final = Vinc,ne + Vrefl,ne,final

=
(
Vne + ΓfeVfee−jβ`

) (
1 +

Zne − Zc

Zc

Zfe@ne

Zne + Zfe@ne

)
,

(19)

which also holds, mutatis mutandis, for the total far-end
voltage. Note that this solution is, albeit lengthy, closed-form.

IV. WORST-CASE CONCLUSIONS

The conclusion of (19), especially when expanded, is very
opaque. In order to gain insight, a design-oriented approxima-
tion will now be attempted.

Particularly, an EMC-aware PCB designer will try to
achieve sufficient immunity, having some influence on routing
and terminal impedances. Sufficient immunity is achieved
when worst-case (maximum) voltages at the trace terminals
do not exceed an immunity threshold that depends on the
connected components. Routing influence may consist in re-
ducing trace length or changing trace width within the practical
possibilities. Terminal impedances may also be tuned, by in-
troducing frequency-dependent parallel or series impedances.

Especially for low-speed digital circuits, both terminal
impedances are expected to be rather mismatched (i.e. some
Ω connected to some kΩ). Furthermore, the engineer will be
interested in the worst-case voltage magnitude over angle of
incidence and frequency.

To deal with the complexity of (19), its terms and factors
will be separately inspected to find an upper bound to them.
The sum and product of these upper bounds will then consti-
tute a generally loose upper bound to the entire expression.

Vfe

GfeVfe

Gne

⇣
Vne +GfeVfee�j�`

⌘

| {z }
Vinc,ne

Vne

ZfeZne

Zc

GfeVfee�j�`

Figure 5. From top to bottom: the either-end induced voltage waves, the
far-end reflection and the near-end reflection.
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A. Multiple segments with characteristic loads

Equation 19 starts with Vne and Vfe: the near- and far-
end induced voltages when both ends are characteristically
terminated. The transparent upper bound of [14] for one
trace segment will now be recalled and extended to multiple
segments.

For low frequencies, the worst-case voltage induced in a
single trace segment occurs for end-fire excitation and at the
near end [9]. Plugging the field strengths of Figure 4 into (3)
and using the impedance of free space to write H i in terms
of Ei , it amounts to [14]:

max |VLF | =
ω

c0
Ei h`

(
1 +
√
εr,eff

εr

)
, (20)

where h is the substrate thickness, ` is the segment length
and εr,eff is the effective permittivity of the microstrip line:
the average permittivity experienced by the electric field, so
1 < εr,eff < εr .

For high frequencies, the worst-case voltage induced in a
single segment for grazing incidence occurs at the far-end and
amounts to [14]:

max |VHF | = 2Eih
1 −

√
εr,eff
εr

√
εr,eff − 1

, (21)

which is frequency- and length (!) independent.
Joining these two asymptotes gives a transparent worst-

case envelope for the field-induced voltage in a single trace
segment [14]. In the very worst case of a multi-segment trace,
these envelopes add up in phase. Therefore, a loose upper
bound to the either-end induced voltage Vee can be found by
summing up the envelopes of each straight line segment:

max |Vee | = Eih min
{
ω

c0
`

(
1 +
√
εr,eff

εr

)
︸                 ︷︷                 ︸

low frequency

, 2n
1 −

√
εr,eff
εr

√
εr,eff − 1︸           ︷︷           ︸

high frequency

}
,

(22)
where ` is the total length of the line and n is the number of
segments.

B. Far-end Contribution

Although the near- and far-end will never simultaneously
amount to this upper bound, this pessimistic assumption sim-
plifies the analysis. Moreover, the phasor e−jβ` rotates with

Zne

Vrefl,ne
Zc +Zne

Zc

+

–

Zc

+

–

Vrefl,ne

(a) First step: find the near-end volt-
age source equivalent to the reflected
voltage wave, using a characteristic
load.

Zne

Vrefl,ne
Zc +Zne

Zc

Zfe@ne

+

–

(b) Second step: find the final near-
end reflected voltage, using the actual
far-end terminal impedance, trans-
lated to the near end.

Figure 6. Calculating the final effect of the near-end reflection.

Gfe

Re

Im

1

1+Gfee�j�`Gfee�j�`

⇢ fe

1+
⇢ f

e

Figure 7. Geometric construction of (23), normalized by max |Vee |.

frequency, so in the worst case, the near- and far-end induced
voltages will add up in phase. Therefore, the first factor of
(19) can be safely approximated like so:

max ���Vne + ΓfeVfee−jβ` ��� ≤ max |Vee | (1 + ρfe) , (23)

where ρfe is the magnitude of the far-end reflection coefficient
Γfe. This reasoning step is illustrated in Figure 7; notice that
Γfe@ne describes a circle.

C. Far-end Admittance Dependency

The remaining opaque term of (19) is the last fraction: the
goal is to find its maximum magnitude while e−jβ` describes
the unit circle (i.e. the product β` takes all possible values). To
that end, the fraction will be rearranged to obtain a difference,
which has an obvious geometric interpretation on the complex
plane: a distance.

max
β`

�����
Zfe@ne

Zfe@ne + Zne

�����
= max

β`

1
���1 +

Zne
Zfe@ne

���
=

1

|Zne |min
β`

���
1
Zne
+ 1

Zfe@ne

���
=

1

|Zne |min
β`

���−
1
Zne
− 1

Zfe@ne

���
.

(24)

Put geometrically: the worst case occurs when the mirrored
near-end admittance −Yne and the far-end admittance seen at
the near end Yfe@ne are closest. Now what does Yfe@ne look
like, on the complex admittance plane?

Recall that admittance and reflection coefficient are related
by:

Y =
1
Zc

1 − Γ
1 + Γ

(25)

which is a Möbius transformation, so generalized circles in
Γ correspond with generalized circles in Y . Therefore, Yfe@ne
must be a circle. Moreover, this transformation is mirror
symmetric about the real axis. As the Γfe@ne itself is mirror
symmetric about the real axis, its transform Yfe@ne must be
mirror symmetric about the real axis too. Hence, the transform
Yfe@ne must be a circle with a real center.

Now it suffices to find two transformed points to entirely
define the transformed circle. Let us take the rightmost and
the leftmost value of Γfe@ne, that is ±ρfe. Their admittance
counterparts are

Yfe@ne =
1
Zc

1 ∓ ρfe

1 ± ρfe
. (26)
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Re{Y}

Im{Y}

1
Zne

� 1
Zne

Yfe@ne,centerYfe@ne,radius

Re

⇢
1

Zne

�

min…

Figure 8. Geometric construction of (29). Yne accidentally lies inside the
Yfe@ne circle.

As these points lie on a circle with a real center, the center
and radius can be found by taking half the sum and half the
difference:

Yfe@ne,radius =
1
2

1
Zc

(
1 + ρfe

1 − ρfe
−

1 − ρfe

1 + ρfe

)
=

1
Zc

2ρfe

1 − ρ2
fe

(27)

Yfe@ne,center =
1
2

1
Zc

(
1 + ρfe

1 − ρfe
+

1 − ρfe

1 + ρfe

)
=

1
Zc

1 + ρ2
fe

1 − ρ2
fe

(28)

The sought minimum is constructed in Figure 8: Yfe@ne de-
scribes a circle and −1/Zne always lies in the left half plane.
The minimum distance between a circle and a point is the
distance from the circle’s center to the point minus the circle’s
radius. For a rather mismatched far-end load (a circle close to
the imaginary axis), a safe approximation can be found by
inspection of Figure 8:

min
β`

�����
−

1
Zne
−

1
Zfe@ne

�����
≥ Re

{
1

Zne

}
. (29)

Note that other approximations are possible, but for the sake
of transparency, this candidate was retained.

Plugging this result into (24) yields

max
β`

�����
Zfe@ne

Zfe@ne + Zne

�����
≤

1

|Zne |
1

Re {Zne }

=
1

���|Zne |
Re {Zne }

|Zne |�2

=
1

cos∠Zne
.

(30)

D. Upper Bound
Plugging the worst case terms and factors in (19), this upper

bound is obtained:

Vne,final ≤ max |Vee | (1 + ρfe)
(
1 +

�����
Zne

Zc
− 1

�����
1

cos∠Zne

)
, (31)

mutatis mutandis for the far end.
Note that this upper bound is particularly pessimistic for

rather matched far-end loads. Stricter upper bounds exist and
were found, but turned out to be opaque.

One well-known best design practice is confirmed by this
result: matching helps. This can be seen from (31), because
the smaller ρfe and the closer Zne to Zc , the smaller the
upper bound. The last factor confirms that a purely capacitive
(inductive) near-end load is particularly bad, and adding a
small resistance in series (parallel) may dramatically reduce
resonances. However, PCB designers should bear in mind that
matching may also be improved for free (just by changing the
trace width).

VNA
1 2

Figure 9. Cross section of the GTEM cell used to illuminated PCBs: port 1
of the VNA is connected to the GTEM cell input, port 2 is connected to one
terminal of the measured trace.

V. MEASUREMENTS

Now, above results will be challenged by measurements
and full-wave simulations. First, the upper bound for a multi-
segment trace with characteristic loads of Section IV-A will
be gauged using GTEM cell measurements. Then, the ac-
curate but opaque model of Section III will be compared
with measurement and full-wave simulation of an either-end
mismatched trace. Finally, the transparent upper bound for a
multi-segment trace with arbitrary loads of Section IV-D will
be gauged by measurements.

A. Upper Bound for a Matched Multi-segment Trace

To challenge the upper bound on (22) of the coupling to a
multi-segment trace as shown in Figure 3, an illumination and
a trace is needed.

To illuminate with a horizontally polarized, grazing incident
plane wave, a Gigahertz Transverse Electromagnetic (GTEM)
cell is used. A GTEM cell is a rectangular, paraxial, tapered
50Ω waveguide. The narrow end of the taper is equipped with
a coaxial connector and the wide end is terminated with a
hybrid resistive/absorber 50Ω load. The center conductor is
called the septum. The Schaeffner 250A-SAE GTEM cell used
in this paper sports a top opening, where a 10 × 10 cm PCB
can be placed. When connected to a Vector Network Analyzer
(VNA) as shown in Figure 9, the field between the PCB and
septum can be considered the air field shown in Figure 4:

2Ei =
Vseptum

d
, (32)

where d is the average distance between the septum and the
PCB’s ground plane. The measured S21 parameter equals the
voltage transfer between GTEM septum and a 50Ω trace
terminal. Therefore, from here on out, the calculations will
use the incident electric field generated by 1 V at the septum.

The trace has three orthogonal segments, like the trace of
Figure 3, having lengths of respectively 25 mm, 16.7 mm and
25 mm. The trace is a 50Ω microstrip on the outer layer of
a four-layer industrial stack-up. The substrate between the
outer layer and the ground plane just below has a relative
permittivity εr of 4.57 and a thickness h of 362 µm. Both
terminals are equipped with SMA connectors, giving access
from outside the GTEM cell. All transitions were matched to
50Ω. More details on the precise stack up in [15].

The described set-up was realized and the S21 parameter was
measured to one end of the trace, while terminating the other
in 50Ω. The square PCB was rotated in order to illuminate
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Figure 10. Measured S21 of the multi-segment trace in four positions (port 1 is
the GTEM cell input, port 2 is one trace end, the other being characteristically
terminated), compared to the transparent upper bound of (22), calculated with
2E i = 23.8 V/m (the GTEM field with 1 V at it’s input).

the trace from all four cardinal directions. The results are
compared to the upper bound of (22) in Figure 10.

The upper bound seems to envelope all measurements, as
expected. However, even the western illuminated trace should
be about 2 dB below the low-frequency asymptote, because
there is no magnetic coupling to the second segment. Full-
wave simulations (not shown here) yield the expected curves,
2 dB lower than the experiments. Despite that, the upper bound
is rather tight, even when taking into account this error.

B. Accurate Model of a Mismatched Multi-segment Trace

To assess the correctness of the accurate model for coupling
to a multi-segment trace with either-end mismatched loads,
suitable loads need to be connected.

At the far end, an Agilent 85052D-60006 short circuit,
having a delay of 31.78 ps, was connected to the SMA
connector. Including the SMA connector and the PCB, the far-
end impedance is modeled as a perfect short circuit, delayed
by a 50Ω, lossless transmission line with a 79.95 ps delay
[15].

At the near end, a mismatched load is needed that also
allows to measure the voltage with a VNA. For that purpose,
the trace was cut open at the near end and a surface mount
220Ω resistor was soldered in series. Just before, this resistor
was characterized up to 20 GHz with a low-budget fixture
[16]. The measured impedance could be satisfactorily modeled
by a 44 fF parasitic capacitance. As the VNA, connector and
transition are matched to 50Ω, they can be modeled as a
simple 50Ω load. The resulting model is shown in Figure 11.
To estimate the final near-end voltage, the S21 readout of the
VNA is divided by the voltage transfer of the resistive voltage
divider.

Equation 19 is evaluated using a Python script, calling upon
scikit-rf to perform transmission-line calculations like (16)
and (17). To distinguish between fundamental model errors
and measurement non-idealities, a full-wave simulation is run

220Ω
50Ω 
VNA

50Ω

80ps

44fF

Zne Zfe

Figure 11. Near-end and far-end load models. The near-end resistive divider
presents a mismatched load, yet allowing to estimate the final near-end
induced voltage.
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Figure 12. Induced voltage in the near end of the multi-segment trace, as
measured (port 1 on the GTEM cell input, port 2 is the trace’s near end
equipped with a probe, the far end being shorted using a calibration standard),
as simulated with the full-wave solver CST and as predicted with the accurate
model of (19).

using CST. Measurement, full-wave simulation and Taylor
calculation are repeated for the other cardinal directions.

The log-frequency weighted average difference between
measurement and Taylor model, averaged over all four cardinal
directions is −1.8 dB. The average difference between full-
wave simulation and Taylor model is −0.3 dB. The directions
with the worst and the best measurement correlation are shown
in Figure 12a and 12b, respectively.

C. Upper Bound for a Mismatched Multi-segment Trace

As can be seen in Figure 13, the measured coupling to the
trace in all four cardinal directions indeed remains below the
transparent upper bound of (31). It can be noticed that, for
this particular trace and these four directions of illumination,
the proposed upper bound is 7 dB too pessimistic for the low
frequency asymptote, and 13 dB too pessimistic for the high
frequency asymptote.
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Figure 13. Measured voltage at the near end of the multi-segment trace in all
cardinal positions (port 1 is the GTEM cell input, port 2 is the trace’s near
end equipped with a voltage divider, the far end being shorted), compared
to the transparent upper bound of (31). The high-frequency limit is not flat,
because of the parasitic capacitance in the near-end load.

VI. CONCLUSIONS

Firstly, the existing modified Taylor model for the coupling
of a vertically polarized, grazing-incident plane wave to a
multi-segment, uniform microstrip trace with matched loads
was extended to comprise arbitrary terminal loads: (19). This
is an opaque, but closed-form solution. It was applied to
predict the coupling to a three-segment PCB trace with either-
end mismatched loads. Fair agreement with a GTEM cell
measurement was obtained: −1.8 dB average error and good
agreement with a full-wave CST simulation: −0.3 dB.

The extended Taylor model for mismatched terminal loads
is based on the assumptions of weak coupling and a TEM
transmission line. Because CST yields about the same results
without relying on these assumptions, it can be concluded
that for this case study, weak coupling and TEM assumptions
hold up to about 20 GHz. The GTEM cell emulates a plane
wave, but due to standing waves and parasitic modes, the
illumination is more complicated than that. Moreover, the
illuminated trace has losses and the 220Ω probe resistor is
illuminated itself, too. All these non-idealities are neither taken
into account by the full-wave simulation nor by the extended
Taylor model. Therefore, they might explain the discrepancies
between measurement and extended Taylor model.

Secondly, this opaque solution was approximated to obtain
a transparent upper bound for multi-segment traces with rather
mismatched terminal loads, as shown in Figure 13. The upper
bound consists of the existing upper bound for matched loads
and a factor that accounts for the either-end mismatch. Indeed,
this upper bound was not surpassed by the mentioned GTEM
cell measurements.

In future research, the illumination should be generalized to
arbitrarily-polarized, arbitrarily-incident plane waves, because
in reality, perturbing electromagnetic fields are unknown.
Considering the worst case may help to keep the number of
variables reasonable.

As for the terminal loads, an industrial use case should prove
whether or not the upper bound developed in this paper is
useful. Moreover, as the authors have only started to enjoy
Möbius transformations, stricter yet transparent upper bounds
may have been overlooked.
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