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An analytical solution of the Laplace equation with Robin
conditions by applying Legendre transform

Stéphane Mottin

Lab. H. Curien, UMR5516, CNRS, University J. Monnet, University of Lyon, St-Etienne, France

ABSTRACT
We derived the analytical solution of the Laplace equation with
Robin conditions on a sphere with azimuthal symmetry by apply-
ing Legendre transform, which was expressed in terms of the Appell
hypergeometric function.

�u = 0 in a unit sphere
∂u(r, ζ )/∂r|r=1 +h u(1, ζ ) = f (ζ ) on a unit sphere,
ζ = cos (θ ), θ is the azimuthal angle and h ∈ R

∗+.

The function f (ζ ) is a prescribed function and is assumed to be a
square-integrable function.

Moreover the analytical expression of the integral∫ r
0 (ρh−1/

√
1 − 2ζρ + ρ2)dρ is given in terms of the Appell function

F1. In many experimental approaches, the Robin coefficient « h » is
the main unknown parameter for example in transport phenomena
where the Robin coefficient is the dimensionless Biot number. The
usefulness of this formula is illustrated by some examples of inverse
problems.
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1. Introduction

The study of many transport mechanisms in confined biological or physical domains
is often linked to elliptic partial differential equation with sphere media. The Laplace
equation is arguably the most important differential equation in all of applied mathe-
matics. It arises in an astonishing variety of physical and mathematical systems, ranging
through electromagnetism, fluid mechanics, potential theory, solid mechanics, heat con-
duction, geometry and so on. Laplace equation is the simplest elliptic partial differential
equation modelling a plethora of steady-state phenomena. The Laplacian with the Robin
boundary conditions on a sphere is one of the most important boundary value problem
in many sciences because spherical geometry is everywhere from the biggest structures in
the universe to the smallest particles. The Robin boundary conditions imply a constant ‘h’
and corresponds to the Dirichlet conditions (h→ +∞), or to the Neumann conditions
(h→0). Another way of viewing the Robin boundary conditions is that it types physical
situations where the boundary ‘absorbs’ some, but not all, of the energy, heat, mass, etc.
being transmitted through it.

CONTACT Stéphane Mottin mottin@univ-st-etienne.fr

© 2015 Taylor & Francis
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2 S. MOTTIN

Despite these strong interests, very few analytical solutions of the Laplace equation
for a sphere are known [1,2] – first, the solution of the first boundary value problem is
the well-known Poisson’s integral for the sphere,[3] – second, the exact solution of the
Neumann boundary conditions was published 60 years ago.[4] To the best of our knowl-
edge, the analytical solution for the Robin boundary problem on a sphere is not known.
Here, the Laplace equation with a homogeneous isotropic medium and the axisymmetric
sphere problem are considered with the most general nonhomogeneous Robin boundary
conditions.

In mathematics the generalized Robin problem (where h is a continuous function)
for the Laplace equation is still a work in progress.[5] Research of method for solv-
ing second-order elliptic differential equations subject to the nonhomogeneous Robin
boundary conditions is also under progress.[6]

The Laplace equation is a special case of the Helmholtz equation [7]:

�u(r) + K(r)u(r) = 0 (1.1)

with r ∈ R3.
In physical mathematics, four cases are distinguished:

(1) K(r) is all times positive: the Helmholtz equation; K(r) = k2(r)),
(2) K(r) is all times negative: the diffusion–reaction equation; K(r) = −k2(r)),
(3) K(r) is equal to γ k2 (γ ∈ C and |γ | = 1): the ‘Generalized Helmholtz’ Equation,
(4) K(r) is equal to zero: the Laplace equation.

In the case n°2, the quantity ‘k’ could also be analysed as an absorption coefficient [7,8]
or as a refractive index [2]. It is well known that this class of elliptic equation is related to
spherical harmonics in (p+ 2)-dimensional Euclidean space with p = 1,2, . . . and for the
first case (p = 1), the Gegenbauer polynomials are the Legendre polynomials.

If the medium is considered to be not homogeneous (propagation in a dispersive
medium or in a complex absorbing medium) then k(r) is not a constant. Li et al. [2] pub-
lished the 3D analytical solution in a semi-infinite linearly inhomogeneous medium. If
the medium is homogeneous, k(r) is a constant (named k and k�=0), then the solutions
are expressed as infinite series.[1,8] Several problems for elliptic equation in three spatial
dimensions with Dirichlet or Neumann conditions have been solved in the interior of a
sphere and of a spherical sector by the Fokas method in term of the integral representation
of the solution.[6]

The Laplace equation corresponds to the lossless diffusion equation k = 0 (or k→0).
The solutions of Laplace equation are called harmonic functions. In this article, themethod
of integral transforms on finite intervals with the Legendre transform will be used. This
equation is the simplest representative of second-order partial differential equations of
elliptic type. Laplace equation arises in the study of a plethora of physical phenomena,
including electrostatic or gravitational potential, the displacement field of a two- or three-
dimensional elastic membrane and the velocity potential of an incompressible fluid flow.
The physical meaning of the Laplace equation is that it is satisfied by the potential of any
such field in source-free domains D of the Euclidean space R−n (n ≥ 2). For example,
the Laplace equation is satisfied by the potential of an electrostatic field in a domain free
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 3

from charges, the gravitational potential of the gravity force in domains free from attract-
ing masses. Thus, the Laplace equation expresses the conservation law for a potential field.
It also arises inmany other problems inmathematical physics in which stationary fields are
considered, for example in the study of a stationary temperature distribution. The physical
quantity of interest is also the field, for example the electric field E = ∇u or the Temper-
ature field. Then with an analytical solution of the potential ‘u’, the field can be directly
calculated.

The Laplace equation can be solved by separation of variables in 11 coordinate systems
that the Helmholtz equation (Equation (1.1)) can. The spherical coordinates are special
because Green’s function for the sphere can be used as the simplest majorant for Green’s
function for an arbitrary bounded domain.

The use of symbols differs between sources. In one system frequently encountered in
physics (r, θ , ϕ) gives the radial distance, polar angle, and azimuthal angle, whereas in
another system used inmathematics (r, θ , ϕ) gives the radial distance, azimuthal angle, and
polar angle. Due to thesemisuses of these notations, the right-handed spherical coordinate
system (r, θ ,ϕ) to denote radial distance, inclination, and azimuth, respectively, as specified
by ISO standard 80000-2 :2009, will be used:

θ is the angle defined by the zenith axis (z-axis); 0 ≤ θ ≤ π . It is the polar angle measured
down from the ‘north pole’.

ϕ is the angle defined in the plane perpendicular to the zenith axis (the xy-plane);
0 ≤ ϕ < 2π .

We consider situations with complete rotational symmetry about the z-axis (azimuthal
symmetry or axial symmetry) in order to focus on the Legendre transform.

�u = ∂

∂r

(
r2

∂u
∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂u
∂θ

)
= 0 (1.2)

with r < 1.
A potential independent of ϕ is a potential azimuthally invariant. There are many

interesting systems which are more or less of this type.
The first step in solving partial differential equations using separable variables is to

assume a solution of the form: u(r,θ) = R(r) G(θ) where R(r) is a function only of I, and
G(θ) is a function of θ . The Laplace’s equation becomes (prime denotes derivation):

1
R(r)

d(r2R′(r))
dr

+ 1
G(θ) sin θ

d(sin θ G′(θ))

dθ
= 0. (1.3)

Notice that the derivates in this Equation (1.3) are no longer partial derivatives. This
is because this well-known method of separable variables has produced two terms; one
is solely a function of r and the other a function of θ . Equation (1.3) allows us to sep-
arate Laplace’s equation into two separate ordinary differential equations. Each term on
the right-hand side of Equation (1.3) is equal to a constant. This means we can separate
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4 S. MOTTIN

Equation (1.3) into:

r2
d2R
dr

+ 2r
dR
dr

− (n(n + 1))R = 0, (1.4a)

d
dζ

(
(1 − ζ 2)

dG
dζ

)
+ (n(n + 1))G = 0, (1.4b)

where the variable ζ = cos θ (−1 ≤ ζ ≤ 1) is introduced.
The separation constant is chosen n(n+ 1) because by writing the separation constant

in this way we will produce a well-known differential equation whose general solution we
already know. Equation (1.4a) is a classic example of Cauchy–Euler equation or a fairly
simple example of a Frobenius equation. Equation (1.4b) is Legendre’s differential equation.
The solutions to the Legendre equation are the Legendre polynomials by definition. Using
either methods of Euler’s equations or the method of Frobenius, the solution to Equation
(1.4a) is well known: R(r) = An rn +Bn r−(n+1) where An and Bn are constants which will
be determined once we apply specific boundary equations. The most general form that a
solution can have is

u(r, ζ ) =
∞∑
n=0

(An rn + Bn r−(n+1))Pn(ζ ). (1.5)

The Legendre polynomials Pn(ζ ) form a complete set on the interval 0 ≤ cos θ ≤ π

or −1 ≤ ζ ≤ 1. Thus any specified ϕ-independent potential on a spherical surface can be
expressed as a sum of Pn’s.

2. The Robin boundary conditions

In the theory of linear partial differential equations, a well-posed problem consists of a dif-
ferential equation subject to certain boundary conditions such that the solution is unique.
The third boundary value problem is a well-posed problem.[3]

Let 
 be the unit sphere domain in R3, ∂
 be its surface (r = 1).
Assuming azimuthal symmetry, we write

∂u(r, ζ )/∂r|r=1 + h u(1, ζ ) = f (ζ ), (2.1)

h ∈ R∗+. The function f (ζ ) is a prescribed function of ζ and is assumed to be a square-
integrable function.

This boundary operator appear in many contexts in science and engineering, for exam-
ple in many transport phenomena [9] or in optics.[7] Sometimes ‘h’ is called the Biot
number.[10] Robin boundary conditions are also called impedance boundary conditions
in some engineering problems. They are commonly used in solving Sturm–Liouville prob-
lemswhich appear inmany contexts in science. The third boundary condition or the Robin
boundary condition is also known as the Newton boundary condition. Amethod for treat-
ing general boundary conditions in the finite element method considers these general
Robin boundary conditions: ∂u/∂n = 1/ε (u0−u)−g with u and g two functions, and ε

∈ R +. If ε →0 then u = u0 on the boundary. If ε →∞ then ∂u∂n = g on the boundary.
The problem is to find the solution of the Equation (1.3) continuous on the closed

domain (
−∂
) and satisfying Equation (2.1) on ∂
. The solution to the Laplace equation
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 5

with Dirichlet’s conditions is the well-known Poisson’s integral for the sphere [3] and the
solution of the Neumann problem for the sphere was published in the context of the use of
electric images.[4] The Green’s function for the Dirichlet problem and the Neumann prob-
lem for the sphere were obtained by themethod of images and the inversion with respect to
the sphere, which is a Kelvin Transformation.[4] The third problem is more complex than
these two problems. It is not possible to extend the method of images to the third problem
of the Laplace equation, and also to the steady-state Helmholtz equation.[11]

3. The Legendre transform

The Legendre transform (more exactly the Legendre polynomial transform) and the
inverse Legendre transform are, respectively defined by

u(n) = Le(u(ζ )) =
∫ 1

−1
u(ζ )Pn(ζ )dζ , (3.1)

n = 0, 1, 2, 3 . . .

Le () is a linear integral transformation.

u(ζ ) = Le−1(u(n))(ζ ) =
∞∑
n=0

(n + 1/2)u(n)Pn(ζ ) (3.2)

with −1 < ζ < 1.
The central property of this transformation is obtained applying successive integration

by parts according to Equation (1.4b):

Le
(

d
dx

(1 − x2)
dg(x)
dx

)
= −n(n + 1)g(n). (3.3)

This transformation replaces a differential operation by the algebraic operation
−n(n+ 1) g(n).

The Legendre polynomials P0(ζ ), P1(ζ ), . . . ,Pn(ζ ) are solutions of the Legendre
equation. More precisely, the solution of Legendre equation can be stated as

w(ζ ) = CnPn(ζ ) + DnQn(ζ ),

where Cn and Dn are arbitrary constants and Qn(ζ ) are the Legendre functions of the sec-
ond kind. In our physical applications no singularities are present along the polar axis, we
disregard the Legendre functions of the second kind which are singular for ζ = ±1. Then
Dn is equal to 0.

Integrating Equation (2.1) with respect to ζ from −1 to 1 leads to

∂u(r=1,n)/∂r + h u(r=1,n) = f (n). (3.4)

In Legendre’s space, Equation (1.5) is the following:

u(r,n) = An rn + Bn r−n−1 with 0 ≤ r ≤ 1. (3.5)
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6 S. MOTTIN

Evidently, if u is finite as r → 0 then u must be finite at r = 0, and then Bn = 0 and
An = f(n)/(n+ h).

u(r,n) = f
(n)

rn/(n + h). (3.6)

The inverse transform leads to the following infinite series:

u(r, ζ ) = Le−1(u(r,n))(ζ ) =
∞∑
n=0

(n + 1/2)f(n) rn/(n + h)Pn(ζ ). (3.7)

Many solutions of boundary value problems are available in the form of infinite series
and can be computed by expanding in eigenfunctions.[1] The evaluation of the summing
series of the form

∑∞
n=0 qn Pn(cos θ) presents many computational problems [8]: qn are

often slowly decaying, and Pn is more and more oscillatory. This has the effect that we
are subtracting two numbers of nearly equal magnitude with the attendant loss of preci-
sion. The theoretical problem of approximation such infinite series (Gibbs phenomenon)
is multifaceted.[12] Legendre transform and spherical harmonic transform are the most
important orthogonal function transforms only except Fourier transform, and research of
fast algorithms are still under progress.[13]

Now we present some properties of Legendre polynomials in regards to the generating
function (1−2ζ r+ r2)−1/2. The most important properties is that Legendre polynomial
Pn(ζ ) is also defined as the coefficient of ζ n in the expansion of (1−2ζ r+ r2)−1/2 in
ascending powers of r [14]:

(1 − 2ζ r + r2)−1/2 =
∞∑
n=0

(n + 1/2)(rn/(n + 1/2))Pn(ζ ), (3.8)

where r < min |ζ ± i
√
(1-ζ 2)| which is always true.

And obviously, the inverse Legendre transform of rn/(n+ 1/2) is (1−2ζ r+ r2)−1/2.
R = (1−2ζ r+ r2)−1/2 is the inverse of the distance between the two following points

(r,θ) and (1,0). From a mathematics point of view, this Legendre polynomial generating
function provides a convenient way of derivingmany useful properties. At r = 1 and ζ = 1
((1,0) in polar coordinates, the generating function R presents a singularity, but evidently
its integral (∫ r

0
(1 − 2ζ r + r2)−1/2dr

)
converges for r = ζ = 1.

More generally, the Legendre-generating function is a special case of this generating
function:

(1 − 2ζ r + r2)−ß =
∞∑
n=0

rn C(ß)
n (ζ ) . (3.9)

The coefficient C(ß)
n (ζ ) are the ultraspherical polynomials (proportional to the Gegen-

bauer polynomials) [14] and for ß = 1/2, this equation reduces to

C(ß)
n (ζ ) = Pn(ζ ). (3.10)

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

eq
ue

 d
e 

L
'u

ni
ve

rs
ite

 J
ea

n 
M

on
ne

t]
, [

St
ep

ha
ne

 M
ot

tin
] 

at
 0

5:
09

 1
2 

Ja
nu

ar
y 

20
16

 



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 7

One of the best representation is the Gauss functions because the Legendre functions
belong to Gauss hypergeometric series:

Pn(ζ ) = 2F1(−n, 1 + n; 1; 1/2 − ζ/2) (3.11)

Equation (3.7) must be analysed as a product of two Legendre transforms in order to
obtain an inversion formula of the product of two transforms. A convolution property
of the transformation is one that expresses the inverse transform of the product of two
transforms in terms of the two functions without direct recourse to the basic inversion for-
mula. More than 50 years, a theorem about the inverse transforms of products of Legendre
transforms was published [3]:

If w(n) = Le(w(ζ )) and v(n) = Le(v(ζ )), then

w(n) · v(n) =
∫ π

0
Pn(λ)w(λ)sin λ dλ ·

∫ π

0
Pn(η)v(η)sin η dη.

The product w(n) . v(n) is the transform of the function h(x) which corresponds to the
following convolution w(x) * v(x):

h(ζ ) = (π)−1
∫ π

0
w(cos σ) sin σ

∫ π

0
v(cos γ )dλ dσ (3.12)

with

cos γ = cos θ cos σ + sin θ sin σ cos λ. (3.13)

4. Themain result. The inverse Legendre transform of rn/(n+h)

Now we will find the closed form of
∑∞

n=0 (n + 1/2)rn/(n + h)Pn(ζ ) .
It could be expressed as the following sum:

v(r, ζ ) =
∞∑
n=0

(n + 1/2)(rn/(n + h))Pn(ζ )

= v1(r, ζ ) + 1/2v1(r, ζ )

(4.1)

with these two functions:

v1(r, ζ ) =
∞∑
n=0

n rn/(n + h)Pn(ζ ), (4.2)

v2(r, ζ ) =
∞∑
n=0

rn/(n + h)Pn(ζ ), (4.3)

v2(r,ζ ) can be found by multiplying Equation (3.8) by rh−1 and integrating with respect
to r:

∞∑
n=0

(∫ r

0
ρn+h−1dρ

)
Pn(ζ ) =

∫ r

0
ρh−1dρ/(1 − 2ζρ + ρ2)

1/2 (4.4)
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8 S. MOTTIN

and

v2(r, ζ ) =
∞∑
n=0

rn/(n + h)Pn(ζ ) = r−h
∫ r

0
ρh−1(1 − 2ζρ + ρ2)

−1/2dρ, (4.5)

∫ r
0 (ρh−1(1 − 2ζρ + ρ2)

−1/2
)dρ is also the inverse function of z(n) = rn+h/((n+ h)

(n+ 1/2)).
The following definite integral corresponds to the main difficulty.

Ah(r, cos θ) =
∫ r

0

ρh−1

(1 − 2r cos θ + r2)1/2
dρ (4.6)

The generating function (1−2r cos θ + r2)1/2 is the distance between the points (r,θ)
and (1,0), then it is convenient to use the complex coordinates eiθ .

Let us write this definite integral:

B(h, r, θ) =
∫ 1

0

th−1

(1 − t r2 cos θ + t2r2)1/2
dt, (4.7)

B(h, r, θ) =
∫ 1

0

th−1

(1 − t r(eiθ + e−iθ ) + t2r2)1/2
dt

=
∫ 1

0
th−1(1 − t reiθ )−1/2

(1 − t re−iθ )−1/2dt. (4.8)

This last expression is a special case of the Appell function F1. F1 is one of the Appell
hypergeometric function. In 1880, Paul Émile Appell has introduced a set of four hyper-
geometric functions F1, F2, F3, F4 that generalize Gauss’s hypergeometric functions. The
function F1 can be expressed by this integral [15]:

F1(α;β , β ′; γ ; x, y) = �(γ )

�(γ − α)�(α)

∫ 1

0
tα−1(1 − t)γ−α−1(1 − t x)−β(1 − t y)−β ′

dt.

for Re(α) > 0 and Re(γ−α) > 0. The gamma function is represented by �.
With the properties of the F1 Appell function, after some algebraic manipulations and

by integration, we finally obtained this closed form of the function v2:

v2(r, ζ ) = r−h
∫ r

0

ρh−1√
1 − 2ζρ + ρ2

dρ

= 1
h
F1
(
h;−1

2
, −1

2
; h + 1; r ζ ◦,

r
ζ ◦

)

+ 2ζ r
h + 1

F1
(
h + 1;

1
2
,
1
2
; h + 2; r ζ ◦,

r
ζ ◦

)

− r2

h + 2
F1
(
h + 2;

1
2
,
1
2
; h + 3; r ζ ◦,

r
ζ ◦

)
,

(4.9)

where the variable ζ ◦ = ζ +
√

−1 + ζ 2 is introduced.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 9

In addition, the analytical expression of the integral
∫ r
0

(
ρh−1/

√
1 − 2ζρ + ρ2

)
dρ is

given in terms of the Appell function F1. To our best knowledge, a closed form of this
integral is described for the first time.

Now we calculate v1(r,ζ ):

∞∑
n=0

rn Pn(ζ ) − h
∞∑
n=0

rn/(n + h)Pn(ζ ) =
∞∑
n=0

n rn/(n + h)Pn(ζ ).

Then

v1(r, ζ ) = (1 − 2ζ r + r2)−1/2 − h v2(r, ζ ). (4.10)

At the end and with Equation (4.1),

v(r, ζ ) = (1 − 2ζ r + r2)−1/2 + (1/2 − h) v2(r, ζ ). (4.11)

Obviously if h = 1/2 then the solution is the generating function.
Finally, the convolution theorem (Equation (3.12)) allows an integral representation of

the solution with any prescribed function of the nonhomogeneous Robin conditions.

5. Some analytical solutions without the Appell functions

In addition to this general solution, the analytical solution could be written without the
Appell hypergeometric functions if h is an integer: h = j.

Gradshteyn and Ryzhik [16] published the following indefinite integrals:

∫ P(r)(1 − 2ζ r + r2)−1/2dr,

where P(r) is a polynomial of some degree j.
For P(r) = 1, the integral is

∫ (1 − 2ζρ + ρ2)−1/2dρ = Ln
(
2
(
r − ζ +

√
1 − 2ζρ + ρ2

))
.

Let us write

Aj =
∫ r

0
(1 − 2ζρ + ρ2)

−1/2
ρj dρ, (5.1)

A0 =
∫ r

0
(1 − 2ζρ + ρ2)

−1/2dρ = Log

(
r − ζ +

√
1 − 2ζρ + ρ2

1 − ζ

)
,

(5.2)
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10 S. MOTTIN

A1 = (1 − 2ζ r + r2)1/2 + ζA0 − 1,

A2 = 1/2((r + 3ζ )(1 − 2ζ r + r2)1/2 + (3ζ 2 − 1)A0 − 3ζ ),

A3 = 1/3((r2 + 5/2 rζ + 15/2ζ 2 − 2)(1 − 2ζ r + r2)1/2

+ (15/2ζ 3 − 9/2ζ )A0 − 15/2ζ 2 + 2),

with m ≥ 2, Am = m−1
(
R−1rm−1 + (2m − 1)ζ

∫ r

0
ρm−1 R dρ − (m − 1)

∫ r

0
ρm−2 R dρ

)
(5.3)

with R = (1-2ζρ + ρ2)−1/2.
With these equations and for h = j, it is very easy to express the solution without the

Appell function.

6. The potential outside a sphere

uo(r, ζ ) is the potential outside a sphere with r ≥ 1.
� uo = 0 (r > 1).
Equation (2.1) becomes

∂uo(1, ζ )/∂r − h uo(1, ζ ) = −f (ζ ).

With Equation (1.5):

u0(r,n) = An rn + Bn r−n−1, 0 ≤ r ≤ 1. (6.1)

Evidently, if uo is finite as r → ∞ then An = 0 and Bn = f(n)/(n+ h+ 1).
The variable H = h+ 1 is introduced and h > 0 then H > 1.

u0(r,n) = (1/r)f (n) r
n/(n + H) = (1/r) u(r,n). (6.2)

The solution of the third problem for the exterior of a sphere is this simple result:

uo(r, ζ ) = (1/r) u(1/r, ζ ) (6.3)

with ‘u’ being the solution for the potential inside a sphere (Equation (5.1)) with
H = h+ 1.

7. An introduction to the Legendre transform of the Helmholtz equation

With the azimuthal symmetry, the Legendre transform of theHelmholtz equation (�+ k2;
k is a constant �=0) is the following:

r2∂2u/∂r2 + 2r ∂u/∂r + (k2r2 − n(n + 1))u = 0. (7.1)

The solution of this spherical Bessel equation is [9]:

u(r,n) = CnJn+1/2(k r)/
√

(k r) + Dn Yn+1/2(k r)/
√

(k r).
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 11

where Cn and Dn are arbitrary constants. Jq(z) and Yq(z) are respectively the Bessel func-
tion of the first kind and the second kind (the solution with the spherical Bessel function of
the second kind being inadmissible as it wouldmake u(r,n)→−∞ as r→0 thenDn = 0).

Let us write the spherical Bessel function: jn(x) = (2/π)1/2 Jn+1/2(x)/
√
x.

u(r,n) = Cn(π/2)1/2jn(kr). (7.2)

By the same way of Section 3, the Legendre transforms for the Dirichlet conditions and
for the Robin conditions are, respectively:

u(r,n) = f(n) jn(k r)/jn(k) (7.3)

with

Cn = f(n)(2/π)1/2/jn(k),

u(r,n) = f(n)(2/π)1/2jn(k r)/((k/2)jn−1(k) − k jn+1(k) + (h − 1/2)jn(k)) (7.4)

The solution for the diffusion–reaction equation (�−k2) with the Dirichlet condition
is the following:

u(r,n) = f(n) in(k r)/in(k)

with ïn(x) being the modified spherical Bessel function of the first kind,[14] ïn(r) =
(2/π)1/2 In+1/2(r)/r1/2 where Im(r) is the modified Bessel function of the first kind.

Now the question is how to find the inverse Legendre transform of jn (k r)/jn (k) or ïn(k
r)/ïn(k).

With the generating function R = √
(r2 + ρ2 −2rρ cos θ), the cylindrical Bessel func-

tions Zv can be expressed as the following general infinite sum [16]:

Zw(ß R)/Rw = 2wß−w�(w)

∞∑
n=0

(n + w) Jn+w(ßρ)/(ßρ)w Zn+w(ßr)/(ßr)w C(w)
n (cos θ),

where C(w)
n is a Gegenbauer polynomial, 0 < ρ < r and ß an arbitrary complex number.

A degenerate addition theorem [16] gives (with i2 = −1):

eiß ρ cos θ = (2π/(ßρ))1/2
∞∑
n=0

(n + 1/2)inJn+1/2(ßρ)Pn(cos θ)

and then

eiß ρ cos θ = (2π)1/2
∞∑
n=0

(n + 1/2)injn(ßρ)Pn(cos θ), (7.5)

ïn(ρ) is related to the spherical Bessel function of the first kind jn(iρ) by [14]:

jn(iρ) = inin(ρ), jn(−iρ) = (−i)nin(ρ) and in(iρ) = jn(ρ).

With ß = −i, we get

eρ cos θ = (2π)1/2
∞∑
n=0

(n + 1/2)in(ρ)Pn(cos θ). (7.6)

Finally, the inverse Legendre transform of ïn(kr) is ((2π)−1/2 ekr cosθ ).
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12 S. MOTTIN

These first steps show that the inverse transform of the solution (Equation (7.3)) of the
Helmoltz equation for the first boundary problem is far more difficult than the inverse
transform applied to the Laplace equation.

8. Some inverse problems with the Robin conditions

8.1. Heat andmass transfer

For example, if we think of Newton cooling at r = 1, we could consider a model of insuf-
ficient insulating condition in the thermal energy context. The constitutive law would be
that the stationary rate of heat loss flux density is proportional to the difference in temper-
ature of the material (u(1)) and its surroundings (us). So, the flux is J(r = 1) = g (u(1)−us)
where g is a constant heat transfer coefficient. The value of g depends on the type of the
both materials, the velocity of fluid flow, etc. Using Fourier’s law, we would have

du/dr(r=1) + h(u(1) − us) = 0.

The Robin conditions appear in all transfer phenomena. ‘h’ is equal to a dimension-
less number in heat transfer, the Biot number (Bi). In mass diffusion processes it is the
‘mass transfer Biot number’. These Biot numbers are very important in engineering par-
ticularly focusing on the dynamics at the interface between two different materials, such
as the boundary of a solid particle submerged in a fluid. In the cases considered and in the
steady-state condition, the interface is stationary and there is no phase change or chemical
reaction at the interface.[10]

These Biot numbers are given by
Bi = h◦L/k,
where h° is the convective surface heat/mass transfer coefficient (Wm−2 K−1).
L is a characteristic length. It is the typical length scale that heat in the solid particle

must diffuse to get to the surface. For the sphere, the radius is the best scale and is already
a dimensionless number (r = 1).

k is the thermal/mass conductivity of the solid.
The Biot number compares the relative transport resistances, internal and external:

Bi = (L/k)/(1/h°) = ‘internal diffusion resistance’/‘external convection resistance’. Briefly,
Bi< <1 means that the ‘external convection resistance’ dominates the problem and that
the well-known lumped system model could be used.

The surface heat transfer coefficient is a key parameter but is more difficult to measure
than the conductivity.[17]Obviously, one of the interest of analytical solution is the analysis
of its derivative with respect to the particular parameter h in order to quantify the sensitiv-
ity and the stability of the process. Usually, the convective heat/mass transfer is measured
indirectly, as reported in the reviews, for example, in the domain of mathematical simula-
tion studies for thermal food processes.[18]When the surface is exposed to amoving fluid,
heat transfer coefficients are difficult to obtain experimentally because their values depend
strongly on many variables. In most practical situations, these convection problems are
solved by using a single value of the surface heat transfer coefficient on the entire surface
exposed to amoving fluid with homogeneous Robin condition. The solution of the Laplace
equation (Equations (4.9)–(4.11)) with nonhomogeneous Robin condition corresponds to
the steady-state temperature (or concentration) of a single sphere with is exposed to linear
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 13

transfer at its surface intomediumwhose temperature (or concentration) is proportional to
f (cosθ). Our exact solution could help for the inverse estimation of this constant h° or the
Biot number.[17,18] The nonhomogeneous Robin condition appears when an additional
heat flux and/or a coefficient proportional to the unknown ambient temperature [19] is
added on the boundary. We can also see the function f (cosθ) as a correction factor of the
surface heat transfer coefficient (see its axisymmetric variation in Figure 6 of Kondjoyan
[18]).

An extension of these inverse problems is the domain of simultaneous heat and mass
transfer.Moisture and heat transfer occur inmany processes related to hygroscopicmateri-
als, such as baking and drying of foods. During these processes, the heat transport into and
out of a sphere’s surface by convection and evaporation is what constitutes simultaneous
heat andmass transfer. A better understanding of simultaneous heat andmass transfer, fol-
lowed by the formulation of adequate mathematical models contribute to the optimization
of these processes, and product quality improvement. Also generally accepted for foods is
a surface boundary condition of the form given below [18]:

−kA∂T/∂r = h◦A(T − Tfluid) − qevaporation

with A being the area of the sphere.
where the term on the left side of this boundary condition refers to heat conducted from

the outer surface to the inside of the body, the first term on the right side is heat penetrating
from the surroundings to the solid body by means of convection, and the second term on
the right side denotes heat of evaporation (defined as joule per second). Two inhomoge-
neous Robin conditions could be used for the mass transfer and for the heat transfer, then
the two potentials (temperature and concentration) in the sphere are directly calculated.

8.2. Optical tomography

The third boundary problem with �u – k2u = 0 arises in steady-state diffusion based
optical tomography, where light propagation is modelled by a diffusion approximation
where the absorption coefficient is very small compared with the diffusion coefficient.[20]
u describes the photon density in the medium. The Dirichlet condition means that the
medium around the body (here a sphere) is a perfect absorber, and then photons are
absorbed when crossing the surface, so that outside the domain the photon density equals
zero. A more realistic boundary condition is the homogeneous Robin condition.[7]

The boundary condition could be approximated by [20]:

u + 2κA∂u/∂r = 0

with κ being the diffusion coefficient and A be a parameter governing the internal reflec-
tion at the boundary. We can use different approaches to derive A from Fresnel’s law, and
for n = 1.4 we get A = 3.25 or A = 2.74.[20] It is clear that the equivalent ‘optical Biot
number’ is not known.

There are two possibilities to model the light sources incident on the boundary: col-
limated sources or diffuse sources. The diffusion equation cannot describe correctly
collimated sources by definition, so we can represent a collimated pencil beam by an
isotropic source at a depth that is accurate at distances larger than the mean free path
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14 S. MOTTIN

from this source. Diffuse sources can be regarded as an inward directed diffuse photon
current, distributed over the illuminated boundary segment. The inclusion of the source
as a photon current through boundaries modifies the homogeneous Robin condition to a
nonhomogeneous Robin condition:

u + 2κA∂u/∂r = −f (ζ ).

Our closed-form solution will be useful to analyse the effect of the boundary in the case
of spherical geometry.

8.3. Detecting corrosion damage

Another class of inverse problems is to study some problems of identifiability arising in
the domain of non-destructive evaluation.[21] A sample is given that is marked by some
imperfections due to various causes, which are located either on an inaccessible part of its
boundary. If we consider the problem of detecting corrosion damage then the goal is to
determine quantitative information about the corrosion that possibly occurs on an inac-
cessible part of the surface of a metallic specimen and on the ‘accessible’ part, electrostatic
data are collected. The coefficient h, in the electrostatic context, represents the reciprocal of
the surface impedance. It represents the corrosion damage, and classically, it is interpreted
as a coefficient of energy exchange. Usually, it is a generalized Robin conditions where h is
a function.[21]

8.4. Altimetry–gravimetry boundary value problem

The main purposes of physical geodesy are the determination of the external gravity field
and the geoid. The third geodetic boundary value problem has a special importance for
physical geodesy as it constitutes the mathematical background in determining the ondu-
lations of the geoid and the variation of the gravity field [22]; Traditionally, these tasks are
handled by solving this third boundary value problem in which the input data are grav-
ity anomalies on the surface of the Earth. An essential quantity that describes the Earth’s
gravity field is the gravity potentialW. The gravity vector g is the gradient ofW (direction
of the vertical or plumb line). The normal gravity field (potential U), a first approxima-
tion of the actual gravity field, is generated by an ellipsoid of revolution with its centre
at the geocentre, called the reference ellipsoid (for example the WGS-84 ellipsoid). The
surfaces U = constant are called normal level surfaces and the direction of the normal
gravity vector is called the direction of the normal vertical. The difference between the
gravity potential W and the normal gravity potential U is called the disturbing potential
T. Altimetry–gravimetry boundary value problem has the form [22]:

∇2T = 0 outside the sphere

Lsea(T) = −∂T/∂r = dgsea and Lland(T) = −∂T/∂r − 2/R T

= �gland on the sphere,

where δgsea is the gravity disturbance at sea;�gland is the gravity anomaly on land; R is the
Earth’s radius.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 15

The spherical approximations will cause an error of the order of the Earth’s flattening. To
decrease the effect of the Earth’s flattening, corrections due to the ellipticity of the bound-
ary were applied to the Dirichled boundary value problem.[23] Obviously, there is no
azimuthal symmetry but our analytical result for the potential outside a sphere (Equation
(6.3)) could give an averaged solution for this third geodetic boundary problem.

9. Numerical applications

These inverse problems show that the dimensionless Robin number ‘h’ is an important
unknown boundary parameter in many domains. Equations (4.9) and (4.11) allow the
study of the sensitivity to errors in boundary conditions. The derivative of the function
v with respect to ‘h’ is the following sum of nine functions:

dv
dh

= − 1
2h2

F1
(
h;−1

2
, −1

2
; h + 1; r ζ ◦,

r
ζ ◦

)

+
(
1 − 2h
2h

)(
Da

(
F1
(
h;−1

2
, −1

2
; h + 1; r ζ ◦,

r
ζ ◦

))

+Dc

(
F1
(
h;−1

2
, −1

2
; h + 1; r ζ ◦,

r
ζ ◦

)))

− 2ζ r
(

3
2(1 + h)2

)
F1
(
h + 1;

1
2
,
1
2
; h + 2; r ζ ◦,

r
ζ ◦

)

+ 2ζ r
(

1 − 2h
2(1 + h)

)(
Da

(
F1
(
h + 1;

1
2
,
1
2
; h + 2; r ζ ◦,

r
ζ ◦

))

+Dc

(
F1
(
h + 1;

1
2
,
1
2
; h + 2; r ζ ◦,

r
ζ ◦

)))

+ r2
(

5
2(2 + h)2

)
F1
(
h + 2;

1
2
,
1
2
; h + 3; r ζ ◦,

r
ζ ◦

)

− r2
(

1 − 2h
2(2 + h)

)(
Da

(
F1
(
h + 2;

1
2
,
1
2
; h + 3; r ζ ◦,

r
ζ ◦

))

+Dc

(
F1
(
h + 2;

1
2
,
1
2
; h + 3; r ζ ◦,

r
ζ ◦

)))
,

(9.1)

where Da() and Dc() are respectively the derivatives with respect to a and c of
F1(a;b,b’;c;w,z).

Figure 1 shows the evolution of the fundamental solution v (equation 4-11) with respect
to the Robin parameter. The figures A1–C1 illustrate the changes in magnitude and in
distribution of the fundamental solution. Evidently, the generating function contributes to
the general form with the particular point {r = 1, θ = 0}. When h→ + ∞ the solution
converges to the Dirichlet boundary conditions (the magnitude decreases e.g.), and when
h→0, to the Neumann boundary conditions (the magnitude increases e.g.).

The numerical data of Figure 1 (h ∈ {0.05, 0.5, 5}) are an example of the fundamental
solution to recover the solute concentration or temperature or ‘photon concentration’, etc.
fromboundary data and sourcemeasurement. In the case of small value of ‘h’, themeasure-
ment uncertainty of this parameter affects a large volume of the sphere. When the Robin
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16 S. MOTTIN

Figure 1. The evolution of the fundamental solution with respect to the Robin parameter (h). Respec-
tively the plots (A1, B1, C1) correspond to the solution with h = 0.05, 0.5, 5.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 17

parameter is far greater than 0.5, the derivative of the fundamental function is more and
more flat (except in the domain near of the point {r = 1, θ = 0}). Equation (9.1) shows
that the sensitivity to errors in regards to h is complicated. But when the Robin parameter
is around 0.5, a rapid change of the solution must be underlined. The analytical form of
the function v allows a direct analysis of these changes with the Robin parameter. Due to
the sum of the function (1/2 – h) v2 and the generation function (see Equation (4.11)),
h = 0.5 could be considered as a tipping point. Without this closed-form expression, this
result could not be easily found.

Applied to the inverse theory for Robin boundary conditions, this result quantifies the
difficulty of the inverse determination of the Robin parameter or the Biot number in heat
and mass transfer.

10. Concluding remarks

The Laplace equation for the axisymmetric sphere problem and the Robin conditions is
solved by the method of integral transforms for the interior and the exterior of the sphere.
This analytical solution is expressed with the Appell hypergeometric function F1. Analyt-
ical method is to understand the physical effects through the model problem for example
the Biot number. It is also useful to validate the numericalmethod. Analytical solutionswill
never go out of style because of the ongoing need for verification of numeric solvers and
for use as direct solvers in support of experimental measurement. Moreover this solution
could helped some inverse problems for example in heat and mass transfer.
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