An analytical solution of the Laplace equation with Robin conditions by applying Legendre transform - Archive ouverte HAL
Article Dans Une Revue Integral Transforms and Special Functions Année : 2016

An analytical solution of the Laplace equation with Robin conditions by applying Legendre transform

Solution analytique de l'équation de Laplace avec des conditions aux limites de Robin.

Stéphane Mottin

Résumé

We derived the analytical solution of the Laplace equation with Robin conditions on a sphere with azimuthal symmetry by applying Legendre transform, which was expressed in terms of the Appell hypergeometric function. u = 0 in a unit sphere ∂u(r, ζ)/∂r| r=1 + h u(1, ζ) = f (ζ) on a unit sphere, ζ = cos (θ), θ is the azimuthal angle and h ∈ R * +. The function f (ζ) is a prescribed function and is assumed to be a square-integrable function. Moreover the analytical expression of the integral r 0 (ρ h−1 / 1 − 2ζρ + ρ 2)dρ is given in terms of the Appell function F 1. In many experimental approaches, the Robin coefficient « h » is the main unknown parameter for example in transport phenomena where the Robin coefficient is the dimensionless Biot number. The usefulness of this formula is illustrated by some examples of inverse problems.
Fichier principal
Vignette du fichier
mottin_2016_LegendreTransfo.pdf (1.55 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01376999 , version 1 (15-03-2017)

Identifiants

Citer

Stéphane Mottin. An analytical solution of the Laplace equation with Robin conditions by applying Legendre transform. Integral Transforms and Special Functions, 2016, 27 (4), pp.289-306. ⟨10.1080/10652469.2015.1121255⟩. ⟨hal-01376999⟩
477 Consultations
919 Téléchargements

Altmetric

Partager

More