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Abstract

Open Quantum Walks (OQWs), originally introduced in [2], are quantum
generalizations of classical Markov chains. Recently, natural continuous time
models of OQW have been developed in [24]. These models, called Continu-
ous Time Open Quantum Walks (CTOQWs), appear as natural continuous
time limits of discrete time OQWs. In particular they are quantum exten-
sions of continuous time Markov chains. This article is devoted to the study
of homogeneous CTOQW on Zd. We focus namely on their associated quan-
tum trajectories which allow us to prove a Central Limit Theorem for the
"position" of the walker as well as a Large Deviation Principle.

1 Introduction
Open QuantumWalks concern evolution on lattices driven by quantum operations.
They describe namely Markovian dynamics influenced by internal degrees of free-
dom. They have been introduced originally by [2] (see also [15]). These OQWs are
promising tools to model physical problems, especially in computer science (see
[27]). They can also model a variety of phenomena, as energy transfer in biological
systems ([21]).

Continuous time models have been developed as natural continuous time limits
of discrete time models [24, 5]. In particular in [5], a natural extension of Brownian
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1 INTRODUCTION

motion called Open Quantum Brownian Motion has been constructed. In this
article, we focus on the continuous time open quantum walks (CTOQWs) model
presented in [24]. More precisely, we focus on CTOQWs on Zd. Briefly speaking,
CTOQWs on Zd concern the evolution of density operators of the form

µ =
∑
i∈Zd

ρ(i)⊗ |i〉〈i| ∈ H ⊗ CZd (1)

where the "Zd-component" represents the "position" of the walker andH is a Hilbert
space describing the internal degrees of freedom. In particular, if D denotes the
set of density operators of the form (1), CTOQWs are described by a semigroup
{φt} such that, φt preserves D for all t ≥ 0.

In the context of quantum walks, one is mainly interested in the position of
the walker. At time 0, starting with density matrix in D as (1), the quantum
measurement of the "position" gives rise to a probability distribution q0 on Zd,
such that, for all i ∈ Zd,

q0(i) = P(”that the walker is in i”) = Tr(ρ(i)) .

As well, after evolution, if

µt = φt(µ) =
∑
i∈Zd

ρ(t)(i)⊗ |i〉〈i|

then
qt(i) = P(”that the walker, at time t, is in i”) = Tr(ρ(t)(i)) .

In [24], it has been shown that usual classical continuous time Markov chains are
particular cases of CTOQWs. In particular one can easily construct models where
the distribution qt corresponds to the one of a classical continuous time Markov
chain. Contrary to continuous time Markov chains, the distribution qt of CTOQWs
cannot be in general recovered by the knowledge of the initial distribution q0. One
needs to have access to the full knowledge of the initial state µ. In this sense, this
justifies the name quantum walks.

Our models of continuous time quantum walks are rather different from the
usual models of unitary quantum walks. An essential difference concerns the large
time behaviour of the corresponding distribution qt. Let Qt be a random variable
of law qt, in the unitary quantum walk theory it has been shown that (Qt) satisfies
a Central Limit Theorem of the type

Qt

t
−→
t→∞

Q̃ ,

where Q̃ has distribution
dx

π
√

1− x2
.
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2 CONTINUOUS TIME OPEN QUANTUM WALKS

Note that such behaviour is not usual in classical probability where usually one
expects speed in

√
t and Gaussian law as limit in the Central Limit Theorem

(CLT). In our context, the distributions (qt)t≥0 express a rather classical behaviour
in large time in the sense that a more usual CLT holds. In particular this paper
is devoted to show that for CTOQWs one has the following weak convergence

Qt −m√
t
−→
t→∞
N (0, σ2) ,

where N (0, σ2) denotes usual Gaussian law. Such phenomena have also been
observed in the discrete setting of OQWs [1]. A key point to show this result
is the use of the quantum trajectories associated to the CTOQWs. In general,
quantum trajectories describe evolutions of quantum system undergoing indirect
measurements (see [3] for an introduction). In the context of CTOQWs, quantum
trajectories describe the evolution of the states undergoing indirect measurements
of the position of the walker. In particular these quantum trajectories appear
as solution of jump-type stochastic differential equations called stochastic master
equations (see [24] for link between discrete and continuous time models in the
context of OQW, one can also consult [5] for such an approach in the context of
Open Quantum Brownian Motion). In the physic literature, note that such models
appear also naturally in order to describe non-Markovian evolutions. They are
called non-Markov generalization of Lindblad equations (see [6, 25, 4]).

After establishing the CLT, our next goal is to investigate a Large Deviation
Principle (LDP) for the position of the walker. In particular under additional
assumptions, one can apply the Gärtner-Ellis Theorem in order to obtain the final
result (one can consult [7] for a similar result for discrete time OQWs).

The article is structured as follows. In Section 2, we present the model of CTO-
QWs on Zd. Next we develop the theory of quantum trajectories which describe
the continuous measurement of the position. In Section 3, we present the Central
Limit Theorem. Section 4 is devoted to the Large Deviation Principle (LDP).
Finally in Section 5, we present some examples which illustrate the CLT and the
LDP.

2 Continuous Time Open Quantum Walks

2.1 Main setup
The models of Continuous Time Open Quantum Walks have been formalized in
[24]. They arise as continuous limits of discrete time OQWs (we do not recall the
discrete time models and we refer to [2]). These limits processes are described by
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2 CONTINUOUS TIME OPEN QUANTUM WALKS

particular types of Lindblad master equations. Originally, these equations appear
in the "non-Markovian generalization of Lindblad theory" from Breuer [6]. In this
article, we focus on nearest neighbors, homogeneous CTOQWs on Zd.

In the sequel, H denotes a finite dimensional Hilbert space and SH denotes the
space of density matrix on H:

SH = {ρ ∈ B(H) | ρ∗ = ρ, ρ ≥ 0,Tr(ρ) = 1}.

We put Kd = H⊗CZd where CZd stands for the position of a particle whileH corre-
sponds to the internal degree of freedom of this particle. We consider the canonical
basis {e1, ..., ed} of Zd, we set e0 = 0d and ed+r = −er for all r ∈ {1, ..., d}. The
canonical basis of CZd is denoted by (|i〉)i∈Zd .

As announced we focus on particular diagonal density matrices of Kd:

D =

µ ∈ B(Kd), µ =
∑
i∈Zd

ρ(i)⊗ |i〉〈i|, ρ(i) ≥ 0,
∑
i∈Zd

tr
(
ρ(i)

)
= 1

 .
In the sequel we shall consider evolutions on Kd which preserve D. To this end

we consider a family of operators {Dr}r=1,...,2d on B(H) and we define the operators
{Br

i }r=1,...,2d on B(Kd) such that Br
i = Dr ⊗ |i+ er〉〈i|.

Now as announced the CTOQWs are generated by particular Lindblad master
equations. LetMc the following Lindblad operator on H⊗ CZd ,

Mc : B(H⊗ CZd) → B(H⊗ CZd)

µ 7→ −i[H ⊗ I, µ] +
∑
i∈Zd

2d∑
r=1

(
Br
i µB

r∗
i −

1
2{B

r∗
i B

r
i , µ}

)

where H is a self-adjoint operator on H which is called the Hamiltonian.

Let us introduce the operator

D0 = −iH − 1
2

2d∑
r=1

D∗rDr .

The next computation shows thatMc preserves the set D.
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2 CONTINUOUS TIME OPEN QUANTUM WALKS

Mc(µ) =
∑
i∈Zd

− i[H, ρ(i)]⊗ |i〉〈i|+
2d∑
r=1

Drρ(i)D∗r ⊗ |i+ er〉〈i+ er|

− 1
2

2d∑
r=1
{D∗rDr, ρ(i)} ⊗ |i〉〈i|


=
∑
i∈Zd

(D0ρ(i) + ρ(i)D∗0
)
⊗ |i〉〈i|+

2d∑
r=1

Drρ(i)D∗r ⊗ |i+ er〉〈i+ er|


=
∑
i∈Zd

D0ρ(i) + ρ(i)D∗0 +
2d∑
r=1

Drρ(i− er)D∗r

⊗ |i〉〈i| ,
for all µ =

∑
i∈Zd

ρ(i)⊗ |i〉〈i|.

The following proposition describes precisely our model of CTOQWs.

Proposition 2.1.1. [24] Let µ(0) =
∑
i∈Zd

ρ(0)(i)⊗ |i〉〈i|, the equation

d
dtµ

(t) =Mc(µ(t)), (2)

with initial condition µ(0) admits a unique solution (µ(t))t≥0 with values in D.
More precisely, µ(t) is of the form µ(t) =

∑
i∈Zd

ρ(t)(i)⊗ |i〉〈i| such that:

d
dtρ

(t)(i) = D0ρ
(t)(i) + ρ(t)(i)D∗0 +

2d∑
r=1

Drρ
(t)(i− er)D∗r ,

for all i ∈ Zd.

Definition 2.1.2. The evolution (2) is called a Continuous Time Open Quantum
Walk on Zd.

This definition is justified by the following. The operator Br
i transcribes the

idea that the particle localized in |i〉 can only jump to one of its nearest neighbors
|i+ er〉, and in this case, the transformation on H is governed by Dr. In the case
the particle stands still, the evolution on H is governed by D0. It is the exact
analogue of the usual OQWs for continuous time evolutions. An interesting fact
has been pointed out in [24], usual continuous time classical Markov chains can be
realized within this setup.

Now let us describe the probability distributions associated to CTOQWs.

5



2 CONTINUOUS TIME OPEN QUANTUM WALKS

Definition 2.1.3. Let µ(0) =
∑
i∈Zd

ρ(0)(i) ⊗ |i〉〈i|. Let µ(t) =
∑
i∈Zd

ρ(t)(i) ⊗ |i〉〈i| be

the solution of the equation

d
dtµ

(t) =Mc

(
µ(t)

)
.

We define
qt(i) = Tr

[
µ(t)I ⊗ |i〉〈i|

]
= Tr

[
ρ(t)(i)

]
(3)

and we denote Qt the random variable on Zd of law qt, that is

P[Qt = i] = qt(i),

for all i ∈ Zd.

As we can see in Section 3 and as it was announced in the introduction, the
shape of qt seems to converge to Gaussian shape. This is exactly the result pointed
out by the CLT in Section 3. In order to prove this, we shall need the theory of
quantum trajectories for CTOQWs.

2.2 Quantum trajectories
As in the discrete case, quantum trajectories are essential tools for showing the
CLT and the LDP. The description of quantum trajectories is less straightforward
than the one in OQWs. It makes use of stochastic differential equations driven by
jump processes. We refer to [24] for the justification of the below description and
the link between discrete and continuous time models. One can also consult [6]
where general indirect measurements for non-markovian generalization of Lindblad
equations have been developped.

Proposition 2.2.1. Let µ(0) =
∑
i∈Zd

ρ(0)(i)⊗ |i〉〈i| be an initial state on H⊗ CZd.

The quantum trajectory describing the indirect measurement of the position of the
CTOQWs led by Mc is modeled by a Markov process

(
ω(t) = ρt ⊗ |Xt〉〈Xt|

)
t≥0

.
This Markov process is valued in the set

P =
{
ρ⊗ |i〉〈i|, ρ ∈ SH, i ∈ Zd

}
such that

ω(0) = ρ(0)(i)
Tr
(
ρ(0)(i)

) ⊗ |i〉〈i| with probability Tr
(
ρ(0)(i)

)

6



2 CONTINUOUS TIME OPEN QUANTUM WALKS

and such that the following differential equation is satisfied:

ω(t) =ω(0) +
∫ t

0

(
D0ρs− + ρs−D

∗
0 − ρs−Tr(D0ρs− + ρs−D

∗
0)
)
⊗ |Xs−〉〈Xs−| ds

+
2d∑
r=1

∫ t

0

∫
R

 Drρs−D
∗
r

Tr(Drρs−D∗r)
⊗ |Xs− + er〉〈Xs− + er|

− ρs− ⊗ |Xs−〉〈Xs−|

10<y<Tr(Drρs−D∗r )N
r(dy, ds) (4)

where {N r}r∈{1,...,2d} are independent Poisson point processes on R2.
In particular the Markov process (ρt, Xt)t≥0 is valued in SH × Zd and satisfies

dρs =
(
D0ρs− + ρs−D

∗
0 − ρs−Tr(D0ρs− + ρs−D

∗
0)
)

ds

+
2d∑
r=1

∫
y∈R

 Drρs−D
∗
r

Tr(Drρs−D∗r)
− ρs−

10<y<Tr(Drρs−D∗r )N
r(dy, ds) , (5)

dXs =
2d∑
r=1

∫
y∈R

er 10<y<Tr(Drρs−D∗r )N
r(dy, ds) (6)

and (ρ0, X0) =
 ρ(0)(i)

Tr
(
ρ(0)(i)

) , i
 with probability Tr

(
ρ(0)(i)

)
.

Remark: The second expression of the description of quantum trajectories is the
exact continuous time analogue of the one described in [1] for OQWs. Let us briefly
explain how the quantum trajectories evolve in time. To this end we introduce:

∀r ∈ {1, ..., 2d}, Ñ r(t) =
∫ t

0

∫
R
10<y<Tr(Drρs−D∗r )N

r(dy, ds) . (7)

The processes Ñ r are Poisson processes with intensity
∫ t

0
Tr(Drρs−D

∗
r)ds. In par-

ticular the processes
Ñ r(t)−

∫ t

0
Tr(Drρs−D

∗
r)ds

are martingales with respect to the filtration induced by (ρt, Xt)t≥0. The evolution
described by (4) is deterministic and interrupted by jumps occurring at random
time, it is typically a Piecewise Deterministic Markov Process. The jumps are
generated by the Poisson processes (7). As we can check from Eq. (4), if ω(0) =
ρ⊗|i〉〈i| for some ρ ∈ SH and i ∈ Zd (that is |X0〉 = |i〉), the deterministic evolution
let the position unchanged until a jump occurs. Since the Poisson processes N r

7



3 CENTRAL LIMIT THEOREM

are indepedent, only one Poisson process is involved. If T denotes the time of the
first jump and assume the process N r is involved, the internal degree of freedom is
updated by ρT = DrρT−D

∗
r

Tr(DrρT−D∗r)
and the position is changed and becomes |i+ er〉.

This means that the particle has jumped from the position |i〉 to the position
|i + er〉. In other words we have |Xt〉 = |i〉, for all 0 ≤ t ≤ T− and |XT 〉 =
|i+er〉. Next, the deterministic evolution starts again with the new initial condition
ρT ⊗ |i+ er〉〈i+ er| until a new jump occur and so on.

The following result allows us to make the connection between CTOQWs and
their associated quantum trajectories.

Proposition 2.2.2. Let µ(t) the OQW defined in Proposition 2.1.1 and ω(t) the
associated quantum trajectory defined in Proposition 2.2.1. Then we have

∀t ≥ 0, E(ω(t)) = µ(t) .

Moreover, for all t ≥ 0, the random variables Xt and Qt have the same distri-
butions qt.

Proof. The first part is proved in [24]. For the second part, let φ a bounded
continuous map on Zd, we get:

E(φ(Qt)) =
∑
i∈Zd

φ(i)Tr
(
µ(t)(I ⊗ |i〉〈i|)

)
=
∑
i∈Zd

φ(i)Tr
(
E(ω(t))(I ⊗ |i〉〈i|)

)

=
∑
i∈Zd

φ(i)E
Tr

(
ω(t)(I ⊗ |i〉〈i|)

)
=
∑
i∈Zd

φ(i)E
(
Tr(|Xt〉〈Xt||i〉〈i|)

)
=
∑
i∈Zd

φ(i)E(1Xt=i)

= E(φ(Xt)) ,

and the result holds.

In the next section, we state the CLT.

3 Central Limit Theorem
This section is devoted to prove the Central Limit Theorem for CTOQWs. The
result holds under some assumption concerning the Lindblad operator on H. This

8



3 CENTRAL LIMIT THEOREM

operator is defined below.

L : B(H) → B(H)

ρ 7→ D0ρ+ ρD∗0 +
2d∑
r=1
DrρD

∗
r .

Our main assumption for the CLT is the following.

• (H1) There exists a unique density matrix ρinv ∈ SH such that

L(ρinv) = 0 .

In particular dimKer(L) = 1.

Under the condition (H1), we have the following ergodic theorem which is a
particular case of the Ergodic Theorem of [19]. In particular this theorem shall be
useful in the proof of the CLT.

Theorem 3.0.3 ([19]). Assume (H1). Let (ρt, Xt)t≥0 the Markov process defined
in Proposition 2.2.1, therefore

1
t

∫ t

0
ρsds a.s.−→ ρinv .

Now, our strategy to show the CLT consists in reducing the problem to a CLT
for martingales with the help of the solution of the Poisson equation. To this end
let us introduce the generator of the process (ρt, Xt)t≥0.

We denote A the Markov generator of the process (ρt, Xt)t≥0 and D(A) his
domain. For all f ∈ D(A), ρ ∈ SH and x ∈ Zd, we get

Af(ρ, x) = D(ρ,x)f(F(ρ), 0)

+
2d∑
r=1

[
f

(
DrρD

∗
r

Tr(DrρD∗r)
, x+ er

)
− f(ρ, x)

]
Tr(DrρD

∗
r) (8)

where F(ρ) = D0ρ + ρD∗0 − ρTr(D0ρ + ρD∗0) for all ρ ∈ SH and where D(ρ,x)f
denotes the differential of f at (ρ, x).

Remark: Note that in the sequel we do not need to make precise the exact do-
main of A. Actually we shall apply the Markov generator on C1 functions.

We shall also need the following quantity,

m =
2d∑
r=1

Tr(DrρinvD
∗
r)er .

The following lemma shall be used in the proof.

9



3 CENTRAL LIMIT THEOREM

Lemma 3.0.4. For all u ∈ Rd, the equation

L∗(Ju) = −
( 2d∑
r=1

(er.u)D∗rDr − (m.u)I
)

(9)

admits a solution and the difference between any couple of solutions of (9) is a
multiple of the identity.
Proof. First, let us remark that

Tr
(
ρinv

( 2d∑
r=1

(er.u)D∗rDr − (m.u)I
))

=
2d∑
r=1

Tr(DrρinvD
∗
r)(er.u)−(m.u)Tr(ρinv) = 0 ,

which implies that −
( 2d∑
r=1

(er.u)D∗rDr − (m.u)I
)
∈ {ρinv}⊥. But by hypothesis,

we have {ρinv}⊥ = Ker(L)⊥. Moreover, since Ker(L)⊥ = Im(L∗), we finally get
that

−
( 2d∑
r=1

(er.u)D∗rDr − (m.u)I
)
∈ Im(L∗)

which proves the existence of the lemma. Now we prove the second part. To this
end consider Ju and J ′u two solutions of (9) and set Hu = Ju − J ′u. It is then clear
that

L∗(Hu) = 0 .
Therefore Hu ∈ Ker(L∗). Since dimKer(L) = 1, we get dimKer(L∗) = 1 and since

L∗(I) = D∗0 +D0 +
2d∑
r=1

D∗rDr = 0, the operator Hu is necessarily a multiple of the

identity.

From now on, for u ∈ Rd, we denote Ju the unique solution of (9) such that
Tr(Ju) = 0. Moreover, if u = er, then we simply write Ju = Jr. Using the linearity
of L∗, one can notice that:

Ju =
d∑
r=1

urJr ,

for all u = (u1, . . . , ud) ∈ Rd.
The next lemma concerns the Poisson equation in our context (see [20] for more

details on the Poisson equation).
Lemma 3.0.5. For all (ρ, x) ∈ S× Zd and u ∈ Rd, let set

fu(ρ, x) = Tr(ρJu) + x.u . (10)

Then fu is solution of the Poisson equation:

Afu(ρ, x) = m.u . (11)

10



3 CENTRAL LIMIT THEOREM

Proof. For all (ρ, x) ∈ S×Zd and u ∈ Rd, we complete the following computation:

Afu(ρ, x) = Tr(F(ρ)Ju)

+
2d∑
r=1

Tr
 DrρD

∗
r

Tr(DrρD∗r)
Ju

+ x.u+ er.u− Tr(ρJu)− x.u
Tr(DrρD

∗
r)

= Tr
(
D0ρJu + ρD∗0Ju − Tr(D0ρ+ ρD∗0)ρJu

)
+

2d∑
r=1

Tr(DrρD
∗
rJu) + Tr(DrρD

∗
r)(er.u)− Tr

(
Tr(DrρD

∗
r)ρJu

)

= Tr
ρ
JuD0 +D∗0Ju +

2d∑
r=1

D∗rJuDr +
2d∑
r=1

D∗rDr(er.u)


= Tr
ρ
L∗(Ju) +

2d∑
r=1

D∗rDr(er.u)


= Tr
(

(m.u)ρ
)

= m.u ,

so fu is solution of the Poisson equation (11).

Now we have found the solution of the Poisson equation, we express the CLT
for martingales that we shall use.
Theorem 3.0.6 ([10]). Let (Mt)t≥0 be a real, càdlàg, and square integrable mar-
tingale. Suppose the following conditions:

lim
t→∞

E
(

1√
t

sup
0≤s≤t

|∆Ms|
)

= 0 (12)

and
lim
t→∞

[M,M ]t
t

= σ2 (13)

for some σ ≥ 0, then
Mt√
t

L−→
t→+∞

N (0, σ2) .

We shall also use the following lemma which is a straightforward consequence
of the law of large numbers for martingales (see [26]).
Lemma 3.0.7. Let Zt a real, càdlàg, and square integrable martingale which sat-
isfies 〈Z,Z〉t ≤ Kt for a constant K, then

Zt
t

a.s.−→ 0 .

11



3 CENTRAL LIMIT THEOREM

The last lemma below shall be useful in this part as well as in the next one.

Lemma 3.0.8. For all t ≥ 0 and all u ∈ Rd, we have

E
[

sup
0≤s≤t

|Xs −X0|
]
≤ (2d)t and

E
[

sup
0≤s≤t

eu.(Xs−X0)
]
≤ exp

(
(2d)t(e|u| − 1)

)
.

Proof. Let t ≥ 0 and u ∈ Rd,

E
[

sup
0≤s≤t

eu.(Xs−X0)
]
≤ E

[
e|u|

∫ t

0 |dXs|
]

≤ E
[
exp

(
|u|

2d∑
r=1

∫ t

v=0

∫
y∈R

10<y<Tr(DrρvD∗r )N
r(dy, dv)

)]

≤ E
[
exp

(
|u|

2d∑
r=1

∫ t

0

∫ 1

y=0
N r(dy, dv)

)]
.

Since N r are independent Poisson point processes on R2, we get

E
[

sup
0≤s≤t

eu.(Xs−X0)
]
≤ E

[
exp

(
|u|
∫ t

0

∫ 1

y=0
N1(dy, dv)

)]2d

≤ exp
(

(2d)t(e|u| − 1)
)
.

In the same way, one can prove that

E
[

sup
0≤s≤t

|Xs −X0|
]
≤ E

[ 2d∑
r=1

∫ t

v=0

∫ 1

y=0
N r(dy, dv)

]
≤ (2d)t .

Now, we are in the position to state the main result of this section.

12



3 CENTRAL LIMIT THEOREM

Theorem 3.0.9. Assume (H1) holds. Let (ρt, Xt)t≥0 the Markov process defined
in Proposition 2.2.1 then

Xt − tm√
t

L−→
t→+∞

N (0, V ) ,

where V ∈Md(R) such that for all r, q ∈ {1, ..., d},

Vrq = −mqTr(ρinvJr)−mrTr(ρinvJq)
+δrq

(
Tr(DrρinvD

∗
r) + Tr(Dr+dρinvD

∗
r+d)

)
+Tr(DqρinvD

∗
qJr) + Tr(DrρinvD

∗
rJq)

−Tr(Dq+dρinvD
∗
q+dJr)− Tr(Dr+dρinvD

∗
r+dJq) .

Remark: Proposition 2.2.2 implies then the CLT for the process (Qt)t≥0 as it
holds for (Xt)t≥0.

Proof. As announced, the proof is a combination of Lemma 3.0.5 and Theorem
3.0.6. Let u ∈ Rd and fu the C1 function defined in Lemma 3.0.5. Since A is the
generator of (ρt, Xt)t≥0, following the theory of problem of martingale, the process
(Mt)t≥0 defined by

Mt = fu(ρt, Xt)− fu(ρ0, X0)−
∫ t

0
Afu(ρs−, Xs−)ds

= Tr(ρtJu)− Tr(ρ0Ju) +Xt.u−X0.u− (m.u)t

is a local martingale with respect to the filtration F associated to (ρt, Xt)t≥0 (see
[26, 13] for more details on problem of martingale). In order to apply Theorem
3.0.6, we shall show that (Mt) is a true martingale. To this end it is sufficient

to show that E

 sup
0≤s≤t

|Ms|

 < ∞ (see [13] for more details). This way, since

|Tr(ρJu)| ≤ ‖Ju‖∞ for all ρ ∈ SH, one can check with the help of Lemma 3.0.8
that

E

 sup
0≤s≤t

|Ms|

 ≤ 2‖Ju‖∞ + 2d|u|t+ |m.u|t .

Now we shall see that (Mt) fulfills the conditions of Theorem 3.0.6. The first
one is the easiest one. Indeed,

|∆Ms| ≤ |Tr(∆ρsJu)|+ |∆Xs.u| ≤ 2‖Ju‖∞ + |u| .

This shows that ∆Ms is bounded independently of s and thus the condition (12)
holds. Now, we check that (Mt) satisfies Equation (13). The bracket [M,M ]t

13



3 CENTRAL LIMIT THEOREM

satisfies:

d[M,M ]s = d[u.X, u.X]s + 2 d[u.X,Tr(ρJu)]s + d[Tr(ρJu),Tr(ρJu)]s

=
2d∑
r=1

(er.u)2Ñ r(ds) + 2
2d∑
r=1

(er.u)Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

Ñ r(ds)

−2
2d∑
r=1

(er.u)Tr(ρs−Ju)Ñ r(ds) +
2d∑
r=1

Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

2

Ñ r(ds)

−2
2d∑
r=1

Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

Tr(ρs−Ju)Ñ r(ds) +
2d∑
r=1

Tr(ρs−Ju)2Ñ r(ds)

=
2d∑
r=1

Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

2

− Tr(ρs−Ju)2

Ñ r(ds)

−2Tr(ρs−Ju)
2d∑
r=1

Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

− Tr(ρs−Ju) + (er.u)
 Ñ r(ds)

+
2d∑
r=1

(er.u)2Ñ r(ds) + 2
2d∑
r=1

(er.u)Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

Ñ r(ds) .

Now we shall make the martingales Y r(t) = Ñ r(t)−
∫ t

0
Tr(Drρs−D

∗
r)ds appear

in the first and the last term of the above expression. Concerning the second term,
we recognize dTr(ρsJu) and d(Xs.u) to get

d[M,M ]s =
2d∑
r=1

Tr
(

Drρs−D
∗
r

Tr(Drρs−D∗r)
Ju

)2

− Tr(ρs−Ju)2

Y r(ds)

+
2d∑
r=1

Tr
(

Drρs−D
∗
r

Tr(Drρs−D∗r)
Ju

)2

− Tr(ρs−Ju)2

Tr(Drρs−D
∗
r)ds

−2Tr(ρs−Ju)
(

dTr(ρsJu) + d(Xs.u)− Tr(F(ρs−)Ju)ds
)

+
2d∑
r=1

(er.u)2Y r(ds) + 2
2d∑
r=1

(er.u)Tr
(

Drρs−D
∗
r

Tr(Drρs−D∗r)
Ju

)
Y r(ds)

+
2d∑
r=1

(er.u)2Tr(Drρs−D
∗
r)ds+ 2

2d∑
r=1

(er.u)Tr(Drρs−D
∗
rJu)ds . (14)

14



3 CENTRAL LIMIT THEOREM

One can remark that for h(ρ, x) := Tr(ρJu)2, we get for all (ρ, x) ∈ SH × Zd:

Ah(ρ, x) = 2Tr
(
F(ρ)Ju

)
Tr
(
ρJu

)
+

2d∑
r=1

Tr
(

DrρD
∗
r

Tr(DrρD∗r)
Ju

)2

− Tr(ρJu)2

Tr(DrρD
∗
r) . (15)

Since h ∈ C1, the process (Sht )t≥0 defined by:

Sht = Tr(ρtJu)2 − Tr(ρ0Ju)2 −
∫ t

0
Ah(ρs−, Xs−)ds

is a local martingale. Besides, since |Tr(ρJu)| ≤ ‖Ju‖∞ for all ρ ∈ SH, one has

E

 sup
0≤s≤t

|Sht |

 ≤ α + βt <∞

for all t ≥ 0, so Sht is actually a true martingale.
Now using Equation (15) in the second line of (14) and recognizing dMt in the

third one, we have

d[M,M ]s =
2d∑
r=1

Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

2

− Tr(ρs−Ju)2

Y r(ds)

+Ah(ρs−, Xs−)ds− 2Tr
(
F(ρs−)Ju

)
Tr
(
ρs−Ju

)
ds

−2Tr(ρs−Ju)
(

dMs + (m.u)ds− Tr
(
F(ρs−)Ju

)
ds
)

+
2d∑
r=1

(er.u)2Y r(ds) + +2
2d∑
r=1

(er.u)Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

Y r(ds)

+
2d∑
r=1

(er.u)2Tr(Drρs−D
∗
r)ds+ 2

2d∑
r=1

(er.u)Tr(Drρs−D
∗
rJu)ds

=
2d∑
r=1

Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

2

− Tr(ρs−Ju)2 + (er.u)2

+ 2(er.u)Tr
 Drρs−D

∗
r

Tr(Drρs−D∗r)
Ju

Y r(ds)

−dShs − 2Tr(ρs−Ju)dMs + d
(
Tr(ρsJu)2

)
+Tr

(
ρs−

[
−2(m.u)Ju +

2d∑
r=1

(er.u)2D∗rDr + 2
2d∑
r=1

(er.u)D∗rJuDr

])
ds .

(16)
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3 CENTRAL LIMIT THEOREM

Let us denote by Hr
s the term in front of Y r(ds). Now, we shall apply Lemma

3.0.7. To this end, recall that for all ρ ∈ SH, |Tr(ρJu)| ≤ ‖Ju‖∞, this implies the
following estimates:

〈
∫ .

0
Hr
sdY r

s ,
∫ .

0
Hr
sdY r

s 〉t ≤ (2‖Ju‖2
∞ + |u|2 + 2|u|‖Ju‖∞)2‖D∗rDr‖∞t ,

〈
∫ .

0
−2Tr(ρs−Ju)dMs,

∫ .

0
−2Tr(ρs−Ju)dMs〉t ≤ 4‖Ju‖2

∞(|u|+2‖Ju‖∞)2
( 2d∑
r=1
‖D∗rDr‖∞

)
t ,

〈Sh, Sh〉t ≤ 64‖Ju‖4
∞

( 2d∑
r=1
‖D∗rDr‖∞

)
t .

Lemma 3.0.7 shows that only the last term of (16) contributes to lim
t→∞

[M,M ]t
t

.
Applying Theorem 3.0.3, we get

lim
t→∞

[M,M ]t
t

= lim
t→∞

1
t

∫ t

0
Tr
ρs−

− 2(m.u)Ju +
2d∑
r=1

(er.u)2D∗rDr

+ 2
2d∑
r=1

(er.u)D∗rJuDr

ds

= Tr
(
ρinv

[
−2(m.u)Ju +

2d∑
r=1

(er.u)2D∗rDr + 2
2d∑
r=1

(er.u)D∗rJuDr

])
.

Now defining σ2
u = Tr

(
ρinv

[
−2(m.u)Ju +

2d∑
r=1

(er.u)2D∗rDr + 2
2d∑
r=1

(er.u)D∗rJuDr

])
,

Theorem 3.0.6 states that:
Mt√
t

= Xt.u− (m.u)t+ Tr(ρtJu)− Tr(ρ0Ju)−X0.u√
t

L−→
t→+∞

N (0, σ2
u) .

Now since, since
(

Tr(ρtJu)−Tr(ρ0Ju)−X0.u
)
is bounded independently of t,

one can obviously deduce that for all u = (u1, ..., ud) ∈ Rd, one has

Xt.u− (m.u)t√
t

L−→
t→+∞

N (0, σ2
u),

where

σ2
u = −2

d∑
r,q=1

uruqmqTr(ρinvJr) +
d∑
r=1

u2
r

(
Tr(DrρinvD

∗
r) + Tr(Dr+dρinvD

∗
r+d)

)

+2
d∑

r,q=1
uruq

(
Tr(DqρinvD

∗
qJr)− Tr(Dq+dρinvD

∗
q+dJr)

)
.

16



4 LARGE DEVIATION PRINCIPLE

Finally we can check that σ2
u =

d∑
r,q=1

uruqVrq for all u = (u1, ..., ud) ∈ Rd, which

ends the proof.

We finish this section by specifying the case d = 1. This is the simpler case
where the walker can only jump to the right or the left. The Markov process
(ρt, Xt)t≥0, with values in SH×Z, is defined by the following differential equations:

dρs =
(
D0ρs− + ρs−D

∗
0 − ρs−Tr(D0ρs− + ρs−D

∗
0)
)

ds

+
(

D1ρs−D
∗
1

Tr(D1ρs−D∗1) − ρs−
)
Ñ1(ds) +

(
D2ρs−D

∗
2

Tr(D2ρs−D∗2) − ρs−
)
Ñ2(ds)

and dXs = Ñ1(ds)− Ñ2(ds),

where D0, D1, D2 ∈ B(H) such that D0 +D∗0 +D∗1D1 +D∗2D2 = 0.

Theorem 3.0.10. Suppose that the Lindblad operator

L(ρ) = D0ρ+ ρD∗0 +D1ρD
∗
1 +D2ρD

∗
2

admits a unique density matrix ρinv such that L(ρinv) = 0.

Set m = Tr(D1ρinvD
∗
1) − Tr(D2ρinvD

∗
2), and let J the unique solution of

L∗(J) = −D∗1D1 +D∗2D2 +mI such that Tr(J) = 0.

Then, we have the following CLT

Xt − tm√
t

L−→
t→+∞

N (0, σ2)

where σ2 = Tr(ρinv[−2mJ +D∗1D1 +D∗2D2 + 2D∗1JD1 − 2D∗2JD2]).

4 Large Deviation Principle
Here, we study a Large Deviation Principle (LDP) for CTOQWs. Our proof is
inspired by strategies developed in [17, 7] which are essentially based on the appli-
cation of the Gärtner-Ellis Theorem ([12]). In the following, one can notice that
the Perron-Frobenius Theorem for positive maps ([14]) is the main tool to apply
the Gärtner-Ellis Theorem.

17



4 LARGE DEVIATION PRINCIPLE

In order to prove the LDP, we shall use a deformed Lindblad operator. From
now on, we define for all u ∈ Rd, the operators D(u)

r = e
u.er

2 Dr, r ∈ {0, . . . , 2d},
and we denote L(u) the deformed Lindblad operator associated to the operators
D(u)
r , that is,

L(u)(ρ) = D0ρ+ ρD∗0 +
2d∑
r=1

eu.erDrρD
∗
r ,

for all ρ ∈ SH.
Now, defining

φ(u)(ρ) =
2d∑
r=1

eu.erDrρD
∗
r ,

for all ρ ∈ SH and all u ∈ Rd, we can see that L(u) is written in the usual Lindblad
form, that is L(u)(ρ) = D0ρ+ ρD∗0 + φ(u)(ρ). This way, the semi-group {etL(u)}t≥0
is a completely positive (CP) semi-group (see [9] for the proof). In a same way,
we write L as:

L(ρ) = D0ρ+ ρD∗0 + φ(ρ)

for all ρ ∈ SH where φ(ρ) =
2d∑
r=1

DrρD
∗
r .

In this part, the notion of irreducibility is required. This notion was originally
defined in [11]. There are several equivalent definitions that the reader can find in
[7, 8].

Definition 4.0.11. The CP map φ : ρ 7→
2d∑
r=1

DrρD
∗
r is called irreducible if for any

non-zero x ∈ H, the set C[D]x is dense in H, where C[D] is the set of polynomials
in Dr, r ∈ {1, ..., 2d}.

In the sequel, we need {etL(u)}t≥0 to be positivity improving. This means that
for all t > 0 and for all A ≥ 0, A ∈ B(H), one has etL(u)(A) > 0. The following
lemma provides an effective criterion for verifying that {etL(u)}t≥0 is positivity
improving.

Lemma 4.0.12. If φ is irreducible, then φ(u) is irreducible by a direct application
of Definition 4.0.11 and therefore {etL(u)}t≥0 is positivity improving ([17]).

The next two lemmas are relevant in the proof of the main theorem of this part.
In particular, the following lemma describes the largest eigenvalue associated to
the deformed Lindblad semigroup {etL(u)}t≥0.

18



4 LARGE DEVIATION PRINCIPLE

Lemma 4.0.13. Let t ≥ 0, suppose that φ is irreducible. Set
lu = max{Re(λ), λ ∈ Sp(L(u))} .

Then etlu is an algebraically simple eigenvalue of etL(u), and the associated eigen-
vector Vu is strictly positive (which can be normalized to be in SH). Besides, the
map u 7→ lu can be extended to be analytic in a neighbourhood of Rd.
Proof. The first part has been proved in [17], the proof is based on the Perron-
Frobenius Theorem for CP maps ([14]). In particular, using such result, one get
that the multiplicity of etlu is geometrically simple and that Vu is strictly positive.
It remains to show the algebraic simplicity. To this end, we introduce:

Ψ(X) = V
− 1

2
u et(L

(u)−lu)(V
1
2
u XV

1
2
u )V −

1
2

u .

Then Ψ(I) = I, hence ‖Ψ‖ = 1 and Ψ∗ is trace preserving. Moreover it is clear
that Ψ is positivity improving, then 1 is a geometrically simple eigenvalue of Ψ,
therefore this holds for Ψ∗ too. By applying Theorem 2.5. of [14], one get that
the associated eigenvector X1 is positive. Assume by contradiction that 1 is not
algebraically simple for Ψ∗. Then the Jordan decomposition shows that there exists
X2 such that Ψ∗(X2) = X1 +X2 . Then, since Ψ∗ is trace preserving, Tr(X1) = 0,
hence X1 = 0 which is impossible. This implies that etlu is algebraically simple for
etL

(u) . The analyticity of u 7→ lu is a simple application of perturbation theory for
matrix eigenvalues (see Chapter II in [18]).

The next lemma describes the link between the moment generating function of(
Xt −X0

)
and the deformed Lindblad semigroup.

Lemma 4.0.14. For all t ≥ 0 and all u ∈ Rd, one has

E
(
eu.(Xt−X0)

)
= Tr

(
etL

(u)(E[ρ0])
)
.

Proof. The idea of the proof consists in rewriting E
(
eu.(Xt−X0)

)
with the help of

a Dyson expansion. From now, we set u ∈ Rd and f : (ρ, x) 7→ eu.x ∈ C1. Since A
is also the generator of (ρt, Xt −X0)t≥0, the process (M f

t )t≥0 defined by

M f
t = f(ρt, Xt −X0)− f(ρ0, 0)−

∫ t

0
Af(ρt1−, Xt1− −X0)dt1

is a local martingale. Due to Lemma 3.0.8, one has the following upper bound.

E

 sup
0≤s≤t

|M f
s |

 ≤ exp
(

(2d)t(e|u| − 1)
)

+ 1

+ (e|u| + 1)
( 2d∑
r=1
‖D∗rDr‖∞

)
exp

(
(2d)t(e|u| − 1)

)
.
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4 LARGE DEVIATION PRINCIPLE

Then E

 sup
0≤s≤t

|M f
s |

 < ∞, for all t ≥ 0 which implies that (M f
t )t≥0 is a true

martingale. This leads to

E
(
f(ρt, Xt −X0)

)
= E

(
f(ρ0, 0)

)
+ E

( ∫ t

0
Af(ρt1 , Xt1 −X0)dt1

)
.

This way, we can develop E
(
eu.(Xt−X0)

)
. For all t ≥ 0,

E
(
eu.(Xt−X0)

)
= 1 + E

∫ t

0

2d∑
r=1

[
eu.(Xt1−X0+er) − eu.(Xt1−X0)

]
Tr(Drρt1D

∗
r) dt1


= 1 + E

∫ t

0
eu.(Xt1−X0)

Tr(L(u)(ρt1))

− Tr(D0ρt1 + ρt1D
∗
0 +

2d∑
r=1

Drρt1D
∗
r)
 dt1

)

= 1 + E

∫ t

0
eu.(Xt1−X0)Tr

(
L(u)(ρt1)

)
dt1


= 1 +

∫ t

0
Tr
L(u)

E[eu.(Xt1−X0)ρt1

] dt1 . (17)

In a similar way, we want to develop E
[
eu.(Xt1−X0)ρt1

]
. Let g : (ρ, x) 7→ eu.xρ ∈ C1,

the process (M g
t )t≥0 defined by

M g
t = g(ρt, Xt −X0)− g(ρ0, 0)−

∫ t

0
Ag(ρt2−, Xt2− −X0)dt2

is a local martingale. One can also check that E
 sup

0≤s≤t
|M g

s |

 < ∞ for all t ≥ 0,
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4 LARGE DEVIATION PRINCIPLE

which implies that (M g
t )t≥0 is a true martingale. And therefore, one has

E
[
eu.(Xt1−X0)ρt1

]
= E(ρ0) + E

( ∫ t1

0
eu.(Xt2−X0)F(ρt2)dt2

)

+E

∫ t1

0

2d∑
r=1

eu.(Xt2−X0+er) Drρt2D
∗
r

Tr(Drρt2D
∗
r)

− eu.(Xt2−X0)ρt2

Tr(Drρt2D
∗
r)dt2


= E(ρ0) + E

∫ t1

0
eu.(Xt2−X0)

Tr
(
L(u)(ρt2)

)

− ρt2Tr
D0ρt2 + ρt2D

∗
0 +

2d∑
r=1

Drρt2D
∗
r

dt2


= E(ρ0) +

∫ t1

0
Tr
L(u)

(
E
[
eu.(Xt2−X0)ρt2

]) dt2 . (18)

We plug (18) into (17) and we get, for all t ≥ 0,

E
(
eu.(Xt−X0)

)
= 1 + tTr

(
L(u)(E[ρ0])

)

+
∫ t

0

∫ t1

0
Tr
(L(u)

)2
(
E
[
eu.(Xt2−X0)ρt2

]) dt2dt1 .

By iterating this procedure, we obtain

E
(
eu.(Xt−X0)

)
=Tr

 j∑
k=0

tk

k!
(
L(u)

)k (
E[ρ0]

)
+
∫

0<tj<...<t
Tr
(L(u)

)j+1
(
E
[
eu.(Xtj+1−X0)ρtj+1

]) dtj+1...dt1 .

for all j ∈ N. Now it is obvious that the first term converges to Tr
etL(u)

(
E[ρ0]

)
when j goes to infinity. In order to conclude it remains to prove that the second
terms converges to zero. Let us estimate its norm.

∥∥∥∥∥∥
∫

0<tj<...<t
Tr
(L(u)

)j+1
(
E
[
eu.(Xtj+1−X0)ρtj+1

]) dtj+1...dt1

∥∥∥∥∥∥
1

≤ tj+1

(j + 1)!
∥∥∥L(u)

∥∥∥j+1

1
sup

0≤s≤t
E
[
eu.(Xs−X0)

]
.
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Finally, thanks to Lemma 3.0.8 and Jensen’s inequality,∥∥∥∥∥∥
∫

0<tj<...<t
Tr
(L(u)

)j+1
(
E
[
eu.(Xtj+1−X0)ρtj+1

]) dtj+1...dt1

∥∥∥∥∥∥
1

≤ tj+1

(j + 1)!
∥∥∥L(u)

∥∥∥j+1

1
e(2d)t(e|u|−1)

which converges to 0 when j goes to infinity.

Now, we can state the main result of this part.

Theorem 4.0.15. Let (ρt, Xt)t≥0 the Markov process defined in Proposition 2.2.1.
Assume that φ is irreducible. The process

(
Xt −X0

t

)
t≥0

satisfies a Large Deviation
Principle with a good rate function Λ∗.

Explicitly there exists a lower semicontinuous mapping Λ∗ : Rd 7→ [0,+∞] with
compact level sets {x|Λ∗(x) ≤ α}, such that, for all open set G and all closed set
F with G ⊂ F ⊂ Rd, one has:

− inf
x∈G

Λ∗(x) ≤ lim inf
t→+∞

1
t

logP
Xt −X0

t
∈ G



≤ lim sup
t→+∞

1
t

logP
Xt −X0

t
∈ F

 ≤ − inf
x∈F

Λ∗(x) .

Moreover, Λ∗ can be expressed explicitly,

Λ∗ : x 7→ sup
u∈Rd

(u.x− lu)

where lu is defined in Lemma 4.0.13.

Remark: Moreover, if E(eu.X0) <∞ then the LDP holds for (Xt)t≥0 and not only
for (Xt − X0)t≥0. In this case, Proposition 2.2.2 allows us to have the LDP for
(Qt)t≥0.

Proof. The main tool of the proof is the Gärtner-Ellis Theorem (GET) (see [12]).
We focus on the moment generating function which is involved in the GET. Let
t ≥ 0 and u ∈ Rd, Lemma 4.0.14 implies that

E(eu.(Xt−X0)) = Tr
(
etL

(u)(E[ρ0]
))

=
∑
i∈Zd

Tr
(
etL

(u)(
ρ(0)(i)

))
.
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Set 0 < ε < t. Due to Lemma 4.0.12, eεL(u) has the property of positivity
improving, therefore eεL(u)(

ρ(0)(i)
)
is strictly positive for all i ∈ Zd.

If we set ru,i = inf
(
Sp
[
eεL

(u)(
ρ(0)(i)

)])
> 0 and su,i =

Tr
(
eεL

(u)
(
ρ(0)(i)

))
inf Sp(Vu)

then

Sp
[
eεL

(u)(
ρ(0)(i)

)
− ru,iVu

]
⊂ R+ and Sp

[
su,iVu − eεL

(u)(
ρ(0)(i)

)]
⊂ R+, and thus

ru,iVu ≤ eεL
(u)
(
ρ(0)(i)

)
≤ su,iVu .

Since e(t−ε)L(u) preserves the positivity, we get

ru,ie
(t−ε)luVu ≤ etL

(u)
(
ρ(0)(i)

)
≤ su,ie

(t−ε)luVu .

Taking the trace, Lemma 4.0.14 yields

e(t−ε)lu
∑
i∈Zd

ru,i ≤ E
(
eu.(Xt−X0)

)
≤ e(t−ε)lu

∑
i∈Zd

su,i .

The sums are finite and positive, then we have

lim
t→+∞

1
t

log
(
E
(
eu.(Xt−X0)

))
= lu .

Now define Λt : u 7→ log
(
E
(
eu.

Xt−X0
t

))
the logarithm of the moment generating

function of Xt −X0

t
, and Λ : u 7→ lu. We have shown that

lim
t→+∞

1
t
Λt(tu) = Λ(u) .

Since Λ is analytic (Lemma 4.0.13), Gärtner-Ellis Theorem can be applied, this
proves the LDP and the associated good rate function is

Λ∗ : x 7→ sup
u∈Rd

(u.x− lu) .

5 Examples
Let us illustrate the results above with some examples.

In the case d = 1, we obtain a random walk on Z where the walker can stand
still some random time, jump to the right or jump to the left, these transformations
are respectly governed by D0, D1 or D2. We must have:

D0 +D∗0 +D∗1D1 +D∗2D2 = 0 .
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5 EXAMPLES

1. The constraint above is respected in this concrete example:

D0 = −1
2I, D1 = 1√

3

(
1 1
0 1

)
and D2 = 1√

3

(
1 0
−1 1

)
.

This example falls within the scope of the CLT, in fact (H1) is checked with
ρinv = 1

2I. We get

m = Tr(D1ρinvD
∗
1)− Tr(D2ρinvD

∗
2) = 0 ; J = 1

6

(
−5 2
2 5

)
; σ2 = 8

9 .

Then Xt√
t

L−→
t→+∞

N (0, 8
9). This result is illustrated with numerical simulations

in Figure 1.

Figure 1: Evolution of the distribution of the CTOQW starting from a state localized in 0. The X-axis stands
for the position |i〉 on Z, the Y -axis stands for the time t and the Z-axis returns the distribution qt(i).

One can check that φ is irreducible. Hence the process
(
Xt −X0

t

)
t≥0

satisfies
a LDP with a good rate function Λ∗ : x 7→ sup

u∈Rd

(u.x − lu) (see Figure 2 for

numerical computations).

2. We focus on an other example on Z:

D0 =

−
3
8 0

0 −1
4

 , D1 =

0 1
21

2 0

 and D2 =

 0 1
21√

2
0

 .
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5 EXAMPLES

Figure 2: Λ∗ for the first example.

We get

L(ρ) = 0 ⇐⇒ ρ =


2
5 0

0 3
5

 .

This implies that (H1) is satisfied with

ρinv =


2
5 0

0 3
5

 .

In particular, we have here

m = Tr(D1ρinvD
∗
1)− Tr(D2ρinvD

∗
2) = − 1

10 ; J = 1
10

(
−1 0
0 1

)
; σ2 = 73

125 .

The Central Limit Theorem yields:

Xt + t
10√
t

L−→
t→+∞

N (0, 73
125) .
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The reader can easily check that φ is irreducible with the help of Definition
4.0.11. Hence the process

(
Xt −X0

t

)
t≥0

satisfies a LDP with a good rate

function Λ∗ : x 7→ sup
u∈Rd

(u.x− lu) where lu = max{<(λ), λ ∈ Sp(L(u))}.

Here L(u) has a simple form in the canonical basis ofM2(C):

L(u) = 1
8


−6 0 0 2(eu + e−u)
0 −5 2(eu +

√
2e−u) 0

0 2(eu +
√

2e−u) −5 0
2(eu + 2e−u) 0 0 −4

 .

Hence, tedious computations show that lu = 1
32

(
20+
√

208 + 64e2u + 128e−2u
)
.

Figure 3 displays the good rate function Λ∗.

Figure 3: Λ∗ for the second example.

3. Now, we study an example of CTOQWs on Z2, this example is defined by
the operators below:

D0 =

−
1
2 0

0 −3
8

 , D1 = 1√
6

(
1 1
0 1

)
, D2 = 1

2
√

2

(
0 1
0 1

)
,

D3 = 1√
6

(
1 0
−1 1

)
and D4 = 1√

2

(
1 0
0 0

)
.
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5 EXAMPLES

Again, we check that:

D0 +D∗0 +D∗1D1 +D∗2D2 +D∗3D3 +D∗4D4 = 0 .

Figure 4 represents the evolution of the distribution of the CTOQW with

µ(0) =
0 0

0 1
2

⊗ |(0, 0)〉〈(0, 0)|+
1

2 0
0 0

⊗ |(0, 5)〉〈(0, 5)|

as initial state of the system.

Figure 4: Distribution of the CTOQW on Z2 at time t = 3, 8 and 18.

One can check that (H1) holds with ρinv =


7
11 0

0 4
11

 and then the CLT is

satisfied. The characteristics of this example are

m =
(
− 1

22 ,−
5
22

)
,

J1 = 4
33

(
−5 2
2 5

)
and J2 = 3

77

(
−13 −8
−8 13

)
;V = 1

23958

(
10651 −414
−414 14661

)
.

The Central Limit Theorem states then
Xt −mt√

t

L−→
t→+∞

N (0, V ) .
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5 EXAMPLES

One can check easily that φ is irreducible. Therefore the process
(
Xt −X0

t

)
t≥0

satisfies a LDP with a good rate function Λ∗ : x 7→ sup
u∈Rd

(u.x − lu). We can

plot an numerical approximation of Λ∗ (see Figure 5) with the help of L(u)

developed in the canonical basis thereafter:

L(u) = 1
24

 4(−6+eu1+e−u1+3e−u2 ) 4eu1 4eu1 4eu1+3eu2

−4e−u1 −21+4(eu1+e−u1 ) 0 4eu1+3eu2

−4e−u1 0 −21+4(eu1+e−u1 ) 4eu1+3eu2

4e−u1 −4e−u1 −4e−u1 −18+4e−u1+3eu2

 .

Figure 5: Λ∗ for the last example.
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