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Central Limit Theorem and Large Deviation Principle for Continuous Time Open Quantum Walks

. These models, called Continuous Time Open Quantum Walks (CTOQWs), appear as natural continuous time limits of discrete time OQWs. In particular they are quantum extensions of continuous time Markov chains. This article is devoted to the study of homogeneous CTOQW on Z d . We focus namely on their associated quantum trajectories which allow us to prove a Central Limit Theorem for the "position" of the walker as well as a Large Deviation Principle.

Introduction

Open Quantum Walks concern evolution on lattices driven by quantum operations. They describe namely Markovian dynamics influenced by internal degrees of freedom. They have been introduced originally by [START_REF] Attal | Open quantum random walks[END_REF] (see also [START_REF] Gudder | Quantum Markov chains[END_REF]). These OQWs are promising tools to model physical problems, especially in computer science (see [START_REF] Sinayskiy | Efficiency of open quantum walk implementation of dissipative quantum computing algorithms[END_REF]). They can also model a variety of phenomena, as energy transfer in biological systems ( [START_REF] Marais | Decoherenceassisted transport in quantum networks[END_REF]).

Continuous time models have been developed as natural continuous time limits of discrete time models [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF][START_REF] Bauer | The open quantum Brownian motions[END_REF]. In particular in [START_REF] Bauer | The open quantum Brownian motions[END_REF], a natural extension of Brownian 1 1 INTRODUCTION motion called Open Quantum Brownian Motion has been constructed. In this article, we focus on the continuous time open quantum walks (CTOQWs) model presented in [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF]. More precisely, we focus on CTOQWs on Z d . Briefly speaking, CTOQWs on Z d concern the evolution of density operators of the form

µ = i∈Z d ρ(i) ⊗ |i i| ∈ H ⊗ C Z d ( 1 
)
where the "Z d -component" represents the "position" of the walker and H is a Hilbert space describing the internal degrees of freedom. In particular, if D denotes the set of density operators of the form (1), CTOQWs are described by a semigroup {φ t } such that, φ t preserves D for all t ≥ 0.

In the context of quantum walks, one is mainly interested in the position of the walker. At time 0, starting with density matrix in D as [START_REF] Attal | Central limit theorems for open quantum random walks and quantum measurement records[END_REF], the quantum measurement of the "position" gives rise to a probability distribution q 0 on Z d , such that, for all i ∈ Z d , q 0 (i) = P("that the walker is in i") = Tr(ρ(i)) .

As well, after evolution, if

µ t = φ t (µ) = i∈Z d ρ (t) (i) ⊗ |i i| then
q t (i) = P("that the walker, at time t, is in i") = Tr(ρ (t) (i)) .

In [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF], it has been shown that usual classical continuous time Markov chains are particular cases of CTOQWs. In particular one can easily construct models where the distribution q t corresponds to the one of a classical continuous time Markov chain. Contrary to continuous time Markov chains, the distribution q t of CTOQWs cannot be in general recovered by the knowledge of the initial distribution q 0 . One needs to have access to the full knowledge of the initial state µ. In this sense, this justifies the name quantum walks.

Our models of continuous time quantum walks are rather different from the usual models of unitary quantum walks. An essential difference concerns the large time behaviour of the corresponding distribution q t . Let Q t be a random variable of law q t , in the unitary quantum walk theory it has been shown that (Q t ) satisfies a Central Limit Theorem of the type

Q t t -→ t→∞ Q , where Q has distribution dx π √ 1 -x 2 .
Note that such behaviour is not usual in classical probability where usually one expects speed in √ t and Gaussian law as limit in the Central Limit Theorem (CLT). In our context, the distributions (q t ) t≥0 express a rather classical behaviour in large time in the sense that a more usual CLT holds. In particular this paper is devoted to show that for CTOQWs one has the following weak convergence

Q t -m √ t -→ t→∞ N (0, σ 2 ) ,
where N (0, σ 2 ) denotes usual Gaussian law. Such phenomena have also been observed in the discrete setting of OQWs [START_REF] Attal | Central limit theorems for open quantum random walks and quantum measurement records[END_REF]. A key point to show this result is the use of the quantum trajectories associated to the CTOQWs. In general, quantum trajectories describe evolutions of quantum system undergoing indirect measurements (see [START_REF] Barchielli | Quantum trajectories and measurements in continuous time: the diffusive case[END_REF] for an introduction). In the context of CTOQWs, quantum trajectories describe the evolution of the states undergoing indirect measurements of the position of the walker. In particular these quantum trajectories appear as solution of jump-type stochastic differential equations called stochastic master equations (see [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF] for link between discrete and continuous time models in the context of OQW, one can also consult [START_REF] Bauer | The open quantum Brownian motions[END_REF] for such an approach in the context of Open Quantum Brownian Motion). In the physic literature, note that such models appear also naturally in order to describe non-Markovian evolutions. They are called non-Markov generalization of Lindblad equations (see [START_REF] Breuer | Non-Markovian generalization of the Lindblad theory of open quantum systems[END_REF][START_REF] Pellegrini | Non-Markovian quantum repeated interactions and measurements[END_REF][START_REF] Barchielli | Jump-diffusion unravelling of a non-Markovian generalized Lindblad master equation[END_REF]).

After establishing the CLT, our next goal is to investigate a Large Deviation Principle (LDP) for the position of the walker. In particular under additional assumptions, one can apply the Gärtner-Ellis Theorem in order to obtain the final result (one can consult [START_REF] Carbone | Homogeneous open quantum random walks on a lattice[END_REF] for a similar result for discrete time OQWs).

The article is structured as follows. In Section 2, we present the model of CTO-QWs on Z d . Next we develop the theory of quantum trajectories which describe the continuous measurement of the position. In Section 3, we present the Central Limit Theorem. Section 4 is devoted to the Large Deviation Principle (LDP). Finally in Section 5, we present some examples which illustrate the CLT and the LDP.

Continuous Time Open Quantum Walks

Main setup

The models of Continuous Time Open Quantum Walks have been formalized in [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF]. They arise as continuous limits of discrete time OQWs (we do not recall the discrete time models and we refer to [START_REF] Attal | Open quantum random walks[END_REF]). These limits processes are described by particular types of Lindblad master equations. Originally, these equations appear in the "non-Markovian generalization of Lindblad theory" from Breuer [START_REF] Breuer | Non-Markovian generalization of the Lindblad theory of open quantum systems[END_REF]. In this article, we focus on nearest neighbors, homogeneous CTOQWs on Z d .

In the sequel, H denotes a finite dimensional Hilbert space and S H denotes the space of density matrix on H:

S H = {ρ ∈ B(H) | ρ * = ρ, ρ ≥ 0, Tr(ρ) = 1}.
We put K d = H⊗C Z d where C Z d stands for the position of a particle while H corresponds to the internal degree of freedom of this particle. We consider the canonical basis {e 1 , ..., e d } of Z d , we set e 0 = 0 d and e d+r = -e r for all r ∈ {1, ..., d}. The canonical basis of

C Z d is denoted by (|i ) i∈Z d .
As announced we focus on particular diagonal density matrices of K d :

D =    µ ∈ B(K d ), µ = i∈Z d ρ(i) ⊗ |i i|, ρ(i) ≥ 0, i∈Z d tr ρ(i) = 1    .
In the sequel we shall consider evolutions on K d which preserve D. To this end we consider a family of operators {D r } r=1,...,2d on B(H) and we define the operators

{B r i } r=1,...,2d on B(K d ) such that B r i = D r ⊗ |i + e r i|.
Now as announced the CTOQWs are generated by particular Lindblad master equations. Let M c the following Lindblad operator on H ⊗ C Z d ,

M c : B(H ⊗ C Z d ) → B(H ⊗ C Z d ) µ → -i[H ⊗ I, µ] + i∈Z d 2d r=1 B r i µB r * i - 1 2 {B r * i B r i , µ}
where H is a self-adjoint operator on H which is called the Hamiltonian.

Let us introduce the operator

D 0 = -iH - 1 2 2d r=1 D * r D r .
The next computation shows that M c preserves the set D.

M c (µ) = i∈Z d   -i[H, ρ(i)] ⊗ |i i| + 2d r=1 D r ρ(i)D * r ⊗ |i + e r i + e r | - 1 2 2d r=1 {D * r D r , ρ(i)} ⊗ |i i|   = i∈Z d   D 0 ρ(i) + ρ(i)D * 0 ⊗ |i i| + 2d r=1 D r ρ(i)D * r ⊗ |i + e r i + e r |   = i∈Z d   D 0 ρ(i) + ρ(i)D * 0 + 2d r=1 D r ρ(i -e r )D * r   ⊗ |i i| , for all µ = i∈Z d ρ(i) ⊗ |i i|.
The following proposition describes precisely our model of CTOQWs.

Proposition 2.1.1. [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF] Let

µ (0) = i∈Z d ρ (0) (i) ⊗ |i i|, the equation d dt µ (t) = M c (µ (t) ), (2) 
with initial condition µ (0) admits a unique solution (µ (t) ) t≥0 with values in D.

More precisely, µ (t) is of the form This definition is justified by the following. The operator B r i transcribes the idea that the particle localized in |i can only jump to one of its nearest neighbors |i + e r , and in this case, the transformation on H is governed by D r . In the case the particle stands still, the evolution on H is governed by D 0 . It is the exact analogue of the usual OQWs for continuous time evolutions. An interesting fact has been pointed out in [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF], usual continuous time classical Markov chains can be realized within this setup. Now let us describe the probability distributions associated to CTOQWs.

µ (t) = i∈Z d ρ (t) (i) ⊗ |i i| such that: d dt ρ (t) (i) = D 0 ρ (t) (i) + ρ (t) (i)D * 0 + 2d r=1 D r ρ (t) (i -e r )D *
Definition 2.1.3. Let µ (0) = i∈Z d ρ (0) (i) ⊗ |i i|. Let µ (t) = i∈Z d ρ (t) (i) ⊗ |i i| be the solution of the equation d dt µ (t) = M c µ (t) .
We define

q t (i) = Tr µ (t) I ⊗ |i i| = Tr ρ (t) (i) (3) 
and we denote Q t the random variable on Z d of law q t , that is

P[Q t = i] = q t (i), for all i ∈ Z d .
As we can see in Section 3 and as it was announced in the introduction, the shape of q t seems to converge to Gaussian shape. This is exactly the result pointed out by the CLT in Section 3. In order to prove this, we shall need the theory of quantum trajectories for CTOQWs.

Quantum trajectories

As in the discrete case, quantum trajectories are essential tools for showing the CLT and the LDP. The description of quantum trajectories is less straightforward than the one in OQWs. It makes use of stochastic differential equations driven by jump processes. We refer to [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF] for the justification of the below description and the link between discrete and continuous time models. One can also consult [START_REF] Breuer | Non-Markovian generalization of the Lindblad theory of open quantum systems[END_REF] where general indirect measurements for non-markovian generalization of Lindblad equations have been developped.

Proposition 2.2.1. Let µ (0) = i∈Z d ρ (0) (i) ⊗ |i i| be an initial state on H ⊗ C Z d .
The quantum trajectory describing the indirect measurement of the position of the CTOQWs led by M c is modeled by a Markov process

ω (t) = ρ t ⊗ |X t X t | t≥0 .
This Markov process is valued in the set

P = ρ ⊗ |i i|, ρ ∈ S H , i ∈ Z d such that ω (0) = ρ (0) (i) Tr ρ (0) (i) ⊗ |i i| with probability Tr ρ (0) (i)
and such that the following differential equation is satisfied:

ω (t) = ω (0) + t 0 D 0 ρ s-+ ρ s-D * 0 -ρ s-Tr(D 0 ρ s-+ ρ s-D * 0 ) ⊗ |X s-X s-| ds + 2d r=1 t 0 R   D r ρ s-D * r Tr(D r ρ s-D * r ) ⊗ |X s-+ e r X s-+ e r | -ρ s-⊗ |X s-X s-|   1 0<y<Tr(D r ρ s-D * r ) N r (dy, ds) (4)
where {N r } r∈{1,...,2d} are independent Poisson point processes on R 2 .

In particular the Markov process (ρ t , X t ) t≥0 is valued in S H × Z d and satisfies

dρ s = D 0 ρ s-+ ρ s-D * 0 -ρ s-Tr(D 0 ρ s-+ ρ s-D * 0 ) ds + 2d r=1 y∈R   D r ρ s-D * r Tr(D r ρ s-D * r ) -ρ s-   1 0<y<Tr(Drρ s-D * r ) N r (dy, ds) , ( 5 
)
dX s = 2d r=1 y∈R e r 1 0<y<Tr(D r ρ s-D * r ) N r (dy, ds) (6) 
and

(ρ 0 , X 0 ) =   ρ (0) (i) Tr ρ (0) (i) , i  
with probability Tr ρ (0) (i) .

Remark:

The second expression of the description of quantum trajectories is the exact continuous time analogue of the one described in [START_REF] Attal | Central limit theorems for open quantum random walks and quantum measurement records[END_REF] for OQWs. Let us briefly explain how the quantum trajectories evolve in time. To this end we introduce:

∀r ∈ {1, ..., 2d}, Ñ r (t) = t 0 R 1 0<y<Tr(Drρ s-D * r ) N r (dy, ds) . ( 7 
)
The processes Ñ r are Poisson processes with intensity

t 0 Tr(D r ρ s-D * r )ds. In par- ticular the processes Ñ r (t) - t 0 Tr(D r ρ s-D * r )ds
are martingales with respect to the filtration induced by (ρ t , X t ) t≥0 . The evolution described by ( 4) is deterministic and interrupted by jumps occurring at random time, it is typically a Piecewise Deterministic Markov Process. The jumps are generated by the Poisson processes [START_REF] Carbone | Homogeneous open quantum random walks on a lattice[END_REF]. As we can check from Eq. ( 4), if The following result allows us to make the connection between CTOQWs and their associated quantum trajectories.

ω (0) = ρ⊗|i i| for some ρ ∈ S H and i ∈ Z d (that is |X 0 = |i ),
Proposition 2.2.2. Let µ (t) the OQW defined in Proposition 2.1.1 and ω (t) the associated quantum trajectory defined in Proposition 2.2.1. Then we have

∀t ≥ 0, E(ω (t) ) = µ (t) .
Moreover, for all t ≥ 0, the random variables X t and Q t have the same distributions q t . Proof. The first part is proved in [START_REF] Pellegrini | Continuous time open quantum random walks and non-Markovian Lindblad master equations[END_REF]. For the second part, let φ a bounded continuous map on Z d , we get:

E(φ(Q t )) = i∈Z d φ(i)Tr µ (t) (I ⊗ |i i|) = i∈Z d φ(i)Tr E(ω (t) )(I ⊗ |i i|) = i∈Z d φ(i)E   Tr ω (t) (I ⊗ |i i|)   = i∈Z d φ(i)E Tr(|X t X t ||i i|) = i∈Z d φ(i)E(1 Xt=i ) = E(φ(X t )) ,
and the result holds.

In the next section, we state the CLT.

Central Limit Theorem

This section is devoted to prove the Central Limit Theorem for CTOQWs. The result holds under some assumption concerning the Lindblad operator on H. This operator is defined below.

L : B(H) → B(H) ρ → D 0 ρ + ρD * 0 + 2d r=1 D r ρD * r .
Our main assumption for the CLT is the following.

• (H1) There exists a unique density matrix ρ inv ∈ S H such that

L(ρ inv ) = 0 .
In particular dim Ker(L) = 1.

Under the condition (H1), we have the following ergodic theorem which is a particular case of the Ergodic Theorem of [START_REF] Kümmerer | A pathwise ergodic theorem for quantum trajectories[END_REF]. In particular this theorem shall be useful in the proof of the CLT. Theorem 3.0.3 ([19]). Assume (H1). Let (ρ t , X t ) t≥0 the Markov process defined in Proposition 2.2.1, therefore

1 t t 0 ρ s ds a.s.
-→ ρ inv . Now, our strategy to show the CLT consists in reducing the problem to a CLT for martingales with the help of the solution of the Poisson equation. To this end let us introduce the generator of the process (ρ t , X t ) t≥0 .

We denote A the Markov generator of the process (ρ t , X t ) t≥0 and D(A) his domain. For all f ∈ D(A), ρ ∈ S H and x ∈ Z d , we get

Af (ρ, x) = D (ρ,x) f (F(ρ), 0) + 2d r=1 f D r ρD * r Tr(D r ρD * r ) , x + e r -f (ρ, x) Tr(D r ρD * r ) (8) 
where F(ρ) = D 0 ρ + ρD * 0 -ρTr(D 0 ρ + ρD * 0 ) for all ρ ∈ S H and where D (ρ,x) f denotes the differential of f at (ρ, x).

Remark: Note that in the sequel we do not need to make precise the exact domain of A. Actually we shall apply the Markov generator on C 1 functions.

We shall also need the following quantity,

m = 2d r=1 Tr(D r ρ inv D * r )e r .
The following lemma shall be used in the proof.

Lemma 3.0.4. For all u ∈ R d , the equation

L * (J u ) = - 2d r=1 (e r .u)D * r D r -(m.u)I (9)
admits a solution and the difference between any couple of solutions of ( 9) is a multiple of the identity. which proves the existence of the lemma. Now we prove the second part. To this end consider J u and J u two solutions of ( 9) and set

H u = J u -J u . It is then clear that L * (H u ) = 0 .
Therefore H u ∈ Ker(L * ). Since dim Ker(L) = 1, we get dim Ker(L * ) = 1 and since

L * (I) = D * 0 + D 0 + 2d r=1
D * r D r = 0, the operator H u is necessarily a multiple of the identity.

From now on, for u ∈ R d , we denote J u the unique solution of (9) such that Tr(J u ) = 0. Moreover, if u = e r , then we simply write J u = J r . Using the linearity of L * , one can notice that:

J u = d r=1 u r J r , for all u = (u 1 , . . . , u d ) ∈ R d .
The next lemma concerns the Poisson equation in our context (see [START_REF] Makowski | The Poisson equation for countable Markov chains: probabilistic methods and interpretations[END_REF] for more details on the Poisson equation).

Lemma 3.0.5. For all (ρ, x) ∈ S × Z d and u ∈ R d , let set f u (ρ, x) = Tr(ρJ u ) + x.u . ( 10 
)
Then f u is solution of the Poisson equation:

Af u (ρ, x) = m.u . ( 11 
)
Proof. For all (ρ, x) ∈ S × Z d and u ∈ R d , we complete the following computation:

Af u (ρ, x) = Tr(F(ρ)J u ) + 2d r=1   Tr   D r ρD * r Tr(D r ρD * r ) J u   + x.u + e r .u -Tr(ρJ u ) -x.u   Tr(D r ρD * r ) = Tr D 0 ρJ u + ρD * 0 J u -Tr(D 0 ρ + ρD * 0 )ρJ u + 2d r=1 Tr(D r ρD * r J u ) + Tr(D r ρD * r )(e r .u) -Tr Tr(D r ρD * r )ρJ u = Tr   ρ   J u D 0 + D * 0 J u + 2d r=1 D * r J u D r + 2d r=1 D * r D r (e r .u)     = Tr   ρ   L * (J u ) + 2d r=1 D * r D r (e r .u)     = Tr (m.u)ρ = m.u ,
so f u is solution of the Poisson equation ( 11). Now we have found the solution of the Poisson equation, we express the CLT for martingales that we shall use. Theorem 3.0.6 ([10]). Let (M t ) t≥0 be a real, càdlàg, and square integrable martingale. Suppose the following conditions:

lim t→∞ E 1 √ t sup 0≤s≤t |∆M s | = 0 ( 12 
)
and

lim t→∞ [M, M ] t t = σ 2 (13) 
for some σ ≥ 0, then

M t √ t L -→ t→+∞ N (0, σ 2 ) .
We shall also use the following lemma which is a straightforward consequence of the law of large numbers for martingales (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]). Lemma 3.0.7. Let Z t a real, càdlàg, and square integrable martingale which satisfies Z, Z t ≤ Kt for a constant K, then

Z t t a.s.
-→ 0 .

The last lemma below shall be useful in this part as well as in the next one. Lemma 3.0.8. For all t ≥ 0 and all u ∈ R d , we have

E sup 0≤s≤t |X s -X 0 | ≤ (2d)t and E sup 0≤s≤t e u.(Xs-X 0 ) ≤ exp (2d)t(e |u| -1) . Proof. Let t ≥ 0 and u ∈ R d , E sup 0≤s≤t e u.(Xs-X 0 ) ≤ E e |u| t 0 |dXs| ≤ E exp |u| 2d r=1 t v=0 y∈R 1 0<y<Tr(D r ρvD * r ) N r (dy, dv) ≤ E exp |u| 2d r=1 t 0 1 y=0 N r (dy, dv) .
Since N r are independent Poisson point processes on R 2 , we get

E sup 0≤s≤t e u.(Xs-X 0 ) ≤ E exp |u| t 0 1 y=0 N 1 (dy, dv) 2d
≤ exp (2d)t(e |u| -1) .

In the same way, one can prove that

E sup 0≤s≤t |X s -X 0 | ≤ E 2d r=1 t v=0 1 y=0 N r (dy, dv) ≤ (2d)t .
Now, we are in the position to state the main result of this section.

Theorem 3.0.9. Assume (H 1 ) holds. Let (ρ t , X t ) t≥0 the Markov process defined in Proposition 2.2.1 then

X t -tm √ t L -→ t→+∞ N (0, V ) ,
where V ∈ M d (R) such that for all r, q ∈ {1, ..., d},

V rq = -m q Tr(ρ inv J r ) -m r Tr(ρ inv J q ) +δ rq Tr(D r ρ inv D * r ) + Tr(D r+d ρ inv D * r+d ) +Tr(D q ρ inv D * q J r ) + Tr(D r ρ inv D * r J q ) -Tr(D q+d ρ inv D * q+d J r ) -Tr(D r+d ρ inv D * r+d J q ) .
Remark: Proposition 2.2.2 implies then the CLT for the process (Q t ) t≥0 as it holds for (X t ) t≥0 .

Proof. As announced, the proof is a combination of Lemma 3.0.5 and Theorem 3.0.6. Let u ∈ R d and f u the C 1 function defined in Lemma 3.0.5. Since A is the generator of (ρ t , X t ) t≥0 , following the theory of problem of martingale, the process (M t ) t≥0 defined by

M t = f u (ρ t , X t ) -f u (ρ 0 , X 0 ) - t 0 Af u (ρ s-, X s-)ds = Tr(ρ t J u ) -Tr(ρ 0 J u ) + X t .u -X 0 .u -(m.u)t
is a local martingale with respect to the filtration F associated to (ρ t , X t ) t≥0 (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF][START_REF] Ethier | Markov processes[END_REF] for more details on problem of martingale). In order to apply Theorem 3.0.6, we shall show that (M t ) is a true martingale. To this end it is sufficient [START_REF] Ethier | Markov processes[END_REF] for more details). This way, since |Tr(ρJ u )| ≤ J u ∞ for all ρ ∈ S H , one can check with the help of Lemma 3.0.8 that

to show that E   sup 0≤s≤t |M s |   < ∞ (see
E   sup 0≤s≤t |M s |   ≤ 2 J u ∞ + 2d|u|t + |m.u|t .
Now we shall see that (M t ) fulfills the conditions of Theorem 3.0.6. The first one is the easiest one. Indeed,

|∆M s | ≤ |Tr(∆ρ s J u )| + |∆X s .u| ≤ 2 J u ∞ + |u| .
This shows that ∆M s is bounded independently of s and thus the condition [START_REF] Dembo | Large deviations techniques and applications[END_REF] holds. Now, we check that (M t ) satisfies Equation [START_REF] Ethier | Markov processes[END_REF] 

J u   2 Ñ r (ds) -2 2d r=1 Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) J u   Tr(ρ s-J u ) Ñ r (ds) + 2d r=1 Tr(ρ s-J u ) 2 Ñ r (ds) = 2d r=1   Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) J u   2 -Tr(ρ s-J u ) 2   Ñ r (ds) -2Tr(ρ s-J u ) 2d r=1   Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) J u   -Tr(ρ s-J u ) + (e r .u)   Ñ r (ds) + 2d r=1 (e r .u) 2 Ñ r (ds) + 2 2d r=1 (e r .u)Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) J u   Ñ r (ds) .
Now we shall make the martingales Y r (t) = Ñ r (t) -t 0

Tr(D r ρ s-D * r )ds appear in the first and the last term of the above expression. Concerning the second term, we recognize dTr(ρ s J u ) and d(X s .u) to get One can remark that for h(ρ, x) := Tr(ρJ u ) 2 , we get for all (ρ, x) ∈ S H × Z d :

d[M, M ] s = 2d r=1   Tr D r ρ s-D * r Tr(D r ρ s-D * r ) J u 2 -Tr(ρ s-J u ) 2   Y r (ds) + 2d r=1   Tr D r ρ s-D * r Tr(D r ρ s-D * r ) J u 2 -Tr(ρ s-J u ) 2   Tr(D r ρ s-D * r )ds -2Tr(ρ s-J u ) dTr(ρ s J u ) + d(X s .u) -Tr(F(ρ s-)J u )ds
Ah(ρ, x) = 2Tr F(ρ)J u Tr ρJ u + 2d r=1   Tr D r ρD * r Tr(D r ρD * r ) J u 2 -Tr(ρJ u ) 2   Tr(D r ρD * r ) . ( 15 
)
Since h ∈ C 1 , the process (S h t ) t≥0 defined by:

S h t = Tr(ρ t J u ) 2 -Tr(ρ 0 J u ) 2 - t 0 Ah(ρ s-, X s-)ds is a local martingale. Besides, since |Tr(ρJ u )| ≤ J u ∞ for all ρ ∈ S H , one has E   sup 0≤s≤t |S h t |   ≤ α + βt < ∞
for all t ≥ 0, so S h t is actually a true martingale. Now using Equation ( 15) in the second line of ( 14) and recognizing dM t in the third one, we have 

d[M, M ] s = 2d r=1   Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) J u   2 -Tr(ρ s-J u ) 2   Y r
J u   2 -Tr(ρ s-J u ) 2 + (e r .u) 2 + 2(e r .u)Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) J u     Y r (ds) -dS h s -2Tr(ρ s-J u )dM s + d Tr(ρ s J u ) 2 +Tr ρ s--2(m.u)J u + 2d r=1 (e r .u) 2 D * r D r + 2 2d r=1 (e r .u)D * r J u D r ds . ( 16 
)
Let us denote by H r s the term in front of Y r (ds). Now, we shall apply Lemma 3.0.7. To this end, recall that for all ρ ∈ S H , |Tr(ρJ u )| ≤ J u ∞ , this implies the following estimates:

. 0 H r s dY r s , . 0 H r s dY r s t ≤ (2 J u 2 ∞ + |u| 2 + 2|u| J u ∞ ) 2 D * r D r ∞ t , . 0 -2Tr(ρ s-J u )dM s , . 0 -2Tr(ρ s-J u )dM s t ≤ 4 J u 2 ∞ (|u|+2 J u ∞ ) 2 2d r=1 D * r D r ∞ t , S h , S h t ≤ 64 J u 4 ∞ 2d r=1 D * r D r ∞ t .
Lemma 3.0.7 shows that only the last term of ( 16) contributes to lim 

t→∞ [M, M ] t t . Applying Theorem 3.0.3, we get lim t→∞ [M, M ] t t = lim t→∞ 1 t t 0 Tr   ρ s-   -2(m.u)J u + 2d r=1 (e r .u) 2 D * r D r + 2 2d r=1 (e r .u)D * r J u D r     ds = Tr ρ inv -2(m.u)J u + 2d r=1 (e r .u) 2 D * r D r + 2
M t √ t = X t .u -(m.u)t + Tr(ρ t J u ) -Tr(ρ 0 J u ) -X 0 .u √ t L -→ t→+∞ N (0, σ 2 u ) . Now since, since Tr(ρ t J u ) -Tr(ρ 0 J u ) -X 0 .u is bounded independently of t,
one can obviously deduce that for all u = (u 1 , ..., u d ) ∈ R d , one has

X t .u -(m.u)t √ t L -→ t→+∞ N (0, σ 2 u ),
where

σ 2 u = -2 d r,q=1 u r u q m q Tr(ρ inv J r ) + d r=1 u 2 r Tr(D r ρ inv D * r ) + Tr(D r+d ρ inv D * r+d ) +2 d r,q=1 u r u q Tr(D q ρ inv D * q J r ) -Tr(D q+d ρ inv D * q+d J r ) .
Finally we can check that σ 2 u = d r,q=1 u r u q V rq for all u = (u 1 , ..., u d ) ∈ R d , which ends the proof.

We finish this section by specifying the case d = 1. This is the simpler case where the walker can only jump to the right or the left. The Markov process (ρ t , X t ) t≥0 , with values in S H × Z, is defined by the following differential equations:

dρ s = D 0 ρ s-+ ρ s-D * 0 -ρ s-Tr(D 0 ρ s-+ ρ s-D * 0 ) ds + D 1 ρ s-D * 1 Tr(D 1 ρ s-D * 1 ) -ρ s- Ñ 1 (ds) + D 2 ρ s-D * 2 Tr(D 2 ρ s-D * 2 ) -ρ s- Ñ 2 (ds)
and

dX s = Ñ 1 (ds) -Ñ 2 (ds),
where

D 0 , D 1 , D 2 ∈ B(H) such that D 0 + D * 0 + D * 1 D 1 + D * 2 D 2 = 0.
Theorem 3.0.10. Suppose that the Lindblad operator Then, we have the following CLT

L(ρ) = D 0 ρ + ρD * 0 + D 1 ρD * 1 + D 2 ρD *
X t -tm √ t L -→ t→+∞ N (0, σ 2 )
where

σ 2 = Tr(ρ inv [-2mJ + D * 1 D 1 + D * 2 D 2 + 2D * 1 JD 1 -2D * 2 JD 2 ]).

Large Deviation Principle

Here, we study a Large Deviation Principle (LDP) for CTOQWs. Our proof is inspired by strategies developed in [START_REF] Jakšić | Entropic fluctuations of quantum dynamical semigroups[END_REF][START_REF] Carbone | Homogeneous open quantum random walks on a lattice[END_REF] which are essentially based on the application of the Gärtner-Ellis Theorem ( [START_REF] Dembo | Large deviations techniques and applications[END_REF]). In the following, one can notice that the Perron-Frobenius Theorem for positive maps ( [START_REF] Evans | Spectral properties of positive maps on C *algebras[END_REF]) is the main tool to apply the Gärtner-Ellis Theorem.

In order to prove the LDP, we shall use a deformed Lindblad operator. From now on, we define for all u ∈ R d , the operators D (u) r = e u.er 2 D r , r ∈ {0, . . . , 2d}, and we denote L (u) the deformed Lindblad operator associated to the operators D (u) r , that is,

L (u) (ρ) = D 0 ρ + ρD * 0 + 2d r=1 e u.er D r ρD * r ,
for all ρ ∈ S H . Now, defining

φ (u) (ρ) = 2d r=1 e u.er D r ρD * r ,
for all ρ ∈ S H and all u ∈ R d , we can see that L (u) is written in the usual Lindblad form, that is

L (u) (ρ) = D 0 ρ + ρD * 0 + φ (u) (ρ)
. This way, the semi-group {e tL (u) } t≥0 is a completely positive (CP) semi-group (see [START_REF] Christensen | Cohomology of operator algebras and quantum dynamical semigroups[END_REF] for the proof). In a same way, we write L as:

L(ρ) = D 0 ρ + ρD * 0 + φ(ρ) for all ρ ∈ S H where φ(ρ) = 2d r=1 D r ρD * r .
In this part, the notion of irreducibility is required. This notion was originally defined in [START_REF] Davies | Quantum stochastic processes[END_REF]. There are several equivalent definitions that the reader can find in [START_REF] Carbone | Homogeneous open quantum random walks on a lattice[END_REF][START_REF] Carbone | Open quantum random walks: reducibility, period, ergodic properties[END_REF]. In the sequel, we need {e tL (u) } t≥0 to be positivity improving. This means that for all t > 0 and for all A ≥ 0, A ∈ B(H), one has e tL (u) (A) > 0. The following lemma provides an effective criterion for verifying that {e tL (u) } t≥0 is positivity improving. Lemma 4.0.12. If φ is irreducible, then φ (u) is irreducible by a direct application of Definition 4.0.11 and therefore {e tL (u) } t≥0 is positivity improving ( [START_REF] Jakšić | Entropic fluctuations of quantum dynamical semigroups[END_REF]).

The next two lemmas are relevant in the proof of the main theorem of this part. In particular, the following lemma describes the largest eigenvalue associated to the deformed Lindblad semigroup {e tL (u) } t≥0 . Lemma 4.0.13. Let t ≥ 0, suppose that φ is irreducible. Set

l u = max{Re(λ), λ ∈ Sp(L (u) )} .
Then e tlu is an algebraically simple eigenvalue of e tL (u) , and the associated eigenvector V u is strictly positive (which can be normalized to be in S H ). Besides, the map u → l u can be extended to be analytic in a neighbourhood of R d .

Proof. The first part has been proved in [START_REF] Jakšić | Entropic fluctuations of quantum dynamical semigroups[END_REF], the proof is based on the Perron-Frobenius Theorem for CP maps ( [START_REF] Evans | Spectral properties of positive maps on C *algebras[END_REF]). In particular, using such result, one get that the multiplicity of e tlu is geometrically simple and that V u is strictly positive. It remains to show the algebraic simplicity. To this end, we introduce:

Ψ(X) = V -1 2 u e t(L (u) -lu) (V 1 2 u XV 1 2 u ) V -1 2 u .
Then Ψ(I) = I, hence Ψ = 1 and Ψ * is trace preserving. Moreover it is clear that Ψ is positivity improving, then 1 is a geometrically simple eigenvalue of Ψ, therefore this holds for Ψ * too. By applying Theorem 2.5. of [START_REF] Evans | Spectral properties of positive maps on C *algebras[END_REF], one get that the associated eigenvector X 1 is positive. Assume by contradiction that 1 is not algebraically simple for Ψ * . Then the Jordan decomposition shows that there exists X 2 such that Ψ * (X 2 ) = X 1 + X 2 . Then, since Ψ * is trace preserving, Tr(X 1 ) = 0, hence X 1 = 0 which is impossible. This implies that e tlu is algebraically simple for e tL (u) . The analyticity of u → l u is a simple application of perturbation theory for matrix eigenvalues (see Chapter II in [START_REF] Kato | Perturbation theory for linear operators[END_REF]).

The next lemma describes the link between the moment generating function of X t -X 0 and the deformed Lindblad semigroup. Proof. The idea of the proof consists in rewriting E e u.(Xt-X 0 ) with the help of a Dyson expansion. From now, we set u ∈ R d and f : (ρ, x) → e u.x ∈ C 1 . Since A is also the generator of (ρ t , X t -X 0 ) t≥0 , the process (M f t ) t≥0 defined by .

M f t = f (ρ t , X t -X 0 ) -f (ρ 0 , 0) - t 0 Af (ρ t 1 -, X t 1 --X 0 )dt 1
Then E   sup 0≤s≤t |M f s |   < ∞,
for all t ≥ 0 which implies that (M f t ) t≥0 is a true martingale. This leads to

E f (ρ t , X t -X 0 ) = E f (ρ 0 , 0) + E t 0 Af (ρ t 1 , X t 1 -X 0 )dt 1 .
This way, we can develop E e u.(Xt-X 0 ) . For all t ≥ 0,

E e u.(Xt-X 0 ) = 1 + E   t 0 2d r=1 e u.(Xt 1 -X 0 +er) -e u.(Xt 1 -X 0 ) Tr(D r ρ t 1 D * r ) dt 1   = 1 + E   t 0 e u.(Xt 1 -X 0 )   Tr(L (u) (ρ t 1 )) -Tr(D 0 ρ t 1 + ρ t 1 D * 0 + 2d r=1 D r ρ t 1 D * r )   dt 1 = 1 + E   t 0 e u.(Xt 1 -X 0 ) Tr L (u) (ρ t 1 ) dt 1   = 1 + t 0 Tr   L (u)   E e u.(Xt 1 -X 0 ) ρ t 1     dt 1 . (17) 
In a similar way, we want to develop E e u.(Xt 1 -X 0 ) ρ t 1 . Let g : (ρ, x) → e u.x ρ ∈ C 1 , the process (M g t ) t≥0 defined by

M g t = g(ρ t , X t -X 0 ) -g(ρ 0 , 0) - t 0 Ag(ρ t 2 -, X t 2 --X 0 )dt 2 is a local martingale. One can also check that E   sup 0≤s≤t |M g s |   < ∞ for all t ≥ 0, 20 
which implies that (M g t ) t≥0 is a true martingale. And therefore, one has

E e u.(Xt 1 -X 0 ) ρ t 1 = E(ρ 0 ) + E t 1 0 e u.(Xt 2 -X 0 ) F(ρ t 2 )dt 2 +E   t 1 0 2d r=1   e u.(Xt 2 -X 0 +er) D r ρ t 2 D * r Tr(D r ρ t 2 D * r ) -e u.(Xt 2 -X 0 ) ρ t 2   Tr(D r ρ t 2 D * r )dt 2   = E(ρ 0 ) + E   t 1 0 e u.(Xt 2 -X 0 )   Tr L (u) (ρ t 2 ) -ρ t 2 Tr   D 0 ρ t 2 + ρ t 2 D * 0 + 2d r=1 D r ρ t 2 D * r     dt 2   = E(ρ 0 ) + t 1 0 Tr   L (u) E e u.(Xt 2 -X 0 ) ρ t 2   dt 2 . ( 18 
)
We plug ( 18) into ( 17) and we get, for all t ≥ 0,

E e u.(Xt-X 0 ) = 1 + tTr L (u) (E[ρ 0 ]) + t 0 t 1 0 Tr   L (u) 2 E e u.(Xt 2 -X 0 ) ρ t 2   dt 2 dt 1 .
By iterating this procedure, we obtain

E e u.(Xt-X 0 ) =Tr   j k=0 t k k! L (u) k E[ρ 0 ]   + 0<t j <...<t Tr   L (u) j+1 E e u.(Xt j+1 -X 0 ) ρ t j+1   dt j+1 ...dt 1 .
for all j ∈ N. Now it is obvious that the first term converges to Tr

  e tL (u) E[ρ 0 ]  
when j goes to infinity. In order to conclude it remains to prove that the second terms converges to zero. Let us estimate its norm.

0<t j <...<t Tr   L (u) j+1 E e u.(Xt j+1 -X 0 ) ρ t j+1   dt j+1 ...dt 1 1 ≤ t j+1 (j + 1)! L (u) j+1 1 sup 0≤s≤t E e u.(Xs-X 0 ) .
Finally, thanks to Lemma 3.0.8 and Jensen's inequality,

0<t j <...<t Tr   L (u) j+1 E e u.(Xt j+1 -X 0 ) ρ t j+1   dt j+1 ...dt 1 1 ≤ t j+1 (j + 1)! L (u) j+1 1 e (2d)t(e |u| -1)
which converges to 0 when j goes to infinity. 

F with G ⊂ F ⊂ R d , one has: -inf x∈G Λ * (x) ≤ lim inf t→+∞ 1 t log P   X t -X 0 t ∈ G   ≤ lim sup t→+∞ 1 t log P   X t -X 0 t ∈ F   ≤ -inf x∈F Λ * (x) .
Moreover, Λ * can be expressed explicitly,

Λ * : x → sup u∈R d (u.x -l u )
where l u is defined in Lemma 4.0.13.

Remark: Moreover, if E(e u.X 0 ) < ∞ then the LDP holds for (X t ) t≥0 and not only for (X t -X 0 ) t≥0 . In this case, Proposition 2.2.2 allows us to have the LDP for (Q t ) t≥0 .

Proof. The main tool of the proof is the Gärtner-Ellis Theorem (GET) (see [START_REF] Dembo | Large deviations techniques and applications[END_REF]). We focus on the moment generating function which is involved in the GET. Let t ≥ 0 and u ∈ R d , Lemma 4.0.14 implies that

E(e u.(Xt-X 0 ) ) = Tr e tL (u) E[ρ 0 ] = i∈Z d
Tr e tL (u) ρ (0) (i) .
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Set 0 < < t. Due to Lemma 4.0.12, e L (u) has the property of positivity improving, therefore e L (u) ρ (0) (i) is strictly positive for all i ∈ Z d .

If we set r

u,i = inf Sp e L (u) ρ (0) (i) > 0 and s u,i = Tr e L (u) ρ (0) (i) inf Sp(V u ) then Sp e L (u) ρ (0) (i) -r u,i V u ⊂ R + and Sp s u,i V u -e L (u) ρ (0) (i) ⊂ R + , and thus r u,i V u ≤ e L (u) ρ (0) (i) ≤ s u,i V u .
Since e (t-)L (u) preserves the positivity, we get

r u,i e (t-)lu V u ≤ e tL (u) ρ (0) (i) ≤ s u,i e (t-)lu V u .
Taking the trace, Lemma 4.0.14 yields

e (t-)lu i∈Z d r u,i ≤ E e u.(Xt-X 0 ) ≤ e (t-)lu i∈Z d s u,i .
The sums are finite and positive, then we have Since Λ is analytic (Lemma 4.0.13), Gärtner-Ellis Theorem can be applied, this proves the LDP and the associated good rate function is

lim t→+∞ 1 t log E e u.(Xt-X 0 ) = l u . Now define Λ t : u → log E e u.
Λ * : x → sup u∈R d (u.x -l u ) .

Examples

Let us illustrate the results above with some examples.

In the case d = 1, we obtain a random walk on Z where the walker can stand still some random time, jump to the right or jump to the left, these transformations are respectly governed by D 0 , D 1 or D 2 . We must have: ). This result is illustrated with numerical simulations in Figure 1. One can check that φ is irreducible. Hence the process X t -X 0 t t≥0 satisfies a LDP with a good rate function Λ * : x → sup u∈R d (u.x -l u ) (see Figure 2 for numerical computations).

D 0 + D * 0 + D * 1 D 1 + D * 2 D 2 = 0 .
2. We focus on an other example on Z: This implies that (H 1 ) is satisfied with

D 0 =     - 3 8 0 0 - 1 4     , D 1 =     0 1 2 1 2 0     and D 2 =     0 1 2 1 √ 2 0     .
ρ inv =     2 5 0 0 3 5     .
In particular, we have here The Central Limit Theorem yields:

X t + t 10 √ t L -→ t→+∞ N (0, 73 125 
) .
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The reader can easily check that φ is irreducible with the help of Definition 4.0.11. Hence the process X t -X 0 t t≥0 satisfies a LDP with a good rate function Λ * : x → sup u∈R d (u.x -l u ) where l u = max{ (λ), λ ∈ Sp(L (u) )}.

Here L (u) has a simple form in the canonical basis of M 2 (C): 3. Now, we study an example of CTOQWs on Z 2 , this example is defined by the operators below: 

L (u) = 1 8      
D 0 =     - 1 2 0 0 - 3 8 

  the deterministic evolution let the position unchanged until a jump occurs. Since the Poisson processes N r are indepedent, only one Poisson process is involved. If T denotes the time of the first jump and assume the process N r is involved, the internal degree of freedom is updated by ρ T = D r ρ T -D * r Tr(D r ρ T -D * r ) and the position is changed and becomes |i + e r . This means that the particle has jumped from the position |i to the position |i + e r . In other words we have |X t = |i , for all 0 ≤ t ≤ T -and |X T = |i+e r . Next, the deterministic evolution starts again with the new initial condition ρ T ⊗ |i + e r i + e r | until a new jump occur and so on.

  Proof. First, let us remark that Tr ρ inv 2d r=1 (e r .u)D * r D r -(m.u)I = 2d r=1 Tr(D r ρ inv D * r )(e r .u)-(m.u)Tr(ρ inv ) = 0 , which implies that -2d r=1 (e r .u)D * r D r -(m.u)I ∈ {ρ inv } ⊥ . But by hypothesis, we have {ρ inv } ⊥ = Ker(L) ⊥ . Moreover, since Ker(L) ⊥ = Im(L * ), we finally get that -2d r=1 (e r .u)D * r D r -(m.u)I ∈ Im(L * )

  The bracket [M, M ] t 13 satisfies: d[M, M ] s = d[u.X, u.X] s + 2 d[u.X, Tr(ρJ u )] s + d[Tr(ρJ u ), Tr(ρJ u )] s = 2d r=1 (e r .u) 2 Ñ r (ds) + 2 2d r=1 (e r .u)Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) .u)Tr(ρ s-J u ) Ñ r (ds) + 2d r=1 Tr   D r ρ s-D * r Tr(D r ρ s-D * r )

+ 2d r=1 (

 r=1 e r .u) 2 Y r (ds) + 2 2d r=1 (e r .u)Tr D r ρ s-D * r Tr(D r ρ s-D * r ) J u Y r (ds) + 2d r=1 (e r .u) 2 Tr(D r ρ s-D * r )ds + 2 2d r=1 (e r .u)Tr(D r ρ s-D * r J u )ds . (14)



  (ds) +Ah(ρ s-, X s-)ds -2Tr F(ρ s-)J u Tr ρ s-J u ds -2Tr(ρ s-J u ) dM s + (m.u)ds -Tr F(ρ s-)J u ds + 2d r=1 (e r .u) 2 Y r (ds) + +2 2d r=1 (e r .u)Tr   D r ρ s-D * r Tr(D r ρ s-D * r ) .u) 2 Tr(D r ρ s-D * r )ds + 2 2d r=1 (e r .u)Tr(D r ρ s-D * r J u )ds = D r ρ s-D * r Tr(D r ρ s-D * r )

  .u)D * r J u D r . Now defining σ 2 u = Tr ρ inv -2(m.u)J u + 2d r=1 (e r .u) 2 D * r D r + 2 2d r=1 (e r .u)D * r J u D r , Theorem 3.0.6 states that:

2

  admits a unique density matrix ρ inv such that L(ρ inv ) = 0. Set m = Tr(D 1 ρ inv D * 1 ) -Tr(D 2 ρ inv D * 2 ), and let J the unique solution of L * (J) = -D * 1 D 1 + D * 2 D 2 + mI such that T r(J) = 0.

Definition 4 . 0 . 11 .

 4011 The CP map φ : ρ → 2d r=1 D r ρD * r is called irreducible if for any non-zero x ∈ H, the set C[D]x is dense in H, where C[D] is the set of polynomials in D r , r ∈ {1, ..., 2d}.

Lemma 4 . 0 . 14 .

 4014 For all t ≥ 0 and all u ∈ R d , one has E e u.(Xt-X 0 ) = Tr e tL (u) (E[ρ 0 ]) .

  is a local martingale. Due to Lemma 3.0.8, one has the following upper bound. D r ∞ exp (2d)t(e |u| -1)

X t -X 0 t 1 t

 01 the logarithm of the moment generating function of X t -X 0 t , and Λ : u → l u . We have shown that lim t→+∞ Λ t (tu) = Λ(u) .

23 1 . 1 .

 11 The constraint above is respected in this concrete example:This example falls within the scope of the CLT, in fact (H1) is checked withρ inv = 1 2 I. We get m = Tr(D 1 ρ inv D * 1 ) -Tr(D 2 ρ inv D * 2 ) = 0 ;

Figure 1 :

 1 Figure 1: Evolution of the distribution of the CTOQW starting from a state localized in 0. The X-axis stands for the position |i on Z, the Y -axis stands for the time t and the Z-axis returns the distribution qt(i).

Figure 2 :

 2 Figure 2: Λ * for the first example.

m = Tr(D 1 ρ inv D * 1 )

 1 -Tr(D 2 ρ inv D * 2 ) = -

.

  Hence, tedious computations show that l u = 1 32 20+ √ 208 + 64e 2u + 128e -2u .

Figure 3

 3 Figure 3 displays the good rate function Λ * .

Figure 3 :

 3 Figure 3: Λ * for the second example.

  check that:D 0 + D * 0 + D * 1 D 1 + D * 2 D 2 + D * 3 D 3 + D * 4 D 4 = 0 . Figure4represents the evolution of the distribution of the CTOQW with µ (0) = of the system.

Figure 4 :

 4 Figure 4: Distribution of the CTOQW on Z 2 at time t = 3, 8 and 18.

  

d . Definition 2.1.2. The evolution (2) is called a Continuous Time Open Quantum Walk on Z d .

  

r , for all i ∈ Z

  Now, we can state the main result of this part. Let (ρ t , X t ) t≥0 the Markov process defined in Proposition 2.2.1. with compact level sets {x|Λ * (x) ≤ α}, such that, for all open set G and all closed set

	Theorem 4.0.15. Assume that φ is irreducible. The process	X t -X 0 t

t≥0 satisfies a Large Deviation Principle with a good rate function Λ * . Explicitly there exists a lower semicontinuous mapping Λ * : R d → [0, +∞]
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One can check easily that φ is irreducible. Therefore the process X t -X 0 t t≥0 satisfies a LDP with a good rate function Λ * : x → sup u∈R d (u.x -l u ). We can plot an numerical approximation of Λ * (see Figure 5) with the help of L (u) developed in the canonical basis thereafter:

Figure 5: Λ * for the last example.