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Abstract

In this short note, we give the exact complexity of the infinite Post
Correspondence Problem, showing that it is Π0

1
-complete. Surprisingly,

it turns out that the infinite Post Correspondence Problem is not “more
complex” than the Post Correspondence Problem, which is known to
be Σ0

1
-complete, but has the exact dual complexity. This gives an

answer to a question of Simonnet [Sim10].
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1 Introduction

The well known Post Correspondence Problem (PCP) is one of the famous
undecidable problems in Theoretical Computer Science and in Formal Lan-
guage Theory, see [HMU01]. The PCP is an abstract problem involving
strings, and it has been very useful to prove the undecidability of many other
problems by reduction of PCP to those problems. In particular, many prob-
lems about context-free languages, those accepted by pushdown automata or
generated by context-free grammars, have been shown to be undecidable by
this method. For instance it follows from the undecidability of the Post Cor-
respondence Problem that the universality problem, the inclusion and the
equivalence problems for context-free languages are also undecidable. Notice
that these undecidability results can also be shown from the undecidability
of the halting problem for Turing machines, but the proofs obtained from
the undecidability of the PCP are simpler. Also, the undecidability of the
PCP has been used to prove undecidability results concerning matrices of
low order with integer entries, see [Har02].
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There is also an extension of the PCP to infinite strings called the in-
finite Post Correspondence Problem or the ω-PCP which has been shown
to be undecidable by Ruohonen in [Ruo85] and by Gire in [Gir86], see also
[HH06, HHK06]. This problem has been used to prove the undecidability of
other problems in various contexts, for instance in the domains of infinitary
rational relations [Pri00, Fin03] or of probabilistic automata [BC03].

The complexity of the PCP is well known; the PCP is Σ0

1
-complete, i.e. it

is complete for the class of recursively enumerable problems, i.e. complete at
the level Σ0

1
of the arithmetical hierarchy. On the other hand the complexity

of the ω-PCP seems still unknown and the question of its exact complexity
was asked by Simonnet [Sim10].

We answer this question in this short note, proving that the infinite Post
Correspondence Problem is Π0

1
-complete. This shows that the ω-PCP is not

“more complex” than the PCP but has the exact dual complexity.

2 The Infinite Post Correspondence Problem

We assume the reader to be familiar with the theory of formal (ω)-languages
[HMU01, Tho90, Sta97]. We recall some usual notation of formal language
theory.
When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1a2 · · · ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1.
Σ
⋆ is the set of finite words (including the empty word) over Σ. The usual

concatenation product of two finite words u and v is denoted u · v and
sometimes just uv.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1a2a3 · · ·,
where for all integers i ≥ 1, ai ∈ Σ. The set of ω-words over the alphabet
Σ is denoted by Σ

ω. An ω-language over an alphabet Σ is a subset of Σω.

We assume the reader to be familiar with the arithmetical hierarchy on
subsets of N, and also on subsets of Σω for a finite alphabet Σ, see [Rog67,
Sta97].

Recall first the well known result about the undecidability of the Post Cor-
respondence Problem, denoted PCP.

Theorem 2.1 (Post, see [HMU01]) Let Γ be an alphabet having at least
two elements. Then it is undecidable to determine, for arbitrary n-tuples
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) of non-empty words in Γ

⋆, whether there
exists a non-empty sequence of indices i1, i2, . . . , ik such that xi1xi2 · · · xik =
yi1yi2 · · · yik .

On the other hand, the infinite Post Correspondence Problem, also called
ω-PCP, has been shown to be undecidable by Ruohonen in [Ruo85] and by
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Gire in [Gir86].

Theorem 2.2 Let Γ be an alphabet having at least two elements. Then it is
undecidable to determine, for arbitrary n-tuples (x1, . . . , xn) and (y1, . . . , yn)
of non-empty words in Γ

⋆, whether there exists an infinite sequence of indices
i1, i2, . . . , ik . . . such that xi1xi2 · · · xik · · · = yi1yi2 · · · yik · · ·

Notice that an instance Ins of the ω-PCP is given by two n-tuples (x1, . . . , xn)
and (y1, . . . , yn) of non-empty words in Γ

⋆, and if there exist some solutions
of the ω-PCP of instance Ins then these solutions are infinite words over
the alphabet {1, . . . , n}.

We now recall some known notions, which will be useful in the proof of our
main result.

We first recall the variant of the PCP called the modified Post Correspon-
dence Problem.

The MPCP consists, given two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
of non-empty words in Γ

⋆, in determining whether there exists a non-empty
sequence of indices i1, i2, . . . , ik such that

x1xi1xi2 · · · xik = y1yi1yi2 · · · yik .

Similarly one can define the ω-MPCP. The ω-MPCP consists, given two n-
tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of non-empty words in Γ

⋆, in de-
termining whether there exists an infinite sequence of indices i1, i2, . . . , ik . . .
such that

x1xi1xi2 · · · xik · · · = y1yi1yi2 · · · yik · · ·

Recall also that, as usual, a Turing machine is of the formM = (Q,Σ, Γ, δ, q0),
where Q is a finite set of states, Σ is a finite input alphabet, Γ is a fi-
nite tape alphabet satisfying Σ ⊆ Γ and containing a special blank symbol
� ∈ Γ \ Σ, q0 is the initial state, and δ is a mapping from Q× Γ to subsets
of Q× Γ× {L,R, S}.

Recall that Turing machines have also been considered for the reading of
infinite words, see [CG78a, CG78b, Sta97]. In particular, a Turing machine
M reading infinite words over a finite alphabet Σ accepts a word σ ∈ Σ

ω for
1′-acceptance condition iff there is an infinite run of M on σ visiting only
states in a set F ⊆ Q of accepting states.

We now state the following result, giving the exact complexity of the infinite
Post Correspondence Problem.
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Theorem 2.3 The infinite Post Correspondence Problem is a Π0

1
-complete

problem.

Proof. We are firstly going to recall a sketch of Gire’s proof of the unde-
cidability of the ω-PCP. Next we will determine its exact complexity.

Recall that the proof of Theorem 2.2 in [Gir86] is given in two steps.

Firstly one can see, as in the finitary case (see [HMU01, page 396]) that the
ω-MPCP can be reduced to the ω-PCP.

Secondly Gire showed that one can associate in a recursive manner, to each
pair (Mz, w) where Mz is the Turing machine of index z ∈ N and w is
an input word for Mz, an instance of the ω-MPCP consisting of two n-
tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) such that there exists an infinite
sequence of indices i1, i2, . . . , ik . . . such that

x1xi1xi2 · · · xik · · · = y1yi1yi2 · · · yik · · ·

if and only if the Turing machine Mz does not halt on the input w.

On the other hand it is well known that the halting problem is Σ0

1
-complete

and thus the ω-MPCP is Π0

1
-hard since the complement of the halting prob-

lem, which is Π0

1
-complete, is reduced to the ω-MPCP. Moreover the ω-

MPCP can be reduced to the ω-PCP thus the ω-PCP is also Π0

1
-hard.

We now show that the ω-PCP is in the class Π0

1
.

Let now an instance Ins of the ω-PCP be given by two n-tuples (x1, . . . , xn)
and (y1, . . . , yn) of non-empty words in Γ

⋆. We can easily associate in a
recursive manner to this instance a deterministic Turing machine M with
1′-acceptance condition reading infinite words over the alphabet {1, . . . , n}
and accepting an infinite word x ∈ {1, . . . , n}ω if and only if x is a solution
of the ω-PCP of instance Ins.

On the other hand, the set of infinite words accepted by such a deterministic
Turing machine with 1′-acceptance condition is known to be an effective Π0

1
-

subset of {1, . . . , n}ω [Sta97]. Thus the set of solutions of the ω-PCP of
instance Ins is an effective Π0

1
-set accepted by a deterministic Turing machine

M with 1′-acceptance condition which can be constructed from Ins.

Staiger proved in [Sta93, page 638] that it is Π0

1
-complete to decide whether

such a Π0

1
-set is non-empty. This is also stated by Cenzer and Remmel in

[CR03, Theorem 4.1 (ii)].
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Therefore, the problem to determine whether a given instance Ins of the
ω-PCP has a solution is in the class Π0

1
. This ends the proof.

�

3 Concluding remarks

We have given the exact complexity of the infinite Post Correspondence
Problem, showing that it is Π0

1
-complete. Thus the infinite Post Corre-

spondence Problem is not “more complex” than the Post Correspondence
Problem, which is known to be Σ0

1
-complete, but has the exact dual com-

plexity.

We hope that this result will help to get a better understanding of the
exact complexity of some other decision problems. Indeed, when the PCP
is reduced to a decision problem P then we know that P is Σ0

1
-hard, and

in particular P is not recursive. But if we can also reduce the infinite
Post Correspondence Problem to P then P is Π0

1
-hard, and in particular

it is not in the class Σ0

1
, so it is not even recursively enumerable. For

instance, Blondel and Canterini proved in [BC03] that some problems about
probabilistic automata are undecidable, using a reduction from the ω-PCP,
and we can now infer from the above result that these problems are not even
recursively enumerable.
Finally, we mention also that in another paper [Fin12], we gave a complete
proof of the Σ1

1
-completeness of the ω-PCP in a regular ω-language, also

denoted ω-PCP(Reg), and we applied this result to get the exact complexity
of several highly undecidable problems about infinitary rational relations and
ω-rational functions.

Acknowledgement. I wish to thank the anonymous referees for useful
comments on a preliminary version of this paper.
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PhD thesis, Université Paris VII, 2000.
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