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Abstract. We consider the Carleson embeddings of the classical Hardy spaces (on the disk)
into a LP(u) space, where p is a Carleson measure on the unit disk. This includes the case of
composition operators. We characterize such operators which are r-summing on HP, where p > 1
and r > 1. This completely extends the former results on the subject and solves a problem open
since the early seventies.
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1 Introduction

In this paper, we investigate Carleson embeddings on classical Hardy spaces HP when p > 1.
In the following, the unit disk of the complex plane is denoted D = {z € (C| lz| < 1}. Its boundary,
the torus, is denoted T = {z € (C| |z| = 1} = 0D. We denote by H(D) the class of holomorphic
functions on the unit disk. At last the Hardy spaces are defined by

H? = {fEH(ID))| iill)/qr’f(m)‘pd)\<oo}

and

1/p
170 =suw ([ 17620 an)"" = sup £ zogey
r<l T r<l

Here A stands for the normalized Haar measure on the torus (it is the normalized arc length), and
fr(2) = f(rz) with r € (0,1) and z € D.

~ Now, let us turn to our main subject. Given a positive Borel measure p on the closed unit disk
D, we consider the formal identity J,, from the Hardy space H? into LP(u) (we keep the notation
J,. instead of J,, ,, in the sequel for sake of lightness):

Juo HP  —  LP(p)
o= J

Thanks to a famous result of Carleson (see [C]), this is well defined and bounded if and only if
w is a Carleson measure, i.e.

sup,u(W(g, h)) = O(h), when h — 0,
£eT
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where W(E, h) is the Carleson window
W(ER)={z€C|1-h<|z/<1 and |arg(zf)| < h}.

Let us recall that J, is compact if and only if y is a vanishing Carleson measure (see [Po|, or
[McC] for composition operators in higher dimension):

sup,u(W(f, h)) = o(h), when h — 0.
€eT

Moreover let us mention that there is no real restriction in assuming in the sequel of this paper
that p is actually a measure carried by the open unit disk: let us assume a priori that p is carried
by the closed unit disk and that .J,, is either order bounded or r-summing for some r > 1, then in
both cases, J,, is actually compact and a necessary condition is that x(T) = 0. Hence from now
on to the end of the paper, we are going to assume that p is actually a positive Borel measure p
on the open unit disk D.

One motivation to get interested in the Carleson embedding is that it allows to treat the case
of composition operators on HP.

Let us recall that, given a symbol, i.e. an analytic function ¢ : D — D, the composition
operator C, : H? — HP is well defined and automatically bounded (see the monographs [CmC] or
[S1] for example). Moreover many operator properties of C,, can be expressed in terms of Carleson
measures thanks to the transfert formula. Indeed, since ¢ € H*°, it admits boundary values almost
everywhere: hm p(r€) exists for almost every £ € T. We shall write simply ¢(§) in the sequel

(although in the literature, it is often denoted ¢*(§)). The pullback measure of A associated to ¢
plays now a crucial role:

Ap(E) = )\({E e T ¢(&) € E}) for every Borel subsets E of D.

The transfer formula gives

Ifowllar =IfllLrmn,)  forevery f e HP.

Hence many properties of the operator C, are common with the ones of the operator Jy , in
particular compactness, r-summingness,...

The case of weighted composition operators can also be treated in the same manner.

We are going to characterize those operators J,, which are r-summing for some r > 1. Before
standing the results, let us recall the definitions

Definition 1.1 Suppose 1 <r < 400 and let T: X — Y be a (bounded) operator between Banach
spaces. We say that T is an r-summing operator if there exists C > 0 such that

(Zn:HTg;j”r)l/rgC bup (Z|x zj) ) T:C’ sup
j=1 “

for every finite sequence x1, xa,...,x, in X.

The r-summing norm of T, denoted by 7,.(T'), is the least suitable constant C > 0.

The class of r-summing operators forms an operator ideal (for instance see [DJT]| for more
details).

We shall use several times the following well known fact about summing operators (see [DJT]):
a bounded operator T': X — Y is r-summing if and only if there exists C' > 0 such that, for every
X-valued random variable F' on any measure space (2,v), we have



HToF|| dv < C sup /|§0F\ dv (1.1)
€Bx~

Actually the best admissible C' is (7, (T))".
Very few results are known on absolutely summing composition operators: there is a character-
ization of r-summing composition operators on H? due to Shapiro and Taylor in [ST] only when

r = p > 2. The same result (with an obviously adapted proof) is actually valid for general Carleson
embeddings:

Theorem 1.2 [ST] Let p > 2.
Ju s p-summing on HP if and only if

1
dp < oo. 1.2
L 12)

Moreover, for every p > 1, the condition (1.2) is sufficient to ensure that J, is a p-summing
operator on H?. When 1 < p < 2, J, is actually even absolutely summing since H? has cotype 2.

A natural question then arises: is (1.2) the good condition (i.e. a necessary condition) when
1 < p <27 This is false in general: Domenig proved in [Do] that, given p € [1,2) there exists an
absolutely summing composition operator on H? which is not order bounded. He was able to give
some sufficient condition for the construction of his example, but without any characterization.
Let us mention that, in this case, it is equivalent to be an order bounded Carleson embedding
and to verify condition (1.2). Indeed, the following is known from the specialists (see for instance
[LLQR1] in the case of composition operators).

Proposition 1.3 Let p be a Carleson measure on the open unit disk D and p > 1.
Jyu: HP — LP(p) is order bounded if and only if (1.2) is satisfied.

Proof. By definition, J,, is order bounded if and only if there exists some h € LP(u) such that for
every f in the unit ball of H?, we have |f| < h a.e. on D. Since H? is separable, it suffices to test
this control on a dense countable subset of the unit ball de H?. Hence J,, is order bounded if and
only if

[ sup, 17 du < o
D H?

fe
llflI<1
which is equivalent to
L1l dn < .
where J, is the evaluation at the point z € D, viewed as a functional on HP.
1
It is well known that ||0,|| = (SEBEE and the result follows. H
— |z

As far as we know, there is no other result on the characterization of Carleson embeddings
(or merely summing composition operators). In particular, the following problem was fully open
(except when r =p > 2).

Problem:
Given p,r > 1 and p a Carleson measure on the unit disk, which condition on p characterizes
the fact that J, is a r-summing operator ?

In this paper, we are going to solve completely this problem for p > 1 and » > 1. Our
characterizations involve Carleson windows when p > 2 and r > p/, or integral conditions when

1 1
p € (1,2) or r < p'. Here, as usual, p’ is the conjugate exponent of p > 1: — + — = 1.
p P



Concretely, let us describe the organization of the paper. This first section is devoted to the
introduction of the notions and questions. In the second one, we state our main results and
specify the special case of composition operators. We finish with a few examples enlightening our
statements. The third one treats what we call the diagonal case: we restrict the domain to the space
spanned by the monomials 2N+, ... 22" and the measure to the corona |z| € [l —1/N,1—1/2N).
It turns out that in this framework, the embedding acts as a diagonal operator on the classical ¢P
space. The difficulty is then to glue the pieces: section 4 provides some tools to do so and section
5 makes explicits some consequences for our purpose. In section 6, we focus on the case p > 2:
most of the cases follow the results obtained in the previous sections, but the case r < p’ requires
a specific approach. The case p < 2 cannot be treated following the same ideas and we treat it in
the section 7. At last section 8 is devoted to some examples and remarks. For instance, we focus
on the (formal) identity from the Hardy space HP to the Bergman space B9, and on the other
hand we compare the different classes of r-summing composition operators.

Results of this paper were announced (without proof) in [LR].

We state here a first statement which is an elementary necessary condition when 1 < p < 2,
and has a double interest: it first gives a useful (practical) test in some cases. On the other hand,
this necessary condition is a step, which turns out to be mandatory for a step in the proof of our
characterization. Without waiting for the right characterization, we can notice that this is surely
not a general sufficient condition.

Proposition 1.4 Let 1 <p < 2.

1. Let 1 < ¢ < 2. We assume that the formal identity f € HP — LD, p) is a r-summing

operator for some r > 1. Then the measure 18 finite:

.
(1—l2))2

1
/D(l—|z)g dp < o0. (1.3)

In particular, if we assume that J,, : HP — LP(u) is an r-summing operator for some r then

1
/D(l—|z|)P/2 dp < o0. (1.4)

2. When 1 <p < 2, the preceding condition 1.4 is not sufficient in general.

For instance, applying this result to the normalized (area) measure A on D, we can already
point out that the formal identity from HP? to the Hilbert Bergman space is not r-summing for any
p €[1,2] and any r > 1.

Proof. 1. Since HP and L%(u) have cotype 2, the operator is actually r-summing for every
r > 1. In particular, it is a g-summing operator. Thanks to the Pietsch domination theorem, there
exist C' > 0 and a probability measure v on the unit ball of (H?)* such that, for every f € H?, we
have

/ fldp<c / ()| dv(a).
D Bmp)y«

We apply this inequality to
N
fulz) = Z n(w)2"
n=0

where N > 1 and (r,,) is a sequence of i.i.d. random variables (Rademacher). Then we can take
the expectation with respect to w to obtain via Fubini and the Khinchin inequalities:



/D(g:|22n)‘ﬂ2 d/LSC//B E|Oé(fw)‘qdy(a).
n=0

(rP)*
for some constant C’ depending only on ¢ and C.
But, for any a € B(gr)-, we can write a(f) = ng(E) f(2)d\, where g belongs to the unit ball
of L', so that (recall that ¢ < 2)

q/2

Ela(f)l” < (Ela(£)1?) " = (E| irnw)ﬁ(nﬂ?)” “<lolg <,
n=0

as p’ > 2 and every g € B}, belongs to Bpe.

We get for arbitrary large N:
1— |Z|2(N+1) -t
— ) du <.
/D ( 1- [z ) o=

Taking the limit when N — +oo, the conclusion follows.

2. We consider the examples contructed in Lemma 4.3.[LLQR3]. There exists some function
¢ : D — D analytic where ’cp(e“)’ = e/ with f(t) ~ |t| for ¢ in the neighborhood of 0 and
|<p(e“)’ < 1 out of this neighborhood of 0. Since p/2 < 1, it is clear that condition 1.4 is fulfilled
although C, is not summing on H?: indeed it would be compact on H? (thanks to Sarason’s result
in [Sa] for p = 1), equivalently, compact on H? which is not. m

2 The main results.

We state below our main results which characterize any absolutely summing Carleson embed-
ding. As usual, the notation A ~ B means that there exist two constants ¢, ¢’ > 0 (depending on
r and p only) such that A < ¢B < dA.

In addition to the Carleson windows, these characterizations involve special domains. We first
divide the open unit disk I into dyadic annuli

1
Fn:{z€D|1—2—n§|z\<1— where n =0,1,2,---

1
i)

Then each I',, is divided into 2" similar pieces R, ;, 0 < j < 2", that we call Luecking boxes (or
Luecking rectangles):

Rn;={zeD|1- 2% <l|zl<1-— and arg(z) € (2mj/2",2n(j +1)/2"]}.

on+l
So clearly the family of the R, ; with n > 0 and 0 < j < 2", forms a partition of D.

We will also use the Stolz domain ¥; at £ € T which is the interior of the convex hull of
D(0,1/2) U {¢}.

Characterization of absolutely summing Carleson embeddings:

Let p be a Carleson measure on D.

1) Let 1 < p < 2. The natural injection J,,: H?(D) — L?(u) is 2-summing if and only if
1

D ——du(z
£— s L 1(2)



belongs to Lz/p(']T, d\), where X¢ is the Stolz domain at point £ € T. Moreover we have

1 1
() = |30 ~ @], (2.1)

1
here U(¢) = | ————— du(z), f eT.
where (&) /]D TR wu(z), for every &

i)

ii)

iii)

2) Let p>2 andr > 1.

e When1<r <p' , we have

SN

1/2
T (Jp) = m1(Jy) = ”F”LP’(T)v where F'(§ [Z 22n< Wi, 2™ n)) ] (2.2)

n>0

e When p’ < r < p, we have

r/

) ~ [Z 3 (2" ) p] (2.3)
n>0 0<j<2n

e When p < r, we have

Tr(Ju) = mp(Ju) & [Z Z 2"u(R

n>0 0<j<2n

1/p 1/p
| = ([ge) e

Before giving the corollaries for composition operators, let us mention several remarks:

In the case p = 2, we recover the characterization of 2-summing operators (i.e. Hilbert-Schmidt
operators

1
// 5 dp dA(§ // d)\(g)d,uz/id,u
25 (1- |Z| {¢] ZEEE} |Z|) p1— 2|
thanks to Fubini’s theorem and since {{| z € 3¢} is an interval of length ~ 1 — |z|.

On the other hand, we recover the necessary condition given by Prop 1.4: when p < 2, we
have 2/p > 1, and hence, by Fubini’s theorem,

1 2/p p/2 1
- _du d\ > // — dud)
</’]I‘ </25 (1—|z)t*2 ) ) s (1—[2]2)'2 :
du
//{szezg} 1—|Z\)

p (1= lz? )g

Q

Our characterizations show that the r-summing character of .J,, depends only on the sequence

of values {”(R"J)}nzo;j <on- More precisely, we point out that when two positive (finite)

measures p and v satisfy ﬂ(Rnyj) < V(Rn’j) for every Luecking rectangle R, ;, then 7, (J#) <

~

T (Jl,) for any » > 1. This can be checked from our characterizations: it is obvious when



p > 2 and r > p’. In the other cases, just use the fact that the Luecking rectangles forms a
partition of the unit disc. For instance, the function ¥ in (2.1) is equivalent to

Z d(§7 RnJ) _(1+p/2)M<Rn7j> :

n>0
j<2n

In particular, when u(Rn,j) = Z/(Rn,j) for every n and j, then J, is r-summing if and only if
Jy is r-summing.

This leads to the natural question to wonder whether the characterizations depend on the
order of enumeration of the values ,u(Rn’j). More precisely, when p > 2 and r > p’, the
r-summing character of J, is clearly invariant by permutation of the values of { /L(Rn’j) }j <on
(for each fixed integer n). It turns out that it is no more true in the other cases. We have the
following examples

e Example 1. Let p > 2. There exist two (finite) measures p and v on D such that
— For every n > 1, the sequence {u(Rn,j)}

{V(R”J)}j<2n'
— J, : HP — LP(p) is 1-summing,

j<an is a permutation of the sequence

— J, : H? — LP(v) is not p’-summing.

Consider the centers z, ; of the R, ; and two sequences: (m,,) is defined as the integer
27l

part of — and a,, = 27"Pn"? with ~ fixed in the interval (i,, 2 _ 1).
n? p'lp 2

Now our measures are

0= Z Qnltn  Where p, = ay, gn:ézw.

n>ng 7=0
and
In+mn
V= E oV, Where v, = a, E 0z
n>ngp J=ln

where ng is large enough and /41 = 2([n + mn)

Let us point out that the radial projection on T of the rectangles R, ; charged by v are
pairwise disjoints arcs whereas for the measure pu, these projections are arcs tending to
the point 1, when n tends to infinity.

e Example 2. Let p € (1,2). There exist two (finite) measures @ and v on D such that

— For every n > 1, the sequence {/L(Rn,j)} is a permutation of the sequence

()},
— J, : H? — LP(p) is 1-summing.

j<an

— J, : H? — LP(v) is not r-summing for any r > 1.

The construction is similar to the previous one but we have to interchange the way we
define ¢ and v in order to get now that the radial projection on T of the rectangles R, ;
charged by p are pairwise disjoints arcs whereas for the measure v, these projections are
arcs tending to the point 1. Also the parameters o, have to be adapted.

We leave the check of the details to the reader.



As an immediate corollary, we can characterize r-summing weighted composition operator for
any r > 1 and any p > 1. Indeed, dealing with the operator f — w(f o), it suffices to consider
the measure 1 = v, where dv = |w|? d\. Nevertheless, we state precisely these particular results
only for composition operators. One involves the Nevanlinna counting function:

> log ﬁ if w # »(0) and w € (D)
Np(w) = P
0 else.
where the sum runs over the roots counted with multiplicity.
Characterization of absolutely summing composition operators:

Let ¢ : D — D be an analytic map such that its boundary values satisty |p(w)| < 1 for almost
every w € T. If C,, is the composition operator from H? to H?, we have

1) When 1 < p <2, for any r > 1:

2/p 1/2
1
70(C,) ~ 11 (Cy) ~ [ /T ( /T WdA(w)) dA(g)]

2) When p > 2,

o for1 <r<yp,

SN

1/2
7 (Cp) % m(Cp) % 1P o ry where F(€) = lzzw(w(w,z")) ] (2.5)

n>0

e forp <r <p,

Q

-(Cy)

[z )3 (2%%»)””] :

n>0 0<j<2n (2.6)

5 / N\ aa 1Y
RV AN (L= 1[=?)
1 1/p
7,(C,) ~ (/Tw dA) 2.7)

In the case p’ < r < p (see (2.6)), the equivalence with the integral quantity comes from the
fact that the r-summing norm of C, (on H?), thanks to Luecking’s characterization [Lul], turns
out to be equivalent (up to an exponent) to the %—Schatten norm (on H?) . Then we use the
characterization of the membership of C, to the Schatten classes, given by Luecking and Zhu
[LZ] and involving the Nevanlinna counting function. We could also use directly the results on
equivalence between the measure of Carleson’s windows and the Nevanlinna counting function, see
[LLQR2] and also [EK] for a recent new proof.

o forp<r,



3 The diagonal case

In this section, we fix an integer N > 1 and we characterize the absolutely summing norm in
the case of a measure concentrated on the N** corona. More precisely, we consider the restriction
un of p to the corona Gy, defined by un(A) = u(ANGy), where

1 1
=4zeD|l—-—=<|z|<1—-—1}.
Gy ={ ’ NS |2 ON
We are then interested in the behavior of the operator J,,, . It turns out that the r-summing norm
of J,, is equivalent to that of its restriction to the space spanned by the monomials 2% where
N <k <2N.
Our characterization will rely on the values of the measure of the boxes

Ry, = {z € ID)‘ 1- % <l <1- % and arg(z) € (2 /N, 27 (j + 1)/N]}.
Of course Gy = Up<j<nRn,;. Later we shall use the results of this section with the dyadic version
N = 2" recovering the Luecking boxes since we have R, ; = Ro» ; and I'y, = Gon.

The following proposition makes the link between the behavior of the restricted Carleson em-
bedding and a suitable diagonal operator on classical /%, space. We define the multiplier operator
Mg from €5, to X, by Mg(e;) = Bje; where B € CV and {e; }o<j<n is the canonical basis of £4,.

Proposition 3.1 For everyr > 1 and p > 1, we have
T (Juy ) & 0 (M)
where B = (Nu(RNJ))l/p, for0<j < N.

In the previous statement, the underlying constants depend only on p. Actually we are able to
prove a more general statement. Before stating it, we shall give some other definitions.

Definition 3.2 We say that a norm « of operator ideal is a monotone ideal norm if the following
property is fulfilled: whenever we have three Banach spaces X, Y1 and Ys and two operators T :
X =Y and S : X — Y such that ||Tx| > ||Sx||, for every x € X, we have o(T) > a(S).

All r-summing norms are monotone. If o is monotone, we have in particular «(7T) = a(j o T),
for every T : X — Y and any isometry j : ¥ — Z. We will need the following result about
monotone norms.

Lemma 3.3 Let & be an operator ideal with a monotone norm «. Let X, Y be Banach spaces
and (2,2, 1) a measure space. Assume that we have defined operators S: X —Y andT,: X =Y,
w € Q, such that the map w — T,, is measurable (with values in S (X,Y)) and we have

[[Sz| < / | T | du(w), for every x € X. (3.1)
Q

Then «(S) < /Qa(Tw)d,u(w).

Proof. We can assume that [ «(7},)du(w) < +oo. Let Z = L'(u,Y) be the space of Y-
valued Bochner integrable functions defined on (€2, 3, i), and define T: X — Z by Tz(w) = T, x,
w € Q. Condition (3.1) means that ||Sz|| < ||Tz||, for every € X. Since « is monotone we have
a(S) < a(T'). We finish because it is not difficult to see that

o(T) < /Q (T dp(w)

In fact, this is clear if w — T, is a step function and the general case follows by density. [ |



We denote by HY; the subspace of HP spanned by {1,...,2" "1} and by jf{\g = 2V HY, the space

spanned by {2V, ..., 22N=1}. Clearly HY, and HY are isometrically isomorphic via the mapping
feHy —NF.

Theorem 3.4 Let p > 1 and « be a monotone norm on an operator ideal #. Let N be an integer,
with N > 1 and consider the following operators:

(a) Juy: fE€HP — f e LP(D, un).
(b) Tp7N2f€H§7'—>f€Lp(D,‘LLN).
(¢) Tyn: | € Hyy v f € LP(D, uy).

(d) Ms: (a;)o<j<n € Uy — (Bjaj)o<j<n €LF, where B; = (NM(RN,j))l/p-

We have B
a(Juy) = oz(Tp7N) ~ a(Tp,N) ~ o (Mg)

where the underlying constants are independent of N and «.

We shall need some lemmas. The following one is an obvious extension of a classical result (see

2]
7.10[Z], p.30). We shall write 6, = exp( < ) for any j € {0,...,N — 1}.

Lemma 3.5 Let 1 < p < co. Then we have, for every f € HY,,

| Nl 1/p
1flp ~ (N > |f(9j>|”) :
j=0

Note that the estimations are uniform on N and depend only on p.

Lemma 3.6 Let 1 < p < o0.

Let us define Q(z) =1+ ---+ 2N~ and Q;(2) -1/p’ Q( z)
Then, there exist ap,b, > 0 such that for every ug,...,uny_1 € C:
N-1 1/p N-1 N-1 1/p
W Sher) <[ uwal < bp( > 1t
j=0 7=0 Hp j=0

Proof. Point out that Q;(6;) = N*/P§;, (the Kronecker symbol) for all 5,1 € {0,...,N —1}.
Using Lemma 3.5, we get

N-1 P | N-1 Nl , N1
> ouQ)l ~ N > ‘ Uij(el)‘ = Jul’
j=0 Hr 1=0  j=0 1=0
|
Proof of Theorem 3.4.
It is obvious by restriction that oz(J,LN) > oz(TpJV).
The equlvalence « (Tp N) (Tp, N) follows from the fact that there is an isometric isomorphism
between Hﬁ, and HY (described above) and the fact that for any f € H?, the LP(ID, uy)-norm of
f and 2% f are equivalent since |z| belongs to (3, %) when z € Gy (and N > 1).

10



Let us prove that a(J#N) < a(Tp’N). For every f € HP, we consider y,, which is the projection
Tm(f) of f on the space Z,,, spanned by the z¥ when k runs over {mN,...,(m+1)N —1}. Since
p > 1, the Riesz projection is bounded and there exists a constant r, > 0 depending on p only such
that ||ym|lge < rpl||fllar. So, the operator m,,: f € HP +— y,,, € Z,,, C H? is uniformly bounded
by rp.

Now there exists f,,, € H} such that 2™N f. = ym. Moreover the correspondence ¥,, € Z,, C
H? ¢ f,, € HY, defines an isometric bijection R,,. We have

—m/2

HszmeLp(D,uN) se ||fm||Lp(D7HN)’

for every N > 2. It means that the operator

My g € LP(D, ) — 2™V g € LP(D, puy)

has norm less than e~ ™/2.

Therefore, the sum o, of the operators Jm = M, o Tp,N © Ry, o Ty, acting from HP to
LP(D, puy) converges. Using the ideal property, we have for any ideal norm « (and in particular
for the operator norm):

a(ZMmOTp’NORmOﬂ'm) er —m/2q N )S &2{61 a(Tp,N).

m>0 m>0

Since the operators o, and J,, coincide, for instance on polynomials (hence on H?), the operator
Juy may therefore be written as the sum of the operators J (m) " moreover

rpV/e
aU) < 2% 0.

Let us prove that a/(Mg) < (T, n). We will assume that (R, ;) > 0, for every j, the general
case can be easily deduced from this one. From Lemma 3.6, we know that HY, is isomorphic to /&,
(with constant not depending on N) via the mapping

N-1
u € B — U(u Zu]Q]
7=0

1 N

On the other hand, since Q,(z) = Nﬁﬁ(l 7; ), we have |Q;(2)] < NP for every z € D,
0,2
and for every z € Ry ;,
1
(ot
N g e <1Q,().
|0 — z| !
This implies that
HQJIR . ~ (NM(RN -))l/p.
L@ ) !

Let us consider the “diagonal” operator
A=DoMgo ¥ ': HY — LP(D, un)

where
N-1

—-1/p
Diue 3 (Nu(Ray)) " uiQiTwy, € LMD, i)
Jj=0

11



Claim1: a(Ms) ~ a(A).
It is clear by the ideal property that
a(A) < ID]le (M) || €] S @ ()| D]| -

But, for every u € ¢%;, we have

N-1 1 »
D (N (R ) PllQi1x, ~ (lull?
I DI 5,100 Z; pRyg)) sl | Qi |, o &l

hence a(A) < a(Mp).
Actually since ¥ is an isomorphism (with uniform constants) and D is an isomorphism on its
range, we also have a(93) < a(A). Claim 1 is proved.

Claim 2: a(A) S aTyn)-

To prove the claim, we shall use the underlying unconditionality, so we incorporate a random
perturbation in some of the previous operators. More precisely, let us consider a random choice of
signs o = (0g,...,0n_1) € {£1}" and define

Ay, =M, 0T, yoty: HY, — LP(D, un) ,
where

N-1

M,: f € (D, uy) — 3 (ak][RN,k>f € LP(D, ux)
k=0

and 1), is defined by its action on the basis {Q;};: ¥(Q;) = 0,;Q;.
Clearly, for any o, M, is an isometry and 1, is an isomorphism with norms not depending on
o; actually 1, is conjugated (via ¥) to the diagonal operator on ¢4, associated to the o, which is
an isometry.
It is easy to check that for every j € {0,...,N —1}: E;A;(Q;) = Q;1Ir, ;. So we have for
every f € Hy: '
E. A0 (f) = A().

By convexity and the properties of an ideal norm, we get that a(A) < E,a(A,). But

a(Ae) < 1|~ la(Tn) |

SO

o(A) S a(Tpn).
S ().

)

At last let us prove that oz(TpJv) a(9Mg). We again assume pu(Ry,;) > 0, for every j. We
first concentrate our attention on the box Ry o and we consider a Jordan curve v C D surrounding
R0 such that the length of 7, denoted by £(v), satisfies £(y) < 1/N and satisfying d(z,v) 2 1/N,
for every z € Ry,. By the Cauchy formula, we can write for any analytic function f on D and

any z € Rn,o:
f(w
2@7r/ -z '

|dw| on 7, we obtain

Claim 2 is proved and we conclude that a(fmg

Introducing the probability measure dP(w) =

f(v)
|ﬂmsfumnmm»
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Now, when z € Ry j, clearly |f(2)| S [ |f(6;w)|dP(w). Introducing the operator

S~

2

-1
Uy: f € HY — J(Orw)lg, , € LP(D, un)
=0

b

we have then for every z € Gn

FIS [ [Uun(f)(2)] dP(w).

S~

In particular,
112 @un) S [ 100Dl (o) Bw)
v
and, by Lemma 3.3,
a(Tyx) < / a(Us) dP(w).
v

To conclude, we shall now concentrate our attention on a(Uw), where w € v is fixed. The
operator U, is the composition of three operators: A, Mgz and B,,, with

Ay: f e HY — (f(ajw)N_l/p)o§j<N €ty

and
N-1

—1
By:u ety — Z uk(u(RN’k)) /p]IRNYk € LP(D, un).
k=0

As soon as the proof that A, and B,, are bounded (with bounds independent from w) will be
done, we shall get that a(Uw) < 04(9)?[;) and the conclusion of our assertion.

B,, is obviously isometric. Writing w = re'® and denoting by P, the Poisson kernel and by 7,
the translation on the circle group T, we notice that

() = (P rf BN 12)

Since, f € HY, — P, *7,f € HY is a contraction, it suffices to invoke Lemma 3.5 to conclude that
A, is bounded (with bound independent of w). This ends the proof of the theorem. m

4 Toolbox: how to glue summing operators

4.1 Summing multipliers

The results of this section are certainly well known from the specialists. Nevertheless, most of
them do not appear easily in the literature (actually we did not find some of them). For sake of
completeness, we state and prove all of them. In this section 8 = (8,) is a bounded sequence of
complex numbers. In the following result, 2tz stands for the multiplier operator on ¢, with p > 1,
defined by Mgs(e,) = Bnen, where (e,) denotes the canonical basis of ¢7.

Proposition 4.1 With constants only depending on p and r, we have:

1. For 1 <p <2 and everyr > 1,
- (Mg) ~ || 8]]2 (4.1)

2. Forp>2andr <p,
7 (M) ~ |18l (4.2)

13



3. Forp>2andp <r<p,
7 (M5) = 18]l (43)

4. Forp>2andr >p,
WT(EIRB) ~ Hﬁ”p (4'4)

Proof. 1) Since ¢P has cotype 2, an operator from ¢P to itself is r-summing operator for some
r > 1 if and only if it is r-summing for every r > 1. Hence it suffices to treat the case r = 2.
We have two different arguments. The first one follows from the fact that the composition of two
2-summing operators is nuclear. Here this gives that g o Mg = Mp= is nuclear. It is then easy
to conclude that 32 € (1.

Another argument uses only the Pietsch domination theorem: we are given C' = mo(9g) > 0
and a probability measure v on the unit ball of (¢)* = ¢°" such that, for every a € ¢7, we have

2
@< [ [ atma(m) o).

P

We apply this inequality to
N
a, = Z rn(W)upe,
n=0

where N > 1, (r,) is a Rademacher sequence and w« is a norm 1 multiplier from " to 2, or
equivalently, belongs to the unit ball of 9 with ¢ = 2p/(2 — p). Then we can take the expectation
with respect to w to obtain via Fubini:

a2 <€ [ fa-ulfdv@) <€ [l uldv(a) <

B“J/ sz/

Hence § is actually a multiplier from ¢? to ¢P (with norm less than C): we obtain that 8 belongs
to ¢? (with norm less than C).

Conversely, when 3 € (2, we can factorize MMz through the identity from ¢! to ¢?. Indeed,
writing ¢ = 2p/(2 — p) € [2,+00], it suffices to write 8 = be, where b € ¢ (hence it induces a
multiplier from ¢ to £1), ¢ € £7 (hence it induces a multiplier from ¢2 to %) and ||3]|, = ||b|, -|Ic|l4-

2) When 9 is r-summing, its adjoint Mg : £ — 2" is order-bounded (see [DJT] p.109),
which is equivalent to 8 € o' Conversely, when 8 € %", we can factorize in an obvious way
95 through the identity from ¢! to ¢2, which is absolutely summing thanks to the Grothendieck’s
theorem.

3) The sequence (e,) is weak-¢" (with norm 1 actually) since £ C ¢?. Hence by definition
18llr < m-(Mg). Conversely, when 5 € ¢, thanks to the fact that » < p, the operator Mg
factorizes through the multiplier by 5, viewed from £*° to ¢". But this multiplier is r-summing
with norm less than [|3]|,.

4) When 3 € (P, the operator Mg factorizes through the multiplier by 3, viewed from (> to
7, which is p-summing with norm less than ||3]|,. A fortiori, m,(Mg) < m,(Ma) < ||5]lp-

On the other hand, since 7 has cotype p, we deduce from [DJT] p.222, that the operator Mg
is (p, 2)-summing as soon as it is r-summing. Now, the canonical basis is clearly weak-¢? because
p>2,s0B€/P. A

Even without having the full characterization yet, we are now ready to exhibit an example of a
composition operator on HP, with p € (1,2), which is order bounded but not absolutely summing
(recovering the result of Domenig [Do]). Indeed, we consider the symbol constructed in [LLQRS3,
proofs of Th. 4.1 and Lem. 3.7] with 8 € (1,2/p). With this symbol, the size of the Luecking
boxes is controlled as follows: for every n, j:

Ao (R j) 2705,

14



Applying both (4.1) and Th. 3.4, we get that the operator J,,,, has a 2-summing norm of the order
of 2(n/2=n/P8) Gince it is summable, it implies that Jy, is 2-summing.
On the other hand, J,, is not order bounded since

1 e n _
/Fi'Z'dA /17||d/\ Zw 22

n,j
4.2 Some glue-lemmas for summing operators

Lemma 4.2 We fitr > 1 andn € (0,1). Let S: X — Y be an r-summing operator. There exists
a step function F: [0,1] = X such that

/ ’X "dt <1 for every y in the unit ball of X*.

e For every t € [0,1],

F)|| = nm(S).

Proof. By definition of the summing norm =, (S5), we can find a finite number of vectors
x1,...,%, € X such that S(z;) # 0,

sup Z

§€Bx+ 1<j<n

and y
(X [1s@) " =0 mis).
1<j<n
Now, choose a mesurable partition A4, ..., A, of [0,1] such that each A; has measure
sl
Al = =0
> lIs@ll
1<i<n

Define

F= Z|A |1/ zj L.
It is now very easy to check that F works. ]

Proposition 4.3 We fizp > r > 1. Assume that for every n > 1, there is an r-summing operator
T, : X —Y, such that (ﬁr(Tn))n>1 € {". Then the operator

T: X — D, Yn
T — (Tn(oc))n21
is an r-summing operator and we have

T) < ( Z WT(Tn)T) l/r'

n>1

Proof. Let us fix vectors x1, ..., 2, € X such that

sup x| < 1.
w2 o)
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We have

r/p
> Jrel = ¥ (X |ne])
1<j<m 1<j<m \n2>1
Since p > r, we get

S olrenl s S [ men| < S mm s S Jet)”

1<j<m 1<55m n>1 §€EBx~ 1 <icm
e

Proposition 4.4 We fit p > 1 and r > 2. Assume that for every n > 1, we have a bounded
operator T, : X,, — Y,,. We assume that the operator

T: X =@p X, — D, Y
(xn)n — (Tn(zn))n21

is an r-summing operator. Then each T, is r-summing and we have

k(1) 2 (Y mzr)

n>1
where k, is the constant given by the L"-L?-Khinchine inequality.

Proof. We fix n € (0,1). Thanks to Lemma 4.2, we have, for each n > 1, a function
F, :[0,1] — X,, such that

/ ’X "dt <1, for every y in the unit ball of Xz

e For every t € [0,1], || Tn(Fu(t))|| = n- 7 (T0).
Now we consider a Rademacher sequence (7,)n,>1 (viewed on [0,1]) and we can define the

function
F: [0,1]2 — P X

(tw) +— (Fu(t)rn (W))nzl

On one hand, we have for every ¢ in the unit ball of X*: £ = (§,)n>1 where &, belongs to X and
Z |€n]|* < 1. Thanks to the Khinchine inequality:

n>1

//[0,1]2|§( (&) dtdw*//\zrn )en (Fn(t)) dwdt<kr/ > [€n(Fal )/2dt

n>1 n>1

Invoking the triangular inequality in L"/2 (recall that r > 2), we get

[, e aa <’“(Z( / EulFu®)]" dt)z“)”z.

We can write &, = ||€,||x» where x;, belongs to the unit ball of X*. We obtain

/r r/2 r/2
r r r 9
//0 . F(t,w))|" dtdw < kI (lefnl / X (Fn(t))] dt) ) Sk,-(ZIInt ) .

n>1
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Therefore

1/r
(// w))|" dtdw) < ky.
[0,1]2
On the other hand,

, AT/P ) ) v/
//[0’1]2 |7 (F(t,w))| dtdw://{@,uz (Sl (Ea@) ") dtdeo > o7 (3 wn(Ta))

n>1 n>1

At last, it suffices to observe that

<//[0’1]2 FreEc.ni dtdw>1/r kit sesgli* (//0 12 w))|" dtdw)l/r.

Since 7 is arbitrary, we get the conclusion. [ |

The following result is a variant of the preceding one.

Proposition 4.5 We fir ¢ > 1 and r > 1. Assume that for every n > 1, we have a bounded
operator T, : X,, — Y,. We assume that the operator

Tr"X=,X, — DY,

e (Talwn) sy
is an r-summing operator. Then each T, is r-summing and we have

m-(T) > (Z WT(Tn)T) v when r > ¢’

n>1

and

/

- (T) > (Z WT(Tn)q/)l/q when r < ¢’

n>1

Proof. The proof is straightforward: fix n € (0,1) and for each n > 1, choose a finite family
of vectors (zF) such that

sup Z| |T <1 and Z HTn(xﬁ)Hr > . (T,)".
k

lIxllxx <17

Now consider a norm one multiplier a from ¢4 to ¢ and the family of vectors of X defined by

Uk = Gn (O, ko). ) (the a priori non zero entry is placed at the n'" place). For every ¢ in
the unit ball of X*, we have & = (,) with 3 [[&,[|” <1 50
n>1
S le(oni)l” = Y lanl len@h)” = 3 laalll&al" (X I 5)I")
n,k n,k n k

where £~n lies in the unit ball of X. Hence

PRIEEMIES S < (Tl <1

n>1

On the other hand, by definition of the r-summing norm, we have
>ZHT vn i) ZZ\%! 1T @I >anan\

Taking the supremum over the norm one multipliers from 09" to (" and n < 1, we get the result. ®
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For convenience, we state now three corollaries (these are the versions we shall actually use).
Corollary 4.6 We fix p <2 and r > 2. Assume that for every n > 1, we have a bounded operator
T, : X, = Y,. We assume that the operator

T X=,X, — D, Yn

e (Talen) o
is an r-summing operator. Then each T, is r-summing and we have

iy (T) > (Zwr(Tn)Q)l/Q.

n>1

Proof. For every scalar sequence (a,,), which represents a norm one multiplier from ¢? to ¢?,
we can apply Proposition 4.4 to the sequence of operators (a,T},), and we get

ke (T) 2 ( Z |an|p7rr(Tn)p) v .

n>1
The result follows taking the supremum over all the norm one multipliers (ay,)y. |
Next result is a direct consequence of Proposition 4.5 for ¢ = 2, and the fact that the injection
of @, Y, into @, Y, is a norm one operator.
Corollary 4.7 We fitp > 1 and r > 1. Assume that for every n > 1, we have a bounded operator
T, : X, = Y,. We assume that the operator
T: X:®Zz Xn — @,@p YVL
(Tn)n +— (Tn(x"))n21

is an r-summing operator. Then each T, is r-summing and we have

- (T) > (Z WT(TH)T) v when r > 2

n>1

and 12
(T > (Z m(Tm) when r < 2

n>1

Using Proposition 4.3 in one direction and Proposition 4.5 and the norm one injection of ,, Y5,
into @, Y, in the opposite direction, we get the last corollary:

Corollary 4.8 We fitp > 2 and p > r > p'. Assume that for every n > 1, we have a bounded
operator T,, : X,, — Y,,. Consider the operator

T: @ép XTL — @ep Yn
(e (Tal@n) o,

7w (T) = ( Z ﬂr(Tn)r)

n>1

We have
1/r
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5 Consequences for Carleson embeddings

In this section, we will obtain some estimates about summing norms of Carleson embeddings
exploiting the results obtained for the diagonal case (see Section 3) and “glueing” the partial
operators Tvp’ ~ or J, . In some cases they provide us with characterizations of r-summingness.
Of course the space LP (D, p) is the ¢P-sum of the spaces LP(ID, puon ), so it is rather easy to glue the
range. One of the main difficulty is that, except for p = 2, H? is not an ¢?-sum of a sequence of
spaces H %n, whatever may be the value of ¢q. Nevertheless the Littlewood-Paley theorem implies

that we can write any f € H? as an unconditional sum of f;’s, with f; € H},.

According to the values of p relatively to 2, we can then exploit the type and cotype properties
of the spaces HP. In particular:

When p < 2, the space HP has cotype 2 and type p so we have:

. 1/p . 1/2
(O + 3 151) 7 217l 2 (FOR+ 3 15012) (5.1)
j=0 j=0
When p > 2, the space HP has cotype p and type 2 so we have:
1/2
. (5.2)

(F O+ S 151) " S 171 5 (702 + S 1512)
3>0

>0

Another difficulty we must take care of is the fact that summing up the operators Tp72j, we
shall not get precisely the operator J,, but its diagonal version. More precisely, let us compare the
operator J,, and the operator

“+o0
T,: f € HP — > fillp,, € LP(D, ).
j=0

Lemma 5.1 Letp > 1 and r > 1. If the operator J,, is r-summing, then T, is r-summing and
T (Tp) S 70 (Jp)-
Proof. We first point out that, for every f € HP,

p )1/17
LP(D,p,;) '

For the proof of the lemma we shall invoke a random perturbation argument like in the proof
of Proposition 3.4: let o = (09,01,...) be a sequence of Rademacher variables (i.e. independent
Bernoulli variables over a probability space (£2,P), taking their values in {£1}). We introduce a
function ¢, € L>®(D, 1) and an operator R,: HP — HP by

1T () r @ = (f T2 (5]
j=0

+o0 too
qU:ZUj][pw. and Rgf:Zijj , for f € HP.
§=0 =0

We have ||¢gs || = 1, for every o, and, thanks to the unconditionality of Littlewood-Paley decom-
position, the operator R,: HP? — HP? is an isomorphism with bounds not depending on o.
It is easy to check that:

“+o00 +oo +00
Eg(zaij) (del[p2k) = ijl[p2j .
7=0 k=0 7=0

So we have for every f € H?: E, ¢,J, 0 Ro(f) = T,(f) and this implies that for every r > 1,
T (Tp) S 70 (Jp)-
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Now we are going to apply the results of the previous section to get some estimates of the
r-summing norms of the Carleson embeddings.

5.1 Some estimates for 1 < p <2

Since H? and LP(u) have cotype 2, we recall that, for any r > 1, an operator T : HP — LP(u)
is r-summing if and only if it is 2-summing.

Proposition 5.2 Let 1 < p <2 and p be a positive measure on the unit disk D. We have

2n 1 2/p] V2 2" 1 a/pnpa] /P
[ZZ(WW) ] SMUM[Z(Z@”M&@) ) ]

n>0 j=0 n>0 j=0

Proof. From (4.1) and Theorem 3.4, we have the following estimate for the 2-summing norm
of the operators J,,, and T} on,

2" —1

2/p 1/2
wQ@LQn>zﬁwﬂﬁ;2n>xﬁ[ > (2°0(Ray) /] .

Jj=0

We apply (5.1) and Prop. 4.3 (with r = p) to the sequence of operators (J,.)n to get the upper
estimate for the p-summing norm (which is equivalent to the 2-summing norm) for J,.

Now let assume that J, is 2-summing. A fortiori the diagonal operator T}, is 2-summing with
7o (Tp) S ma(Jy) (cf Lemma 5.1). Now applying Corollary 4.6 and (5.1), we get

T (Tp) > ( Z o (fp72n)2) 1/2

n>0

— T,
thanks to the factorization @,, H5, — HP — LP(D, n) — @, LP(D, pan) which acts on each

HY, as Ty on. This gives the minoration. u

5.2 Thecaser>p>2

Proposition 5.3 Let r > p > 2 and p be a positive measure on the unit disk D. We have

m > ([ =)™

Proof. From (4.4) and Theorem 3.4, we know that 7, (Tp,gn) is equivalent to the ¢P-sum over

jof (27u(Rn )"

Now let assume that J, is r-summing. A fortiori the diagonal operator 7}, is r-summing
with 7,.(T,) < mp(J,) (cf Lemma 5.1). Now reasoning as in the second part of the proof of
Proposition 5.2, but this time using (5.2) and applying Proposition 4.4, we get

w0 27 (5) 2 (S @e))

n>0

This gives the lower estimate

2" —1

w02 (X 3 7)) "~ ([ 72 i)

n>0 j=0

The other inequality is clear: the order boundedness easily implies the p-summingness, hence
the r-summingness since r > p. ]
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5.3 Thecase2<r<p

Proposition 5.4 Let p > r > 2 and u be a positive measure on the unit disk D. We have

2m—1 1r
7o (Uy) = [Z > (2ur.)” ] .

n>0 j=0

Proof. From (4.3), Theorem 3.4 and Prop. 4.3, we get in the same way as before

w2 (S fruin)”)

n>0 j=0

Now we assume that .J, is r-summing and we use the same idea than in the previous case,
replacing Proposition 4.4 by Corollary 4.7. We get

_ N1/r 2" —1 r/p 1/r
2w (0) 2 (Snhe)) = [ 25 (um)”]
n>0 n>0 j=

This gives the minoration. W

5.4 An estimate for p/ <r <2
We can apply (4.3), Theorem 3.4 and Proposition 4.3 to get

Lemma 5.5 Let p' <r <2 and p be a positive measure on the unit disk D. We have

~\ /T 2" -1 r/ r

WT(JN,) S (ZWT(JM2H) ) ~ (Z Z (2n,u(Rn,j)) p) .
n>0 n>0 j=0

5.5 Some estimates when 1 <r <p' <2

In the case p < 2 we proved in Proposition 5.2 that the r-summing norm of J, is between the
¢P-sum and the ¢2-sum of the r-summing norm of the pieces J,,,, . Following the same ideas one can
prove the following estimates providing some easy to handle necessary and sufficient conditions.
Now the r-summing norm of J, turns out to be between the ¢"-sum and the ¢*-sum of the -
summing norm of the pieces J,,.,, .

Proposition 5.6 Let p > 2, p' > r and p be a positive measure on the unit disk D. We have

n_q o YT n o 2 1/2
[Z(zz (2n(Rns)) )] szu)z[Z(Z(2nu<Rn,j>)”)P’] .

n>0 j=0 n>0 j=0

Nevertheless this result can also be deduced from the exact charaterization of the r-summnig
norm that we will give in Theorem 6.2.

6 The proof when p > 2

In the previous section we gave some partial results when p > 2. In the case r > 2, they
provided a full characterization for the membership of J,, to the class of r-summing operators. In
this section we deal with the remaining cases, namely r < 2. The glueing technics are not sufficient
in this cases and some new ideas are necessary.
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6.1 The proof in the case p' <r <2
We already got an inequality in Lemma 5.5 and we shall now prove the reverse inequality.

We are going to define a HP-valued function ® which will play a key role in the proof. We
denote « =1/p’ —1/r >0 and p, =1 —27", for n > 1. Define ®: [0, +00) — HP by

2771/0(
O(t)(z) = e forzeD, te[n—-1,n), n>1.

We need the following lemma, where for f € H? and g € H” | the duality bracket (f,g) has the
meaning

(r9)= [ 1) ar).
It is known that this makes H?' isomorphic to the dual of HP.

Lemma 6.1 There exists C' > 0 such that, for every g € HY :

+oo
| l@a.al @ < Clal,
Proof of Lemma 6.1. For every ¢ € [n — 1,n), we have by definition of ®:

(®(t), ) = 27"g(ppe2=™) .

We get:

+oo
| @l a =2 [ o) axeo) = [ [ol av.

n>1
where the measure v is defined for every Borel subset B of D by

y(B) =) 27" / 15 (pnb) dA(6).

n>1 T

We point out that the statement of our lemma means exactly that, for the measure v, we have
HP (D) ¢ L"(v). In other words (see [D, Th. 9.4]), we have to prove that there exists constant
C > 0 such that

v(W(ER)) <ChP | forallé e Tand 0 < h <1, (6.1)

which is usually known as v to be a (r/p’)-Carleson measure.
In order to get that, we fix £ € T and h € (0,1). We can write 2-(™+1) < h < 2=™ (for some
integer m > 0) and we compute

I/(W(g, h)) = Z 27"”‘)\({9 e T| pnf € W(E, h)}) < Z g-nrop < protl _ pr/p’

n>1 n>m

We have (6.1) and the lemma follows. ]

Proof of (2.3). It remains to prove the inequality

2m -1 ir
(Z Z (2"N(Rn’j)) / ) S () for p' <r<2. (6.2)

n>1 j=0
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Considering the intervals I, ; = [n —1+2"jn—-142""(G+ 1)), n>0,0<j<2" we have,
for every t € I, j and every z € R,, j,

2—71(1

2—71(1

— Qn(l—a)

|<I>(t)(2)| = ‘1 B iG]

Hence, for every t € I, ;:
1@ ()| Loy 2 207 (u(Ro)) "

and we get
too 2n_1 271 y
| 10O dt =35 [ 0@t 2 3 22 (R,
0 n>1 j=0 Y In n>1 j=0
Since —1 + (1 — «) = r/p, we obtain
+o00 2" -1 r/p
[ 100 2 35 (2ulra)
0 n>1 j=0

Now, thanks to the described isomorphism between H ?" and the dual of H P our r-summingness
assumption on J, implies that

+oo +oo
ﬂ@»squ memwth 1R ()15

gl

At last, Lemma 6.1 gives (6.2). ]

Observe that the given argument to prove (6.2) is still valid for 2 < r < p and could have been
used in the proof of Proposition 5.4.

6.2 The proof when 1 <r <p' <2

Our characterization and the proof in that case are different in nature compared to the preceding
ones. In Proposition 5.6 we already mentioned some lower and upper estimates for the r-summing
norm. At the end of this section we will see two examples showing that none of these estimates
are equivalent to the r-summing norm in general. Hence we cannot obtain a formula looking like
in the previous cases.

For proving the characterization (2.2) stated in section 2 we will use the Poisson integral or
Poisson transform P defined, for any f € L(T,d\), by

1— |22
= | —— dX D.
PG = [ o ) dw). =
It is known that P[f] is a harmonic function on D. In fact, if f € C(T), P[f] is the solution to
the Dirichlet problem with boundary value f; i.e., it represents, for z € D, the value of the unique
continuous function on D and harmonic on D that extends f.

We also know that P realizes an isometry from the space

HP(T) = {f € LP(T) : f(m) = 0,Vm < 0}

onto H?(DD), and so, for any measure p on D, the inclusion J, of H?(D) in LP(u) is a r-summing
operator if and only if the Poisson transform P: HP(T) — LP(u) is r-summing.
Moreover, for 1 < p < oo, HP(T) is complemented in LP(T) by the Riesz projection whose
kernel is R
Y={feLP(T): f(m)=0,Yym >0} ={Df: f € H’(T)},
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where Df(z) = zf(z), for every z € T. It is plain that
P[Df](z) = zP[f](z), for every z € D, and every f € HP(T).

It follows that P: HP(T) — LP(u) is r-summing if and only if P: Y — LP(u) is r-summing, and
therefore if and only if P: LP(T) — LP(u) is r-summing. As a consequence next theorem implies
(and in fact it is equivalent to) the characterization (2.2).

Theorem 6.2 Let p > 2 and let p be a finite measure on the unit disk D. For £ € T define
1 1 1/2
R©) = (@) ) =2 (Ve ™) pornz 1t o B = | SR
n>1
Then the following facts are equivalent:
(a) The Poisson transform P, viewed from LP(T) to LP(D, u), is a p'-summing operator.
(b) F e LP(T).
(¢) The Poisson transform P, viewed from LP(T) to LP(D, u), is a 1-summing operator.
Moreover, m.(P) ~ m1(P) & || F[ o (1)

In order to prove this theorem, first we have to state and prove several results.
The following one is probably known from the specialists but it seems not to appear under this
form in the literature.

Lemma 6.3 Assume 1 < p < oo and let H be a Hilbert space and T: LP(T) — H an operator
such that T* is order bounded. Then T is an absolutely summing operator. Moreover

m(T) < Kg

sup [T"(2)]()|

xEBy

Lo (vy’
where Kq is the Grothendieck constant.

Proof. Let g € L (T) be a function such that g > |T*z| a.e., for every € By. Then one can
factorize T* = B o A, where A: H — L is defined by Az = T*x/g, and B: L™ — L by Bf =
g- f. Tt is clear that ||A|| < 1 and ||B|| = ||g||,>- The result follows since B*: LP — L' C (L>)*
has norm ||g||,7, T = A*|p1 0 B*, and A*: L' — H is 1-summing thanks to Grothendieck theorem.

|

The following lemma is a substitute to the glue lemmas used for the other cases (r > p’).
Instead of gluing some absolutely summing (partial) operators, we are going to glue some order
bounded (partial) operators.

Lemma 6.4 Let (U,v) and (9, p) be two measure spaces, p > 2, and T: LP(U,v) — LP(Q, 1) a
bounded operator.

We assume that there exist sequences of pairwise disjoint measurable subsets Q.,, of Q, of Hilbert
spaces Hp,, of operators Ay,: LP(U,v) — H,,, of contractions By,: Hy,, — LP(Q,pu) and of
functions F,, € LP (U,v) with the following properties:

e 0=

e For every f € LP(U,v), we have B, o A (f) = Tq,, T(f).

m

e For every x in the unit ball of H,,, we have |A},(z)| < F,, v-a.e. onU.
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1 ’
e The function F = (ZFE,L) * belongs to LP (U, v).
Then, the operator T' is absolutely summning and 71(T') < K||F|| o (1,,)-

Proof. It is natural to consider the Hilbert space H = @42 H,, and the (diagonal) operator
B: H — LP(Q) defined by B((z)) = X, Ia,, - Bm(zm). This operator is clearly bounded and
actually it is a contraction since

5@l = (S e, - Butel;)” < (S Batall)’ < (S lenlly, ) = ot

On the other hand, the operator A : LP(U,v) — H defined by A(f) = (Am(f))m is bounded as
well since its adjoint is so. Indeed, we claim that A* is even order bounded: for every y = (y,n,) € H,
we have A*(y) = >_,, Ay, (ym) and for a.e. £ € U, we have

A" W)(E)] < 37 AL (ym)( |<leymIIF (Z!lymHH )

m

N

(T Fa©?) = InlFe),

which was our claim, since F' € Lp,(U, v) by hypothesis.
It is easy to check that T'= B o A, and, by Lemma 6.3, we get that A is absolutely summing
and
m(T) < ||Bllm(A) < Kel|Fll Lo )
|

We need now some more specific estimates on the Poisson transform. Recall that, for a € D,
we have P,(£) = (1 — |a|?)/|1 — @&|?, for £ € T.

Proposition 6.5 Let i be a finite measure on the unit disk D, p > 2 and a € D. Assume E is a

Borel subset ofD(a7 172|a|)‘ Then there exist a Hilbert space H, an operator A: LP(T) — H and a

contraction B: H — LP(D, u) such that

e For every f € LP(T), we have B o A(f) = IgP(f).

S

e For every f in the unit ball of H, we have |A*(f)(£)| < 100(u(E))” P,(§), for almost every

£eT.

Proof. Let v be the boundary of the disk D(a, W) Our Hilbert space H will be L? (’y, m,y)
where m., is the normalized arc length measure on 7. Let Bi: H — LP(E, ) be the Poisson
operator associated to the domain D(a, % .

For the classical Poisson transform P, we have, if |z| < 2/3,
P(f)(2)] < V3| fllrary,  for every f € L*(T). (6.3)

Indeed, if |z| < 2/3, it is easy to check that || P, ||L2 < 13/5 < 3. The translation of (6.3) to our
setting yields

|B1(9)(2)] < V3llgllz for every g € H and every z € E.
Hence

1
1Bl 1.0 < V3llgllar ((E)) ", for every g € H.

Therefore defining Bg = (15-B1g)/v3(u(E)) /P 4 € H, we have a contraction from H to LP (D, ).
Now we define the operator A : LP(T) — H as the (classical) Poisson integral (restricted to =)

up to a constant. More precisely A(f)(w) = ﬁ(p(E))l/pP[f] (w), for every w € v and f € LP(T).
Clearly we have B o A(f) = IgP(f), for all f € LP(T).
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It is easy to check that the adjoint of A is given by
A*(9)(6) = V3(u(E)) " / Pul€) - g(w) dmy(w), g€ H.
When w € v and € € T, we have
L-hul < Ta—la),  lw-€>la—€ - 20 —la) > tla-€
d 1= _ 32(1 — Juw)
Pol®) = 1= < TP

We then obtain the order boundedness of A*. Indeed, for £ € T and g € H, we have

< 56P,(€).

1A% (9)(€)] = V3B(u(E)) " / P (©)lg(w)| dmy < 56v/3(u(E)) " Pa(©)llgl 11 (ym.)-

~
Therefore Y
sup |A*(g)(€)| < 100(u(E)) """ Pa(€).
gEBH
| ]
For the next result, we need some notations: for n > 1, we define &, = {an,l, ey ammn} as

a maximal 2~ ("*?)net in the dyadic corona I';, = {z € D; 1 —27" < [z| < 1 —2"("+D1 We
also define & = {0} and Ey = 1D. We will assume that, for n > 1, {E,, j}1<j<m, is a family of
pairwise disjoint subsets of D(an,j, 2_(”+2)) NT,,, whose union is the corona I',,.

Proposition 6.6 Let p > 2 and let u be a finite measure on the unit disk D. For £ € T define

Gol©) = (WGE) . G = (X ()P (B,)) fornz1,

and

GO = (> G.0)".

n>1

If G e L¥'(T), then P: LP(T) — LP(D, u) is absolutely summing and moreover
m(P) S Gl -

Proof. Observe that D(an,j,2_("+2)) nr, c D(anﬁj, W) Then, for each fixed (n,j),
Prop. 6.5 applies with £ = E,, ; and a = a, ;. Lemma 6.4 can be applied to the (countable)

1
collections of the sets Q,,, = E,, ; and functions F,,, = 100 (u(Enj)) ? P,, ,; to get the result. [ ]

At last, we can prove Theorem 6.2. One of the key point will be to show that the function G
of Proposition 6.6 is equivalent to the function F' of Theorem 6.2.

Proof of Theorem 6.2.
(c) = (a) is obvious.
(a) = (b) We are going to use some dyadic test functions: let us consider for £ € T and z € D,

the sequence of functions

ontl_g -
Ku6)= Y (8P = (7 T

j=2n 1- Z£
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Let » > 2 be such that z% = % + % With such a choice of r, since £2 is isometric to the space

of multipliers from ¢" to Epl, we can choose, for each £ € T, a sequence of positive functions g, (§)
(measurable as functions of £) such that

D (ga©) =1, and D (g IO = (F(E)
n>0 n>0
Now, we test the p’-summingness of P on the random (LP(T) valued) function

(Tl,f) ENXTw— Kn(f, )gn(g) .

We get

’ p/
S [[materm@]),, a@<m@ so ¥ [|[en@KE a6 oo,
n>0 Ly (D,p) heBLP (T) n>0

But [ h(2)gn(§)Kn (&, 2) dA(2) = gn(§)Qn(h)(§) where Qy(h) is the n’th dyadic projection of h,

i.e.

ontl_q
> h()E
j=2n
Now we use the Holder inequality to majorize , -, |gn( &)Qn(h ‘p by (ano |Qn(h)(§) ’2)1)//2.

This yields

> [ aterante

and, thanks to the Littlewood-Paley inequality (introducing a constant C' depending only on p’),

> [ JRuts ]

n>0

o, O SP) s /T (S lem©F)”” axe.

Hh”LP’(T)* n>0

dA(¢) < CrP(P)  sup  ||h|P,
L (D,p) S T R (T) =

<Cm, (’P)

On the other hand, we notice that |K,(, z)| 2 2™ when z € W(£,27"). So the left hand term
is bounded below by

/TZHK (& )gn(€

n>0

’

)" ).

=

RS bt CAES

Then, by the choice of the g,’s, we have

S 9@ F (e W(E27)7)" = S (0n @) (Fal©)) = F'(6),

n>0 n>0

Therefore we have F' € L (T) and (b) is proved.

(b) = (c) Let us assume that F' € LP'(T). Assertion (c) will be proved by Prop. 6.6 as soon as
we show that G < F a.e. on T. Obviously Gy < Fp.
We fix n >1and £ € T. Forl € {1,...,n}, weset [; = {j € {1,...,mp}| E,; C W(£,27")}.
Clearly,
I,.CIl,1C...Ccly={1,...,my,}.

It is easy to see that m,, ~ 2" and that, for every £ € T and [ € {1,...,n}, the cardinality of
En NW(E,27) is less than 27! (up to a universal constant). Now we make these sets disjoints:
let J, =1, and J; = I; \ I;;; for 0 <1 < n. We have in particular |J;| < 27"
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Moreover, for any I € {1,...,n} we have the following estimate using the Holder inequality:

2

S (4B )P <1 E (S (B
JEJ JjEJ
and since Y. ;. (1(Enj) = p(Uje s, Enj) < n(W(E,27"), we get by the definition of Fy:

> (u(Eny))

JjeJ

T

S, 2(nfl)(17%)2—2lFl2(5>.

When [ = 0, it is actually still valid.

Now, by definition, for any j € J;, with I < n, we have E,, ; ¢ W (£,27(4+D), so there exists
some z € E, ; such that either 1 — |z| > 27(+1 or |arg(2£)| > 27U+, But, since 2 € E,, ; C T,
we have 1 — |z| < 27" < 27(+1) because n > | + 1. Therefore, we have |arg(z€)| > 2-(+1). We

obtain: .

2 - 2
|z =& > |2 — [2[¢] > |2].—|arg(2§)| > ——,
™ 2T

since |z| > 3. But z € E,, ; C D( 5,27 (*2)) tand 27 (+2) < 271/8 because | < n. Therefore
1€ —ani| >1z—¢& — |z —anj| 2 2° The Poisson kernel is then majorized:

|an1| 2"
P, (&)= ’
n,J (5) |§ _ an,j|2 N 92— 21

for every j € J;, when 0 <[ < n. Actually, the same estimate is valid when [ = n.

We are now in position to conclude:

@2©) = 3 (B )P (©=3 Y (uEn,) P2 ()
§=0 1=0 j€J;

Using the preceding estimates, we get
n

GO % Z

where a = 27T < 1. At last, we have

n —+oo
2 S D> a"IEO =) 0) d IR D FA©) = F2(9).

n>0 1=0 1>0 l=n 1>0

2n

(n—1)( 1—3)2 21F2 ) _ Za(nfl)Flz(g)

It is natural to wonder whether there is a “continuity" in 7 = p’ in our characterizations. More

precisely, do we have
., /e
n p'/p
| 5 ()]
n>0 0<j<2n

The answer is negative as soon as p > 2 and we shall even prove that it is negative for some pull
back measure associated to a symbol . In other words, it is false even in the class of composition
operators.
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Example 6.7 For every p > 2 there exists a symbol ¢: D — D such that C,: HP — HP is
1-summing but
p'/p
> 3 (2")\ )) = +00.
n>0 0<j<2n

Proof. We shall choose a rotation invariant probability measure on D, i.e. u(0B) = pu(B), for
every Borel B and every 6 € T, satisfying the condition

/I»log(1/|z\)du(z) < +o0. (6.4)

Then, thanks to [B, Th. 1.1] there exists a symbol ¢ : D — D with ¢(0) = 0 whose associated pull-
back measure is A\, = p. To obtain condition (6.4) it is enough that & to be null in a neighbourhood
of 0.

So our purpose is reduced to find a probability measure o on (0,1), the measure satisfying
o((a,b)) = p({z € D] a < |z| < b}), which allows to describe x in the following way:

1
= / / I5(rz) d)\(z) do(r), for every Borel set B.
o Jr

In particular, for £ € T, n > 0, and 0 < 5 < 2", we have

—n

/jf(W('f, 27")) _ 270([1 — 27”, ]_)) , and N(Rn,j) _ 27n0_([1 o 2771’ 1— 277171)) ’

Then, if we call 2, = o ([l —27",1—27""1)), we need
+oo = Z Z (2"u(R )" /P Z 2k /P (6.5)
n>0 0<j<2n n>0
On the other hand, if we call y,, = J([l -2 1)), we have, for every £ € T,
1 2 - 2 2n/p’, 2 1/2
/PR {227:2 /p] :{Zgn/Pyn/P}
n>0 n>0

Consequently, as F' is a constant function, if we have

D omn/rhy2ie < oo, (6.6)
n>0

by Theorem 6.2, the operator J,, (and then C,) is 1-summing.
We are going to choose the probability o, given a positive decreasing sequence («,) and putting

zpn =1 —27" by the sum
o= Z 2_”p/p/an52

n>1
Then z,, = 2*””/”/0[“, and it is clear that y, = > o &m < C2-mp/P . Therefore
Z P "/p — Z of /e and Z 22n/p'yi/p < 2/ Z a2/
n>1 n>1 n>1

So, in order to have (6.5) and (6.6) it suffices to choose the sequence (v, ), in £2/7 \ £#'/? and this
is possible since 2 > p'. [
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The previous example also shows that the upper estimate in Proposition 5.6 is not equivalent
to the r-summing norm in general. In the next example we show that the same happens with the
lower estimate given in Proposition 5.6.

Example 6.8 For every p > 2 there exists a finite measure p on D such that

2 (% Cwn))

n>0 7=0

LIS
< e

1/2
1 < +o00, (6.7)

but J,: HP — LP(p) is not p'-summing.

Proof. The measure p is going to be supported in a radius of D, concretely in the segment
[0, 1]. Moreover p will be of the form

n= Z an(szn )

n>1

where a,, >0, Y oy, < 400, and z, =1 —27". In this case we will have (6.7) as soon as

too> 3 (2"u(Re0)) " = 3 (27an) . (6.8)

n>0 n=1

To find «,,’s for J, not to be p’-summing, we could use the characterization in Theorem 6.2,
but we are going to provide a different argument. Consider, for the points z,, their reproducing

kernels
1

Balw) =10

w € D,

and define f, = 2_"/p/Kzn. We claim that the sequence (f,) is weakly p’-summable in HP. Then,
if J,, is p’-summing, we have

+o0> Y IIntI’L’/p(,L > U falza)lP el 2> @7 amy ar e = Y " (2ma, )PP (6.9)

n>1 n>1 n>1 n>1

Then it is clear that we can choose a,,’s satisfying (6.8) and not (6.9) since p’ < 2.
For proving our claim, take into account that (g, K, ) = g(z,), for every g € HP . Then

S g fl” = 3 2 g5 |P—/|g|pdu

n>1 n>1

where v is the measure v =3, 27"0,, . It is easy to see that v is a Carleson measure and then
there exists C, such that -

/ \g|p/ dv < Cp/||g||1;;p, , for every g € H .
D

The claim and the example follow. [ ]

7 Thecasel<p<2

Before giving the main results of this section let us state a proposition which yields in particular

the equivalence ||<I>H;Z; ~ H\IIH;?i (2.1).
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Proposition 7.1 Let v be a positive finite measure on the unit disk D, v > 1 andn > 1. We have
the equivalences

~ 1/~ 8 1/~
/T(/Du_lwzr7 du(z)) d)\(w)> ~ </T(/E m du(z)) d)\(w)>
y 1/~
) (/T(/zw T ) Ww)) ,
with constants depending only on v and 7.

Let us remark that when v = 1, we have by Fubini and [HKZ, Th. 1.7]:

A/Dm?du(z)dA(w)mAW_ 1)

Proof of Prop 7.1.

Let w € T. Of course, we always have 1 — |2|> < 2(1 — |z|) < 2|1 — Wz| but we point out
that these quantities are actually equivalent on the Stolz domain X,,: for every z € ¥,,, we have
1 —|z]* ~ |w— z| = |1 —Wz| (up to numerical constants). This proves that the two last quantities
in the statement are equivalent. We also get obviously that the first integral is greater (up to
constants) than the third one.

Now let us prove the converse. We wish to prove that B, < A, where

= (L ) o) o ([ ([ o) )

First we linearize (7' is the conjugate exponent of v):

= su A w) = su M V\Z
e L), o) v geBi,/Du—uP)gd (=)

where B;, stands for the positive part of the unit ball of L?'(T) and

1
H(g)(2) = W ~/{w|zEE , g(w) dA(w)

In the same way,

= su 2)dA(w) = su K)) v(z
b= s | e v = |

where

n

/C(g)(z)=/jT (M) g(w) dA(w).

Claim: there exists some C' > 0 such that, for every positive function g and every z in D,
K(9)(2) < CH(M(9))(2)

where M(g) is the Hardy-Littlewood maximal function associated to g.
We postpone the proof of the claim and we now get (via Fubini):

M vz H(M(g # " y
/D(1|Z|2);d()§/D NED g /M /Zw(1_|z|2)nd()d)\( ).
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Thanks to Holder inequality, we get

/ % dv(z) S AvlM(9)lly < Avllglly
p (1—1[z*)=

since ' > 1. Passing to the supremum over g, we get
B, <A,

up to constants depending on v and 7 only.

Now we prove the Claim. We write z = re? with # € R and 0 < r < 1. Point out that z
belongs to ¥, with w = €', as soon as t € (§ — c¢(1 —7),0 + ¢(1 — 1)), where c is a (numerical)
constant. Therefore, identifying the intervals I with the arcs {e'*;t € I}, we have

1

1
(1—[22)3 %

)
2

H(g)(2) > / Toe ey () g(w) dA(W) 2 —Te oy * g (c) (7.2)

g

where e = c¢(1—17) ~ 1 — |2|%
Besides the Hardy-Littlewood maximal function defined by

. 1
M(g)(e?) = su —/ dX,
(g)( ) e’?"eIpCT )‘(I) Ig

we consider also

. 1
M. (g)(e?) =su —/ d.
(9(") crer M) Ji?
1122

It is easy to see that, using (7.2), that
. 1 , . 1 ; .
M = M_.(g)(e") < M(g) = g][(_575) () =271 M(g) * (g—g][(_w)) () S ez 'H(M(9))(2).

Indeed: by definition, there is an interval I with length larger than 2e realizing (almost) the upper
bound for the definition of M. This interval I contains either the first half (6 — ¢, 6) or the second
half (6,0 + ¢), and any s in the contained half realizes now M. (g)(e’?) < M(g)(e**). This is a
fortiori true for its mean.

We wish to bound

where v is the measure

We compute

12
K(9)() :/ o({P? > 2} dx.
0
but we already know that v(I) < MA(I) for every interval containing 0 with length larger than
2¢ (by definition). The set {P, > z} is actually an interval I = (—a,a) C (—m,7) symmetric with

respect to 0 (thanks to the usual properties of the Poisson kernel: parity and monotony). We shall
use either the fact v(I) < MA(I) when a > ¢, or v(I) < 2eM when a < e. We get

v({PF > o)) < M(2e + A{PF > 2})).
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Since n > 1, we have

and we obtain
K(9)(2) < M (2| P& + 1P} ) S M=% S H(M(9))(2)

which is the conclusion of the claim. [ |

The next theorem is the main result in this section and it finishes the proof of (2.1) and
completes our characterizations of r-summing Carleson embeddings.

Theorem 7.2 Let 1 < p <2 and p be a finite measure on the unit disk. Let J,,: H? — LP(u) be
the Carleson embedding, and define

1
‘I)(E):/ngp)%’d'u(z)’ e T,

where ¢ is the Stolz domain at point £ € T. Then, for every r > 1, we have

e (J) = ma( ) = (|10,

Let us mention that the case p = 2 in the previous theorem is already known: the Hilbert-
Schmidt norm of a Carleson embedding is equivalent to

1/2
1
)"
</]D> (1—12[?)

and, using (7.1), this is equivalent to

(L (1—1|> ) C“(@)m = 2.

Theorem 7.2 will follow from the next more general statement.

Theorem 7.3 Let 1 < p < 2,1 < q < 2 and pu be a finite measure on the unit disk D. The
following assertions are equivalent:

o The natural injection J,,: H? — L(p) is 2-summing
o The natural injection J,,: HP — L(u) is r-summing for every r > 1.
1 2p

— [ —0d bel to L7(T,d)), wh =
. ¢ Se (1— |2 i plz) belongs to LT(T,03), where 5 2p — 29+ pq

Stolz domain at point € € T.

and ¢ is the

Moreover

v 1/av
ro(Ju: HY = L)) ~ (/T </Z (1_|1|2)1+ du(z)) d/\(§)> .

The heart of the proof of Theorem 7.3 is actually the following proposition which deals with
the particular case ¢ = 2.
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Proposition 7.4 Let v be a positive (finite) measure on the unit disk and 1 < p <2. TFAE

1. J, : H? v L2(D,v) is 2-summing.

1 p'/2 ) )
2. /T</D e dy(z)) d\(w) is finite.

3. The Poisson transform, viewed from LP(T,d\) — L?(D,v), is 1-summing.

p'/2
4. /( |11_|51|z|4 du(z)) dA(w) is finite.

Moreover

e 7 20y = ([ (f i >)pl/2dx<w>>l/p/

Proof of Proposition 7.4. -
(1) = (2) Fix for a while 0 < r < 1, define for every w € D the function K,, € H? by

1 _
z € D.

K (2) = 1—rwz’

Now take z* in the unit ball of the dual of HP. Considering H? as a subspace of LP(T), there
exists ¢ in the unit ball of L¥'(T) such that

(K, x™) /K g(2)d\(z) = i = g1(rw)

where g¢; is the Riesz projection of g € L?’ (T) onto HY
We have then, if 5, is the norm of this Riesz projection on LP (T), for every =* in the unit ball
of the dual of HP,

p/
([ 1wy ax) ™ = ([l i3w) " < sl < ol

hence

sup (/T |<Kw,x*>‘P' d)\(w)) v <Bp.

T*EB(Hp)*

Therefore, since J, is p’-summing (p’ > 2 and J,, is 2-summing), we have,

Ly
Byma(Jy) = By (] /HK [y dAC))

So, for every 0 < r < 1,

Byma(J (/(/ Tt V(Z))plmd)\(w))

We get our implication of the statement taking limits when r — 1~ and using Fatou’s Lemma.

1/p’

(2) = (4) is clear as well since 4’1—@z|2 >4(1- |z|)2 > (1- |z|2)2 for any z € D and w € T.
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(4) = (3). We are interested in the map f € LP(T,d\) — P(f) € L?(D,v) with

1—|2?

= [ —— d\(w).
PN = [ s F) dA(w)
A priori, it is not obvious that this map is even defined (and bounded). Actually, it appears as the
adjoint of the map
1—]z2

g€ L*(D,v) — Q(g) € L' (T, d\) with Q(g)(w)= [ ——
p |1 —wz|

9(2) dv(2).

This latter map Q is clearly bounded since it is even order bounded: for almost every w € T

is finite and, as a function of w € T, it belongs to 5 (T,d\): it is our hypothesis.
We get that our map P = Q* is defined and bounded as well (with same norm). Moreover
Lemma 6.3 (point out that P* = Q) implies that P is 1-summing.

1—[2?

| LT wee

H!]HL2(D,,,)

9(2) dv(2)

<1

(3) = (1) is clear by restriction. Indeed, for every f € HP, we have P(f) = f. [ |

For the proofs we need also the following lemmas:

Lemma 7.5 Leto > 0, (Q, %, i) be a measure space and h: @ — [0, +00) be a measurable function.

Then L (041)/
inf{/ —dp:FeL(p),F> o,/ Fodu<1 } :(/ h"/("“)du) .
Q F Q Q

Proof of Lemma 7.5. Take F > 0 in the unit ball of L?(u). Observing that (¢ + 1)/0 and
o + 1 are conjugate exponents, we have by Hélder,

/Q nel D < /Q (w/pyan)” /Q pran) " < ( /Q w/pyan)”

In consequence we have, for every F' > 0 in the unit ball of L7(, u),

(0+1)/0
(/h"/("“)du) g/h/qu
Q Q

Taking infimum we get one inequality.

To prove the other inequality, we may (and do) assume that ||h|| 1o/ cs+1)(,,) is finite. Now taking
Fy =AY for X > 0, we see that Fy € L7 (p). If we put 8 = [|h]| o/o+1)(,, let us adjust A to
get || Folls = 1. We should have

1= )\a/ hG/(lT-‘rl) d,u — )\«7ﬁ¢7/(<7+1)7
Q
and therefore A = 8=1/(e+1)_ With this choice of Fy, we have
/ h/Fo dp = )\71/ h/hl/(aJrl) dp = 61/(U+1) / ha/(cr+1) dp = Bl/(aJrl)Ba/(aJrl) - 3.
Q Q Q

Then the infimum in the statement is less or equal than

5:(/ po/(@+1) dlt)(aﬂ)/g
)

and the lemma follows.

35



The following result is probably well known from the specialist, nevertheless we have no explicit
reference. We state it and prove it for the convenience of the reader. In the statement, we take

0
the convention that 0 =0.

Lemma 7.6 Let 1 < ¢ < 2 and let s > 1 be such that 1/s+1/2 = 1/q. Let X be a Banach
space, and T: X — L9(u) a bounded operator. The necessary and sufficient condition for T to be
a 2-summing operator is that there exists F € L*(u), with F > 0 p-a.e., such that T: X — L*(v)
is well defined and 2-summing, where the measure v is the measure defined by

1

dv(z) = F) du(z) .

Moreover, we have
m(T: X — LP(p)) = inf{7r2(T: X = L*v)) :dv=du/F* F > 0,/F5 dp < 1}.

Proof of Lemma 7.6. Suppose first that F' € L*(u), F > 0, and that T: X — L?(v) is well
defined and 2-summing, for dv = du/F?. Now, we claim that L?(v) C LP(u), which is clear since
g+ F - g defines actually a multiplier from L?(u) to LP(u). Writing this for g = h/F, the claim
is proved. This yields

mo(T: X = LP(n)) < [|F||psqum2(T: X = L*(v)) .

For the converse implication we will use Maurey’s Factorization Theorem. Suppose that
T: X — LP(u) is 2-summing. Then by Pietsch’s factorization, there exists a Hilbert space H,
and two operators

S: X —-H and R: H— LP(u),

such that S is 2-summing and 75 (T) = m2(S), ||R|| < 1, and T'= Ro S.

Given any (finite) family {h; : ¢ € I'} in the unit ball of H, and any family {«; : i € I} of real
numbers we have, for {r; : i € I'} a Rademacher family defined on (2, P),

(J (St a)" = ([ (][ o ) o)

%

which is less than
1/p

: dP(w) d,u)

p (/ /Q ‘XZ: a;ri(w)Rh;

where ¢, denotes the constant in Khintchin’s inequality.
Now using Fubini’s theorem and the boundedness of R, we get

(/(21: ‘aiRhi|2)P/2 dy)l/p <c¢p (/QHEP a;ri(w)h;

and since p < 2, we have

(/(Z ‘OéiRhiP)P/z du)l/p <¢p (/QHZ ;i (w)h; j{dp(w))lm S Cp<z |ai|2)1/2.

We can therefore apply Théoréme 2 in the page 12 of Maurey’s book [Ma] to the subset

de(w))l/p

{iRh:heBH}

Cp
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of LP(p), to get a function Fy > 0, such that [ F§dp <1, and
1/2
(/ |Rh/Fy|? du) <c,, forallhe By.
Namely, if dv = du/F§, we have proved that |[R: H — L?(v)|| < ¢,, and consequently, since
T =RoS, wehave T: X — L?(v) is well defined, 2-summing and
T (T: X = L*(v)) < ¢pma(S) = cpma(T: X — LP(p)) .
|

Proof of Theorem 7.3. The two first assertions are equivalent since the spaces HP and LY
have cotype 2 (see [DJT], cor. 3.16).

Let us treat the particular case ¢ = 2. This is mainly contained in Prop. 7.4 although the
conclusion of Th. 7.3 involves an integral (over some Stolz domain) of different nature compared
to the integrals in Prop. 7.4. The equivalence of these integrals is the conclusion of Prop. 7.1 in
the case y =1 and n = 2.

Now, we focus on the case ¢ < 2. Applying Lemma 7.6 and Prop. 7.4, we know that

st = (o B9 o i)

1 1 1
where = + = = — and B}, ,, stands for the positive part of the unit ball of L*(ID, ).
S 2 q (D, pe)

'ﬁ\‘w

Replacing F2 by f (and then s by o = s/2) and linearizing, we get

72(J,: H? — L9 ~ inf // 1(z) dX\(w
2( : (M)) f€Blo ) Lt(wx) |1—wz|2 (2) "

/

Py’ p
1= (3) =1
an 5 2 p

S
h = — =
where o 9 2—q

Claim. We claim now that

A= inf we)

feBli(D“ < L*(Tdk)// |1—’U)z|2 (2) dA(w ))

B = inf ﬂ dp(z) d\
sent? <fEB;,(W/T/D T-wefe f(z) )

Lt(T,dX)

is equal to

Indeed, A > B is obvious and the other inequality is a consequence of the convexity underlying
the quantities above. More precisely, we apply the Ky Fan’s lemma to the family of functionals

M={%|g¢€ Bzi(T,dA)}

_ g(w) du(z) .\
n=[ [ 5% T o
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The set C' = B;, (Do)’ equipped with weak topology, is convex and compact (¢ > 1) and M
appears as a set of functions on C. Since C' is convex and the mappings g — @, are linear, the set
M itself is convex.

We assume that B is finite (else the inequality A < B is trivial) and we are going to see that
the three conditions of the Ky Fan’s lemma (as stated in [DJT] p.190) are verified. Namely:

(a) Each ® € M is convex and lower semi-continuous.
(b) If ¥ € conv(M), there exists some ® € M with ¥(z) < &(z) for all z € C.
(¢) There is an 7 € R such that each ® € M has a value less than 7.

Fix € > 0 and consider r = B + ¢, so that (c) is verified by definition of B.

Conditions (b) is obviously verified since M is convex.

The functionals @, are convex (thanks to the convexity of z € (0, +00) — 1/x) so the first part
of (a) is verified and we only have to check now that they are also lower semi-continuous. Fixing
A>0and g€ th(,ﬂ,yd)\), we wish to prove that the convex set K = {f € C'| ®,(f) < A} is closed
in the weak topology. It suffices to prove that K is closed for the strong topology. Take a sequence
(fn) in K, converging to some f. Up to an extraction, we can assume that f, is also pointwise
converging a.e. to f. Hence, by Fatou’s lemma,

®y(f) < Lm®y(fn) <A
The conclusion of Ky Fan’s lemma says that there exists some fy € C' such that

sup  Dy(fo) <r=B+e.

+
geBLt('ﬂ‘,dA)

A fortiori, A < B + ¢ and the claim is proved.
End of the proof. We get

72 : HP 4 ~  su in Mdu(z) w

geBttmdA) f€Brow

which can be written (thanks to Fubini’s theorem)

207 . gp 1)) ~ su in DIORLY
73 (Ju: HP — L(p)) = p ( f /D 1— |22 f(z)>

iy
gEB F€Biowm,

+
Lt(T,dX\)

where Z(g) is the Poisson transform of g.
Applying Lemma 7.5 and replacing o by its value, we obtain

29
m5(Ju: H? = L9(p)) ~  sup 7 —<|z>|2
9EB L r ax) L% ,du)

but it means that the Poisson transform

t 4 dp
g€ LT, d\) — 2(g) € L} (D, i IzIQ)%)

is bounded, with a norm equivalent to 73 (.J,: H? — L%(p)).
Since t > 1 (because p > 1), the boundedness of this Poisson transform is equivalent to the fact
d
that the Hardy space H® is sent into L? (D, 7ﬂq)
(1—1z[*)=

38



dp
(1—22)2
that the embedding is absolutely summing, then this measure is finite thanks to (1.3) (cf Prop. 1.4).

Let us check that we are actually working with a finite measure - Indeed, if we assume

Conversely, if we assume that the integral condition is fulfilled: £ +— Wd,u(z)
Ze (1— |Z|2 2

belongs to LY(T,d)), in particular it belongs to L!(T,d\):

1
— _du(z) d\ <
/T/Eg (1 _ |Z|2)1+2

which implies that (via Fubini)

1 1
/ﬁdu(z)ﬁ// ——qrg dAdu(z) < o0
D (1—|2f2)? D J{geTszene} (1 — |2)2) 2

and the measure is finite.

We can now apply directly a work due to Blasco-Jarchow ([BJ]), following a former work of
Luecking ([Lu2]). The reader can check the statement of Th.1.3 in [BJ], but see mainly the proof
of Th.2.2 (|[BJ]) where it is actually proved that for any finite positive measure v, carried by D, we
have for a > b > 0:

b

||H“<—>Lb(ID),1/)HzH§»—>/ v
ze 1 — |22

Le(T)

where ¢ = —~ 2 and the underlying constants depend on a and b.

The conclusion follows. H

8 Applications, examples and remarks.

The first application deals with one of the most famous injection in function theory. It is well
known that the (formal) identity from the Hardy space H? to the Bergman space B? is defined
(and bounded) if and ounly if ¢ < 2p, and that it is compact if and only if ¢ < 2p. It is then a
natural question to decide when it is absolutely summing. This will be the aim of Th. 8.2. First,
we state as a lemma the particular case p = 1.

Lemma 8.1 Let ¢ < 2. The injection from the Hardy space H' to the Bergman space B? is
1-summing.

Proof. First we point out that we are in the framework of Carleson’s embeddings: our measure
1 is here the area measure A. We shall use the notations of section 3. In particular, Ay is the
area measure A restricted to the corona Gy .

Now, we observe that for every fixed N > 1, the 1-summing norm of the injection T3 y is
summable. Indeed, for any p > 1 (but we shall specify our choice of p below), it factorizes through

Hin 2% Hy v 2% Hy XS LD, Ay).

The identity viewed from H; y to H, y has operator norm less than N 12" The 1-summing norm
of the last factor is majorized by

(Sgp AN(Zg)NH%) g

thanks to Th. 7.3 applied to the measure Ax. Now the rotation invariance of the measure and the

1
geometric properties of the Stolz domain gives that Ay (E¢) = An(E1) < cN? for some numerical

c>0. We get
7T1(T1,N) S N—®
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1 1 1
where e = — — 37 which turns out to be positive for a suitable choice of p > 1.

Now Weq use the same trick than in Th.3.4 (comparing (b) and (a)). Of course, the Riesz
transform is not uniformly bounded anymore but for every f € H', still using the Riesz projection
Tm(f) of f on the space Z,,, spanned by the z* when k runs over {mN,...,(m + 1)N — 1}, the
norm ||y, || g1 is now bounded by log(N)|| ||z (up to a constant). Now the sequel of the argument
follows the same lines and we get

T (JAN) < log(N)m (T1,N) S log(N)N™°.

Specifying for values N = 2", we have that m (J Azn) is summable. At last, by the triangular
inequality J4 : H' — L4(D, A) is 1-summing. ®

Theorem 8.2 Let p,q > 1 with ¢ < 2p. The injection from the Hardy space HP to the Bergman
space BY is r-summing for some r > 1 if and only if ¢ < max(2,p). Moreover

o When q < 2, this operator is 1-summing.

1 1 2
o When 2 < g < p, this operator is r-summing ezactly for every r such that — + — < —-
p T

q

Proof. We shall use that the injection from the Hardy space H? to the Bergman space B? is not
2-summing. Indeed, reasoning with Taylor coefficients, it would mean that the diagonal operator

from £2 to itself with diagonal entries \/ﬁ would be Hilbert-Schmidt but the eigenvalues do not

belong to #2. Another way to prove it is to use the remark just after Prop.1.4.

In the case 1 < p < 2, if the injection from the Hardy space H? to the Bergman space 132 were
r-summing for some r > 1, then a fortiori the injection from the Hardy space H? to the Bergman
space B? would be r-summing hence 2-summing, which was just shown to be false. Hence the
injection from the Hardy space HP to the Bergman space B2 is not r-summing for any r > 1.

For every q < 2, the injection from H' to the Bergman space B9 is 1-summing, by Lemma
8.1. A fortiori, the injection from HP to the Bergman space B? is 1-summing for any p > 1 (just
factorize through the injection from H' to BY). This settles the case ¢ < 2.

Now, we assume that ¢ > 2. When g > p, the r-summingness would imply the y-summingness
for ¢ = p and v = max(p,r). Then our characterization implies that it should be order bounded
(from H? to LP(D,.A)) which is not. So now on, we assume that ¢ < p and it is easy to see that
the injection HP to the Bergman space B? is g-summing since it is order bounded.

Let us focus on the case 2 < ¢ < p and assume first that the injection is r-summing for some
r > p'. Then we use Lemma 6.1 and the computation made after. The function ® satisfies that

+oo
sw [ l@@.g)de<o
llgll(zpyx<1J0
for some C' > 0. Hence the r-summingness of the injection from HP to B? then implies that
+oo
/ [|®(t)]|3q dt is bounded. But reproducing the computations in our framework, we get:
0

+oo 21 ora(3+3) r/a grn(E+2) ,
JARCUIRINES 3b SERES VI SE e

n>1 j=0 n>1

11 2

So we necessarily have — + — < —- We have to show that the situation r < p’ is not possible. But
p r q

if our operator were r-summing for some r < p’ then it would be s-summing for any s > p’ and

1
our previous condition applies: — + — < — which gives (passing to the limit) ¢ < 2.
p s q
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So it remains to justify that H? < B2 cannot be p’-summing. Indeed, assume the contrary. The
formal Riesz projection viewed from C(T) to H? is p-summing since C(T) < LP(T) is p-summing
and the Riesz projection is bounded from LP(T) to HP (p > 1 here). Hence the composition
with our injection is now l-summing. Using for instance the Pietsch theorem and the translation
invariance (on the torus), equivalently the rotational invariance, of this Riesz projection from C(T)
to B2, the Pietsch measure can be chosen as the Haar measure on the torus. We get for every

trigonometric polynomial f:
HOREPE
ST 1l
n>0

Testing now this latter inequality for instance on the Poisson kernels P,, we get that all the sums
2n

g er 7 should be bounded independently of p € (0, 1), which is false.
n
n>0

1 1 2
Now, for 2 < g < p, fix r < ¢ satisfying the condition — + = < — and consider the Poisson
p r q

kernel P, associated to p = /1 — 2~-("+1). We shall first work with a dyadic corona. The operator
f € HP — f(pz) € H® is bounded with norm less that 2/7 (up to a constant). The injection
from H* to H" is r-summing (with norm 1). The operator f € H" — f(pz) € H? is bounded

with norm less that 2"(+~¢) and at last the operator g € H? — g(p~2z) € LYy, A) is bounded

with norm less than 27 "/9, By composition, we get that the operator Ja,, is r-summing with

1 1 2
an r-summing norm less than 2"% (up to a constant) where § = = + = — = < 0. Since the series
p T

q
converges, we get that our injection is r-summing. B

The following theorems state that we can separate the different classes of r-summing on HP
spaces (as soon as it is possible, according to the values of r or p) using only composition operators:

Theorem 8.3 Fizp > 2. For every r,s > 1 with r > max(s,p’) and s < min(r,p), there exists a
symbol ¢ such that C, : H? — HP is r-summing but not s-summing.

Recall that when p < 2, for every r,s > 1, as for any operator on H? (which has cotype 2 here),
C, is r-summing if and only if C, is s-summing. On the other hand, when p > 2 and r,s < p/,
any r-summing operator on H? is s-summing. At last, we cannot separate r-summing operators
with composition operators when r > p since they all coincide with order bounded composition
operators.

On the other hand, we have a monotonicity relatively to p for any Carleson embedding. More-
over, the class of composition operators is large enough to separate the different classes of summing
operators:

Theorem 8.4 Fiz r > 1. The mapping p > 1 — the class of r-summing Carleson embeddings
on HP? is non increasing.
More precisely:

e For any Carleson measure p: for every po > p1 > 1, when J,, is r-summing on HP?, then J,
is r-summing on HP.

Moreover

o Assume that 1 < py < po. If p1 < 2, we consider any value of v > 1 and if p1 > 2, we

consider the values of r such that py > r > 1. Then there exists a symbol ¢ such that C, is
r-summing on HP' but not on HP2.
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Now we prove the two aforementioned theorems. We have to separate the cases since our
characterization depends on the values of (p, ). Actually, we could have made a more general (and
synthetic) discussion which would rely on the distinction of cases according to where stands (p, )

in a diagram drawn in (1, +00) x (1,+0c) with the curves p - r =pandp — r =p = ——

p—
with this viewpoint the line with gradient equal to the quotient :; plays a key role. Nevertheless,
we chose to focus on the distinctions fixing either r or p.

Proof of Th. 8.3. Fix p > 2. It suffices to prove the case p > r > s > p’ since we know that
C, is p'-summing if and only C, is 1-summing on one hand. And on the other hand, we know
that C, is r-summing if and only C, is p-summing when r > p.

We first choose some p such that s < p < r. So we have 2r/p > 2p/p- Now we consider a
symbol ¢ introduced in Th.5.1 [LLQRS3| in order to satisfy C,, € Sz?r (H*)\S2, (H?). But we already

noticed that C, is an r-summing composition operator on H? if and only if C, belongs to the
Schatten class Sz (H 2). Hence C,, is r-summing but not p-summing, a fortiori not s-summing. H
P
Proof of Th.8.4. Fix r > 1 and p> > p; > 1.

e If 1 < p; < p2 < 2, we use the argument given in the proof of Th.7.3. Assume that
Ju: HP? — LP?(D, i) absolutely summing, then

2

3 ~ —1 z " is finite
2(7u) /T</E (1_|z|2)1+%2d”( )) dA(€) s finit

dp
(1—]z)%
) (see [BJ]), say with

which is equivalent to the fact that H 772 is sent into L% (D, ) But this is

d
equivalent also to the fact that H? is sent into L* P2 (]D), W
— |z 2

norm K.

Now fix a function f in the unit ball of H?, for every z € D, the evaluation |f(z)| is majorized

1
by ———— Therefore, using ps — p; > 0, we point out that

(- |=P)F

2-p__ K 2-p; 1 : dp
/D‘f(zﬂ (1—|z|2)p21</m|f(2)| (1—[z2)22 (1|2

d
which is equal to / |J‘(,z)|2_p?7up2 < K.
b (1= )%

dp

Hence H? is sent into L?~P (ID), —_—
(1—1[z)=

) and J,: H?* — LP(D, i) is absolutely sum-
ming.
Now, we work with the symbol considered in Lemma 3.7, Lemma 4.3 and the proof of Th.

2
4.1. [LLQR3| associated to t® where f = — € (0,2]. With this symbol, the size of the
2]

Luecking boxes is controlled as follows: for every n, j,
Ap(Baj) 27 "HE),

We can now apply our Proposition 5.2:
2] 2/p2
On one hand, the series Z Z (Q”Aw(Rn,j)) diverge so C, is not absolutely summing

n>0 j=0
on HPz,
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2! 2/p1\ p1/2
On the other hand, the series Z ( (2”)\<p (Rn, J)> ) converges so C, is absolutely
n>0  j=0
summing on HP'.

o If 1 < p; <2 < py then any r-summing J, on H?? is order bounded on HP?? a fortiori on H?,
which in turn, defines an r-summing operator on H?, hence on HP*, thanks to the previous
case. Moreover, the previous case provides us too with an r-summing composition operator
on HP' which is not r-summing on H?2, a fortiori it cannot be an r-summing operator on
HP2,

e When 2 < p; < pa < r, a Carleson embedding J,, is r-summing on H?? if and only if it is
order bounded on H”?, equivalently on H**, if and only if J, is 7-summing on H"'.

o If 2 < p; < pyand r < pg, we split this case in three sub-cases.

— If r > p1, any r-summing J, on HP? is po-summing on H??, hence order bounded, which
is equivalent to r-summing on HP! by our characterization (2.4). On the other hand,
there exists a pe-summing composition operator on HP? (a fortiori r-summing on HP?
by the previous argument), which is not r-summing on H?2 by Th.8.3.

— If pi <r < py, write s = P2 (r,pa) C (ph, p2). Any r-summing Carleson embedding
4!

T s

Jy, on HP? is s-summing. Since we have — = —, J, is r-summing on H?!, by our
D1 P2

characterization (2.3) (and Lemma 5.5 if r = p}). On the other hand, there exists

an s-summing composition operator on HP? (a fortiori it is r-summing on HP! by the
previous argument) which is not r-summing on HP? thanks to Th.8.3.

— If r < p, any r-summing Carleson embedding J,, on H?? is p|-summing on H??, hence
pi-summing on HP' thanks to the previous case. So J, is actually 1-summing on H?*
thanks to our characterization (2.2), therefore r-summing on H?*. On the other hand,
thanks to the previous case, there exists a p}-summing composition operator on HP! (a
fortiori it is r-summing on HP') which is not p}j-summing on HP2. This composition
operator cannot be r-summing on HP2.
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