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We provide characterizations of the equal division values and their convex mixtures, using a new axiom on a fixed player set based on player nullification which requires that if a player becomes null, then any two other players are equally affected. Meanwhile, we also present a global and useful framework which enables differential calculus within the space of values, allowing to smoothly implement other axioms.

Introduction

Reconciling individual and social interests is a common theme in many economics fields. In that matter, cooperative game theory is a useful tool. This article deals with cooperative games with transferable utility (denoted as TU-games). A TU-game is defined by a characteristic function which associates to any subset of the player set the worth created by the cooperation of its members. For any TU-game, each player is given an individual payoff for participating to this TU-game. This defines a map, called a value, between the set of TU-games and the set of payoff vectors.

TU-games have been widely applied in allocation problems such as environmental economics [START_REF] Ambec | Sharing a river[END_REF], operations research [START_REF] Littlechild | A simple expression for the Shapley value in a special case[END_REF], queueing theory [START_REF] Maniquet | A characterization of the Shapley value in queueing problems[END_REF] and collusion in auctions [START_REF] Graham | Differential payments within a bidder coalition and the Shapley value[END_REF]. In the latter case, [START_REF] Van Den Brink | Null or nullifying players: the difference between the Shapley value and equal division solutions[END_REF] shows that convex combinations of the equal division solution and equal surplus division solution emerge naturally as a mean for the player who obtains the indivisible good to compensate the other players. In this article we provide three new axioms leading to characterizations of this class of values for a fixed player set.

Firstly, we present a new axiom dealing with player's nullification. Following [START_REF] Béal | Solidarity within a fixed community[END_REF], a player's nullification in a TU-game is a modification of the characteristic function so that the player loses her productivity, in the sense that she becomes null. Our axiom is called Nullified Equal Loss property. It requires that in case one player is nullified, all other players should deplore the same change in payoff. Thus, this axiom possesses a solidarity flavor.

Proposition 3 proves that any linear value satisfying this axiom and the classical efficiency axiom only depends on the stand-alone worths and the worth of the grand coalition, setting aside the worths of all other coalitions. Two particular instances of such values, the equal division and the equal surplus division values, will then play a central role. In many of the aforementioned applications, the associated TU-game is fully determined by the worth of these particular coalitions (airport problems for instance, see [START_REF] Thomson | Cost allocation and airport problems[END_REF], for a comprehensive literature review). However, only the whole class of TU-games will be considered here so that characterizations will hold within this class.

Secondly, proposition 3 can be obtained in a more general context by weakening linearity for smoothness (proposition 2). The latter axiom imposes that, when the worth of any coalition varies, a value should behave smoothly (i.e. the value is of class C ∞ ). This is made possible because the worths achieved by the coalitions are perfectly divisible. Smoothness is a technical requirement that implies continuity of the value with respect to the characteristic function. Many microeconomic models impose that the underlying utility functions are at least of class C 2 (see for instance [START_REF] Hurwicz | On the problem of integrability of demand functions[END_REF][START_REF] Debreu | Smooth preferences[END_REF]. Our results are still valid if C ∞ is replaced by C k for any fixed k ≥ 2. Here smoothness will allow to translate other axioms' requirements in terms of differential calculus. More precisely, proposition 1 gives necessary conditions, expressed as differential equations, a value should meet to satisfy particular axioms useful throughout this article. Furthermore smoothness enables to simplify proofs.

Thirdly, in order to characterize the more relevant restricted class of convex mixtures of the equal division value and the equal surplus division value, we introduce the axiom of the pairwise upper bound in monotonic games. This axiom states that, for monotonic TU-games, the payoff difference between any two players is at most the worth achieved by the grand coalition. Adding this axiom and the desirability axiom [START_REF] Maschler | A characterization, existence proof and dimension bounds for the kernel of a game[END_REF] to efficiency, linearity and the nullified equal loss property yields the previously mentioned class of values. Desirability requires that a player with higher marginal contributions than another player should receive a higher payoff.

As a by-product, we obtain a 3-axiom characterization of the equal surplus division by combining efficiency, nullified equal loss property and inessential game property (proposition 4). The latter axiom specifies that each player obtains his stand-alone worth in an additive game.

This article follows a new literature concerning convex mixture of equal division values initiated by [START_REF] Van Den Brink | Null or nullifying players: the difference between the Shapley value and equal division solutions[END_REF]. To the best of our knowledge, the only two other articles are van den [START_REF] Van Den Brink | Axiomatizations of a class of equal surplus sharing solutions for TU-games[END_REF] and [START_REF] Casajus | Nullifying vs. dummifying players or nullified vs. dummified players: the difference between the equal division value and the equal surplus division value[END_REF]. In the first article, the authors invoke a consistency principle so that the player set can vary. Moreover, our pairwise upper bound in monotonic games axiom is a consequence of the dictator property (see proposition 6.2 in van den [START_REF] Van Den Brink | Axiomatizations of a class of equal surplus sharing solutions for TU-games[END_REF]. It is used in combination with desirability in order to limit the range of linear mixtures to convex mixtures. In the second article, positivity for weakly cohesive games is used for the same purpose. The latter axiom is independent of pairwise upper bound in monotonic games axiom.

The outline of the article is as follows. Section 2 is devoted to definitions. Section 3 contains all results and their proof. Section 4 provides concluding remarks.

Basic definitions and notations

Cooperative games with transferable utility

The cardinality of any set S is denoted by s. Let N be a finite and fixed set of players such that n ≥ 3. A TU-game v is a map v : 2 N -→ R such that v(∅) = 0. Define V as the class of all TU-games on this fixed player set N . V is endowed with the natural vector space structure. A non-empty subset S ⊆ N is a coalition, and v(S) is the worth of the coalition. For simplicity, we write the singleton {i} as i.

Player

i ∈ N is null in v ∈ V if v(S) = v(S\i)
for all S ⊆ N such that S ∋ i. We denote by K(v) the set of null players in v. For v ∈ V and i ∈ N , we denote by v i the TU-game in which player i is nullified:

v i (S) = v(S\i) for all S ⊆ N . Remark that K(v i ) = K(v) ∪ i. Two distinct players i, j ∈ N are equal in v ∈ V if v(S ∪ i) = v(S ∪ j) for all S ⊆ N \{i, j}.
The null game is given by 0(S) = 0 for all S ⊆ N . A TU-game v ∈ V is inessential (or additive) if for all S ⊆ N , v(S) = i∈S v(i). For any TU-game v ∈ V, let define the 0normalized game v 0 by v 0 (S) = v(S) -i∈S v(i) for any S ⊆ N so that any inessential TU-game v is characterized by

v 0 = 0. A TU-game v ∈ V is monotonic if v(S) ≤ v(T ) whenever S ⊆ T .
For any nonempty S ∈ 2 N , the unanimity TU-game induced by S is denoted by u S and such that u S (T ) = 1 if T ⊇ S and u S (T ) = 0 otherwise. It is well-known that any characteristic function v : 2 N -→ R admits a unique decomposition in the unanimity games basis:

v = S∈2 N ,S =∅ ∆ S (v)u S ,
where ∆ S (v) is called the Harsanyi dividend of S.

Values

A value on V is a function ϕ that assigns a payoff vector ϕ(v) ∈ R N to any v ∈ V. We consider the following values.

The Equal division value is the value ED given by:

ED i (v) = v(N ) n for all v ∈ V and i ∈ N.
The Equal surplus division value is the value ESD given by:

ESD i (v) = v(i) + 1 n v(N ) - j∈N v(j)
for all v ∈ V and i ∈ N.

The Shapley value [START_REF] Shapley | A value for n-person games[END_REF] is the value Sh given by:

Sh i (v) = S∋i ∆ S (v) s for all v ∈ V and i ∈ N.

Punctual and relational Axioms

In this article, we divide axioms in two categories: punctual axioms if they impose restrictions on the payoff vector of a fixed TU-game v ∈ V, and relational axioms if they impose a particular relation between the payoff vectors of two different TU-games v, w ∈ V. The following axioms are punctual:

Efficiency, E. For all v ∈ V, i∈N ϕ i (v) = v(N ). Null game, NG. For all i ∈ N , ϕ i (0) = 0. Null player, N. For all v ∈ V, all i ∈ K(v), ϕ i (v) = 0.
Equal treatment of equals, ET. For all v ∈ V, all i, j ∈ N who are equal in v, ϕ i (v) = ϕ j (v). Desirability, D. [START_REF] Maschler | A characterization, existence proof and dimension bounds for the kernel of a game[END_REF] 

For all v ∈ V, all i, j ∈ N such that, for all S ⊆ N \{i, j}, v(S ∪ i) ≥ v(S ∪ j), then ϕ i (v) ≥ ϕ j (v). Inessential game property, IGP. For all inessential TU-games v ∈ V, for all i ∈ N , ϕ i (v) = v(i).
Positivity, P. For all monotonic v ∈ V, for all i ∈ N , ϕ i (v) ≥ 0. Pairwise upper bound in monotonic games, PUBM. For all monotonic TU-games v ∈ V,

for all i, j ∈ N , ϕ i (v) -ϕ j (v) ≤ v(N ).
This last axiom requires that, compared to any other player, no player can claim a payoff excess greater than v(N ). It can be considered as weak as it is implied by the combination of E and P. Thus it is satisfied by Sh and ED, and also by ESD, even if the latter does not satisfy P. Note that D implies ET and that NG is implied by either N, either IGP, or the combination of ET and E.

Below is a list of relational axioms containing two new axioms, Smoothness and Nullified equal loss property. The first one allows comparison between payoff vectors of arbitrarily close TU-games, though it does not specify a particular relation at this point. The second links an arbitrary TUgame v to the TU-game v h in which a player h is nullified, by imposing that the payoff variation should affect all the other players equally, thus preserving payoff differences among them.

Additivity, A. For all v, w ∈ V, ϕ(v + w) = ϕ(v) + ϕ(w). Linearity, L. ϕ is a linear map. Smoothness, Sm. The map ϕ : V -→ R N is smooth as a map between R 2 N \{∅} and R N provided with standard euclidean structure: ϕ ∈ C ∞ (R 2 N \{∅} , R N ).
Nullified equal loss property, NEL. For all v ∈ V, all h ∈ N , all i, j ∈ N \h,

ϕ i (v) -ϕ i (v h ) = ϕ j (v) -ϕ j (v h ).
Let us mention that L implies Sm and L implies A but both converse implications are false. At last, the combination of Sm and A implies L.

Axiomatic study of the Nullified equal loss property

Smoothness as framework for differential calculus on values

We present here an alternative approach to implement axioms by using differential calculus: imposing the Sm axiom as a global framework allows to work within the class of smooth values on V and to translate other axioms in terms of differential operators, so that a value satisfying the axioms is a solution of the associated (partial) differential equations. In this context, Sm can be considered as a technical requirement, similarly as the linearity axiom L. The main advantage in this case is that it allows to apply results from linear algebra. To be more precise, V is endowed with its canonical euclidean structure and elements of V can be expressed, for instance, as coordinates in the natural Dirac basis so that a smooth value ϕ is a function of the coordinates (v(S)) ∅ S⊆N . As a consequence, the expression ∂ϕ i /∂v(S) is well-defined. Here is a first example of Sm implementation. For the interested reader, some other examples of this "translation" process can be found in the concluding section.

Proposition 1. Let ϕ be a value on V satisfying Sm. We have the following statements:

1. If ϕ satisfies E, then:

i∈N ∂ϕ i ∂v(S) = 0 if S = N, 1 if S = N.
2. If ϕ satisfies NEL then for every S ⊆ N , either S = h and for any i, j ∈ N \h, ∂ϕ i /∂v(h) = ∂ϕ j /∂v(h), or s ≥ 2 and for any i, j ∈ N , ∂ϕ i /∂v(S) = ∂ϕ j /∂v(S).

Proof. Let ϕ be a smooth value on V. Suppose that ϕ satisfies E. Then i∈N ϕ i (v) = v(N ) so that, by linearity of the derivative process, for S N , i∈N ∂ϕ i /∂v(S) = 0 and i∈N ∂ϕ i /∂v(N ) = 1.

Suppose that ϕ satisfies NEL. That is, for every

h ∈ N , ϕ i (v) -ϕ i (v h ) does not depend on i = h. Now let S ∋ h. Recall that v h (S) = v(S\h) so that v h does not depend on v(S). As a conse- quence, the derivative of the composition * ∂ϕ i (v h )/∂v(S) = 0. Hence ∂(ϕ i (v) -ϕ i (v h ))/∂v(S) = ∂ϕ i (v)/∂v(S). By NEL: ∂ϕ i (v) ∂v(S)
does not depend on i = h.

(1)

For S = h, this means that ∂ϕ i /∂v(h) = ∂ϕ j /∂v(h) for any i, j = h as claimed. For s ≥ 2, consider the last property (1) for two different h, h ′ ∈ S. We have proved that ∂ϕ i (v)/∂v(S) depends neither on i = h nor on i = h ′ . As n ≥ 3, the function ∂ϕ i /∂v(S) does not depend on any i ∈ N .

A broad range of values satisfies the Sm axiom, in particular all linear values, even if some nonsmooth values may be interesting (see for instance [START_REF] Béal | Axiomatic characterizations under players nullification[END_REF]. Hence it may legitimately be considered as a very weak axiom. The next result relies on this differential approach and gives consequences of combining NEL with E in this context. Proposition 2. A value ϕ satisfies Smoothness (Sm), Efficiency (E) and Nullified equal loss property (NEL) if and only if it exists n functions (α i ) i∈N ∈ C ∞ (R) and n numbers (a i ) i∈N ∈ R N such that i∈N a i = 0 and:

ϕ i (v) = a i + v(N ) n + v(i) 0 α i (x)dx - 1 n -1 j∈N \i v(j) 0 α j (x)dx.
(2)

Moreover, if Desirability axiom (D) and Pairwise upper bound for monotonic games axiom (PUBM) are also required, then ϕ is given by (2) with, for all i ∈ N , a i = 0 and α i = α, α being a positive function such that for all x ∈ R + ,

x 0 α(t)dt ≤ (n -1)x/n.
This proposition, though needing a heavy but straightforward proof, provides an explicit formula for the aforementioned class of values. This formula will allow, in proposition 3, to simplify the proof and to easily find a non-additive value, proving the logical independence of the axioms.

Proof. [Part 1]

Assume that a value ϕ on V satisfies Sm, E and NEL. For S ⊆ N such that s ≥ 2, by the second part of proposition 1 and NEL, the function ∂ϕ i /∂v(S) does not depend on i ∈ N . By the first part of proposition 1 and E, the sum i∈N ∂ϕ i /∂v(S) is equal to 0 if S = N and 1 if S = N . Hence ∂ϕ i /∂v(S) = 0 if S = N and:

∂ϕ i ∂v(N ) = 1 n . (3) 
We have proved that ϕ depends only on v(S) for s ∈ {1, n}. Now let us construct expression (2). Firstly, for all i ∈ N , set:

α i = ∂ϕ i ∂v(i) . ( 4 
)
Pick any j ∈ N . By the second part of proposition 1 and NEL, we know that ∂ϕ i /∂v(j) does not depend on i = j. By the first part of proposition 1, the sum i∈N ∂ϕ i /∂v(j) = 0 so that:

∂ϕ i ∂v(j) = - α j n -1 . ( 5 
)
Let us prove that α i only depends on v(i). The value ϕ being a smooth map, Schwarz lemma can be applied:

∂ 2 ϕ i /(∂v(i)∂v(N )) = ∂ 2 ϕ i /(∂v(N )∂v(i))
where ∂ϕ i /∂v(N ) is constant by (3). Hence ∂α i /∂v(N ) = 0 and α i does not depend on v(N ). Similarly:

∂α i ∂v(j) Def. = ∂ 2 ϕ i (∂v(j)∂v(i)) Schwarz = ∂ 2 ϕ i (∂v(i)∂v(j)) eq.(5) = 1 1 -n • ∂α j ∂v(i) (6) 
Interverting i and j in (6), one also gets ∂α j /∂v(i) = (∂α i /∂v(j))/(1n), which finally gives ∂α i /∂v(j) = (1n) 2 • ∂α i /∂v(j). Since n ≥ 3, it follows that ∂α i /∂v(j) = 0, so that α i only depends on v(i). Let us finally consider the quantity:

Q(v) = ϕ i (v) - v(N ) n - v(i) 0 α i (x)dx + 1 n -1   j∈N \i v(j) 0 α j (x)dx   . (7) 
With the help of the preceding arguments, it is now easy to show that ∂Q/∂v(S) = 0 for any S ⊆ N and hence is a constant for all v ∈ V. Thus Q(v) = Q(0), where Q(0) = ϕ i (0). Denote by a i = ϕ i (0) so that i∈N a i = 0 by E. This implies the desired expression (2).

Reciprocally, for any

(α i ) i∈N ∈ C ∞ (R) and (a i ) i∈N ∈ R N , the value ϕ given by ϕ i (v) = a i +v(N )/n+ v(i) 0 α i (x)dx-( j =i v(j) 0 α j (x)dx)/(n-1) satisfies Sm and E whenever i∈N a i = 0. For i = h ∈ N , ϕ i (v) -ϕ i (v h ) = (v(N ) -v(N \h))/n -( v(h) 0 α h (x)
dx)/(n -1) which does not depend on i so that ϕ satisfies NEL.

[Part 2] Now suppose that ϕ also satisfies D. As D implies ET, for all i ∈ N , we get a i = ϕ i (0) = 0 by E. Now, simple computation gives

ϕ i (v) -ϕ j (v) = 1 + 1 n -1 v(i) 0 α i (x)dx - v(j) 0 α j (x)dx (8) 
If i and j are equal, v(i) = v(j) and the right hand side of (8) simplifies to (n/(n -1))

v(i) 0 (α i (x) - α j (x))dx.
By ET, we get v(i) 0

(α i (x)α j (x))dx = 0 for every v(i) ∈ R so that α i = α j . In this context, denote the smooth function α = α i for any i ∈ N .

Consider i, j ∈ N and v a TU-game in which for all S ⊆ N \{i, j}, v(S ∪j) ≤ v(S ∪i). Expression (8) now leads to

v(i) v(j) α(x)dx = (n -1) • (ϕ i (v) -ϕ j (v))/n. By D, ϕ i (v) -ϕ j (v) ≥ 0 and we obtain v(i) v(j) α(x)dx ≥ 0 for every v(j) ≤ v(i). Hence α is positive on R.
At last, suppose that ϕ also satisfies PUBM. That is, for any monotonic TU-game v, ϕ i (v)ϕ j (v) ≤ v(N ). Combined with (8), we get

v(i) v(j) α(x)dx ≤ (n -1)v(N )/n for every v(N ) ∈ R + and v(i), v(j) ∈ [0; v(N )]. In particular, for v(i) = v(N ) and v(j) = 0, this leads to v(N ) 0 α(t)dt ≤ (n -1)v(N )/n for every v(N ) ∈ R + .
Reciprocally, given the explicit expression (2) for ϕ, with a i = 0 and α i = α for all i ∈ N , α being a positive function one has

ϕ i (v)-ϕ j (v) = n( v(i) v(j) α(x)dx)/(n-1) and ϕ satisfies D. Moreover if for all x ∈ R + , x 0 α(t)dt ≤ (n -1)x/n, then for any monotone TU-game v, 0 ≤ v(i), v(j) ≤ v(N ) and ϕ i (v) -ϕ j (v) ≤ n( v(N ) 0 α(x)dx)/(n -1) ≤ v(N ).
The axioms in proposition 2 are logically independent:

• The value ϕ = 2 • ESD -ED satisfies all axioms except PUBM. For instance, take i = h, ϕ h (u h ) -ϕ i (u h ) = 2 -1/n -(-1/n) > u h (N ).
• The value ϕ given by ( 2) with α i = (n -1)/n for some i ∈ N and α j = 0 for all other j = i satisfies all axioms except D (as it does not satisfies ET). Indeed, in a monotonic TU-game v ∈ V, 0 ≤ v(i) ≤ v(N ) and, for any j, k ∈ N , expression (8) simplifies to ϕ k (v)-ϕ j (v) ≤ v(i) so that ϕ satisfies PUBM.

• The value Sh satisfies all axioms except NEL.

• Given any (λ s ) 2≤s≤(n-1) ∈ R n-2 , the equal value ϕ defined for any player i ∈ N by ϕ i (v) = S : 2≤s≤(n-1) λ s v(S), satisfies all axioms except E. Note that it depends on the worth of all coalitions S except those of size 1 and n, contrary to values characterized by (2).

• The value ϕ defined by ϕ i (v) = max(0, v(i)) + (v(N )j max(0, v(j)))/n for all i ∈ N satisfies all axioms except Sm as α i (x) = ∂ϕ i /∂v(i)(x) is either 0 if x < 0 or (n -1)/n if x > 0 and therefore is not smooth.

Proposition 2 characterizes the class of smooth and efficient values, not necessarily linear, for which the entire loss of productivity of a player does not affect the payoff difference between the other players. These values only rely on the worth of the grand coalition and the stand-alone worth, and carry exogeneous parameters for each player i: an unconditional payoff a i = ϕ i (0) and a marginal scaling of individual productivity α i in the payoffs, corresponding to a nominative and heterogeneous treatment of the players. This class is however compatible with further axioms such as D or PUBM, which specify the shape of these parameters.

Remark 1. Requiring PUBM in addition to Sm, E, NEL and D imposes, in proposition 2, that the positive function α should satisfy x 0 α(t)dt ≤ (n -1)x/n for all x ∈ R + . This technical condition implies that α(0) ≤ (n -1)/n and is implied by imposing α to be uniformely bounded by (n -1)/n on R + . When L is required instead of Sm, these two last conditions coincide because α is constant and equal to α(0). This will be used in the following proposition 3.

Remark 2. There is no value within the aforementioned class that satifies the null player axiom N. More generally, it is easy to prove that there is no value on V that satisfies N, NEL and E: for h ∈ N , consider the unanimity game u N \h . By N, ϕ h (u N \h ) = 0 and for all i ∈ N , ϕ i (0) = 0. Moreover, u j N \h = 0 for all j = h so NEL leads to

ϕ i (u N \h ) -ϕ i (u j N \h ) = ϕ h (u N \h ) -ϕ h (u j N \h ) hence ϕ i (u N \h ) = 0 for any i = j. E then implies ϕ j (u N \h ) = 1.
As n ≥ 3, these two last equalities contradict E and NEL by switching i and j.

Remark 3. Assuming the Null Game axiom NG in addition to Sm, E and NEL, the formula (2), applied to the 0-normalized game v 0 , characterizes the equal division value: for any TU-game

v ∈ V, ϕ i (v 0 ) = v 0 (N )/n = ED i (v 0 ).

Back to Linearity

In this section, the class of smooth values is now restricted to linear values by requiring L instead of Sm. This leads to a characterization of the class of convex combination of the equal division value and the equal surplus division value. Proposition 3. A value ϕ on V satisfies Efficiency (E), Linearity (L) and Nullified equal loss property (NEL) if and only if it exists a vector β ∈ R n such that

ϕ i (v) = β i v(i) + j∈N \i 1 -β j n -1 v(j) + 1 n v(N ) - j∈N v(j) (9) 
Moreover, if Desirability axiom (D) and Pairwise upper bound for monotonic games axiom (PUBM) are also required, then ϕ is a convex combination of the equal surplus division value and the equal division value, i.e. there exists a unique λ ∈ [0, 1] such that ϕ = λESD + (1λ)ED.

Proof. [Part 1] By construction, any value given by (9) satisfies L. Moreover, for all i ∈ N , defining α i = β i -1/n leads to formula (2) where the functions (α i ) i∈N are constants and a i = 0 for all i ∈ N , so that any value given by (9) also satisfies E and NEL.

Reciprocally, consider any value ϕ on V satisfying E, L and NEL. As L implies Sm, by proposition 2, there are n constants (a i ) i∈N ∈ R N and n smooth functions (α i ) i∈N ∈ C ∞ (R) such that ϕ is given by (2) with α i = ∂ϕ i /∂v(i) and a i = ϕ i (0). By L, the functions α i are constant and a i = 0, leading to formula (9) by defining

β i = α i + 1/n.
[Part 2] Next, it is easy to check that both ED and ESD satisfy E, L, NEL, D and PUBM. Then any convex combination of ED and ESD also satisfies these axioms.

Lastly, consider any value ϕ satisfying D and PUBM in addition to E, L and NEL. Again, L implies Sm so, by the second part of proposition 2, the constants α i = β i -1/n are all equals and positive. As precised in remark 1, α is bounded by (n -1)/n. This restricts the common value β to [1/n; 1]. Straight computation in (9) now leads to:

ϕ i (v) = β - 1 n v(i) + j∈N \i 1 -β n -1 - 1 n v(j) + v(N ) n = nβ -1 n -1 × n -1 n v(i) + n -nβ -(n -1) n -1 × 1 n j∈N \i v(j) + v(N ) n = nβ -1 n -1   v(i) - 1 n j∈N v(j)   + v(N ) n = λESD i (v) + (1 -λ)ED i (v)
where λ = (nβ -1)/(n -1). Clearly λ ∈ [0; 1].

In order to prove the logical independence of the axioms involved in proposition 3, notice that the first four counter-examples shown in the corresponding part of proposition 2 are linear, and may be switched to expression (9) via defining β j = α j + 1/n for any j ∈ N . Hence they still apply here. Lastly, the value ϕ given by:

ϕ i (v) = v(N ) n + v(i) -sin(v(i)) 4 - 1 n -1 j =i v(j) -sin(v(j)) 4
satisfies all axioms except L. The proof is a direct consequence of the second part of proposition 2 with α(x) = (1cos(x))/4. Note that α(x) ≤ 2/3 ≤ (n -1)/n for any n ≥ 3.

This proposition was expected as a consequence of proposition 2, withal can be established directly through a classic but longer proof, for instance using the decomposition in the unanimity games basis. Béal et al. (2015a,c) introduce weighted equal division values in which the common part to be shared is divided according to individual weights, which sum up to 1 if efficiency is required. These values differ from those resulting from the preceding characterization as the individual weights only affect the stand-alone parts of the payoffs but not the cooperative surplus. Note that efficiency puts no constraint on the weight vector β.

Characterization of the equal division values

The next result may be considered as a particular case of the classes defined in propositions 2 and 3 with the adjonction of the Inessential game property: this last axiom specifies the payoffs in case of an inessential TU-game, which is completely characterized by the stand-alone worths v(i). Nevertheless, as we will see, no more than Efficiency and Nullified equal loss property are needed in addition to the Inessential game property in order to characterize the equal surplus division. The proof is therefore independent of the preceding propositions and more classic. Now consider any value ϕ on V satisfying the three aforementioned axioms. Remind that n ≥ 3 throughout the article. The proof that ϕ = ESD is done by (descending) induction on the number k(v) of null players in a TU-game v. Initialization. If k(v) ≥ n -1, i.e. it exists at most one non-null player i ∈ N , then v is inessential and IGP leads to

ϕ i (v) = v(i) = ESD i (v). Induction hypothesis. Assume that ϕ(v) = ESD for all TU-games v ∈ V such that k(v) ≥ k, 0 < k ≤ n -1. Induction step. Choose any TU-game v ∈ V such that k(v) = k -1. Because k(v) < n -1, there exists at least two distinct non-null players h, h ′ ∈ N \K(v). Notice K(v h ) = K(v) ∪ h so that k(v h ) = k(v) + 1 = k.
For all i, j = h, NEL and the induction hypothesis imply:

ϕ i (v) -ϕ j (v) NEL = ϕ i (v h ) -ϕ j (v h ) = ESD i (v h ) -ESD j (v h ) = v(i) -v(j) (10) 
Let us show that (10) holds for all i, j ∈ N . Indeed, (10) holds for i, j = h ′ . Thanks to n ≥ 3, with the help of an existing k = h, h ′ , we have ϕ

h (v) -ϕ k (v) = v(h) -v(k) and ϕ k (v) -ϕ h ′ (v) = v(k) -v(h ′ ). Summing up these two last equalities brings ϕ h (v) -ϕ h ′ (v) = v(h) -v(h ′ )
, and so (10) holds for all i, j ∈ N . Now by summing this last equality over j ∈ N and using E, one gets:

n • ϕ i (v) -v(N ) = n • v(i) - j∈N v(j)
This immediatly leads to ϕ i (v) = ESD i (v) for every i ∈ N .

The three axioms are logically independent:

• For all v ∈ V , define ϕ i (v) = v(i) for all i ∈ N . Then ϕ satisfies all axioms except E.

• ϕ = Sh satisfies all axioms except NEL.

• ϕ = ED satisfies all axioms except IGP.

Remark 4. This last proof may be mimicked step by step to characterize the equal division value with a similar set of three axioms. For this purpose, only the initialization part of the inductive proof needs to be adapted. We will call this ad hoc axiom Equal division for inessential games, EIG and define it by the following: for all inessential TU-games v ∈ V, for all i ∈ N , ϕ i (v) = ( j∈N v(j))/n. One easily gets that E, NEL and EIG characterizes ED.

Conclusion

Our article brings to light a new technique to implement punctual and relational axioms by means of differential equations. Beyond proposition 1, imposing Sm also leads, for instance, to the following statements: *

• If ϕ satisfies IGP then: for any inessential TU-game v ∈ V, for all i ∈ N , S∋i (∂ϕ i /∂v(S))(v) = 1 and for all i = j ∈ N , S∋j (∂ϕ i /∂v(S))(v) = 0.

• If ϕ satisfies EIG then: for any inessential TU-game v ∈ V, S∋j (∂ϕ i /∂v(S))(v) = 1/n, for all i, j ∈ N .

• If ϕ satisfies N then: for all i ∈ N , for all S ∋ i, for all

v ∈ V, K(v) ∋ i ⇒ (∂ϕ i /∂v(S))(v) = -(∂ϕ i /∂v(S ∪ i))(v).
• If ϕ satisfies ET then: for all i, j ∈ N , for all S ⊆ N such that either {i, j} ⊆ S, or {i, j} ⊆ N \S, for all v ∈ V, if i and j are equals in v then (∂ϕ i /∂v(S))(v) = (∂ϕ j /∂v(S))(v).

For any S ⊆ N , possibly empty, such that S ∩ {i, j} = ∅, we also have (∂ϕ i /∂v(S ∪ {i}))(v) + (∂ϕ i /∂v(S ∪ {j}))(v) = (∂ϕ j /∂v(S ∪ {i}))(v) + (∂ϕ j /∂v(S ∪ {j}))(v).

Note that this process is operational for many axioms defined by equalities but proves difficult to implement axioms defined by inequalities. Let us also point out that we only used game coordinates (v(S)) ∅ S⊆N in the Dirac basis to define derivatives ∂ϕ i /∂v(S). The unanimity games basis may also be used, changing the game coordinates to (∆ S (v)) ∅ S⊆N so as to define and compute ∂ϕ i /∂∆ S (v). More generally, this scouting tool can be used to recover classical results in cooperative game theory and to define classes of non-necessarily linear values, generalizing well-known values by shifting the popular linear axiom to the smoothness axiom.

Another extension of our work, in connection with [START_REF] Béal | Axiomatic characterizations under players nullification[END_REF], may be to study the impact of translating the Nullified equal loss property to its removal version, changing the player set N by removing a player off the game instead of nullifying her. One may then wonder whether the equal division values still keep the main role. Indeed, the Removal equal loss property would state that, if a player is removed from the game, the payoff difference between any pair of remaining players is preserved: for any h ∈ N , for any pair of players i, j = h, ϕ i (N, v)ϕ j (N, v) = ϕ i (N \h, v| N \h )ϕ j (N \h, v| N \h ). Note that ϕ now depends explicitly on the player set. This last axiom is stronger than the Weak null player out axiom introduced in van den [START_REF] Van Den Brink | Axiomatizations of a class of equal surplus sharing solutions for TU-games[END_REF] which only requires the preceding preservation of payoff differences when removing a null player h ∈ K(N, v).

In [START_REF] Béal | Axiomatic characterizations under players nullification[END_REF], the authors discussed the central role of the Null player out axiom (introduced by [START_REF] Derks | Null players out? linear values for games with variable supports[END_REF] in the aforementioned "translation" process. This axiom states that a null player removal does not change the payoff of other players. If a value satisfies the Null player out axiom, then the value satisfies a particular removal axiom if and only if it satisfies the corresponding nullification axiom. None of the values characterized in the present article satisfies the Null player out axiom but all satisfies the Removal equal loss property as soon as all the parameters involved in the value characterization are independent of the player set. These ascertainments raise the question of characterizing these values only by ensuring invariance of the parameters when the player set changes and would probably require other axioms.

Proposition 4 .

 4 A value ϕ on V satisfies Efficiency (E), Nullified equal loss property (NEL) and the Inessential game property (IGP) if and only if it is the equal surplus division value ϕ = ESD.Proof. First ESD satisfies NEL, IGP and E.