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Let µ be a positive finite Borel measure on the unit circle. The associated Dirichlet space D(µ) consists of holomorphic functions on the unit disc whose derivatives are square integrable when weighted against the Poisson integral of µ. We give a sufficient condition on a Borel subset E of the unit circle which ensures that E is a uniqueness set for D(µ). We also give somes examples of positive Borel measures µ and uniqueness sets for D(µ).

Introduction

Let µ be a positive finite Borel measure on the unit circle T, the harmonically weighted Dirichlet space D h (µ) is the set of all functions f ∈ L 2 (T) for which

D µ (f ) = T D ξ (f )dµ(ξ) < ∞,
where D ξ (f ) is the local Dirichlet integral of f at ξ ∈ T given by

D ξ (f ) := T f (ζ) -f (ξ) ζ -ξ 2 |dζ| 2π .
The space D h (µ) is endowed with the norm f 2 µ := f 2 L 2 (T) + D µ (f ). The analytic weighted Dirichlet space D(µ) is defined by

D(µ) = {f ∈ D h (µ) : f (n) = 0, n < 0}.
Let D be the open unit disc in the complex plane. Let H 2 denote the Hardy space of analytic functions on D. As usual, we use the identification H 2 = {f ∈ L 2 (T) : f (n) = 0, n < 0}. Since D(µ) ⊂ H 2 , every function f ∈ D(µ) has non-tangential limits almost everywhere on T. We denote by f (ζ) the non-tangential limit of f at ζ ∈ T if it exists. Note that by Douglas Formula the Dirichlet-type space D(µ) is the set of analytic functions f ∈ H 2 , such that

D |f ′ (z)| 2 P µ (z)dA(z) < ∞,
where dA(z) = dxdy/π stands for the normalized area measure in D and P µ is the Poisson integral of µ given by

P µ (z) := T 1 -|z| 2 |ζ -z| 2 dµ(ζ), z ∈ D.
For a proof of this fact see [START_REF] El-Fallah | A Primer on the Dirichlet Space[END_REF]Theorem 7.2.5] and for numerous results on the Dirichlettype space and operators acting thereon see [START_REF] El-Fallah | A Primer on the Dirichlet Space[END_REF][START_REF] El-Fallah | Cyclicity and invariant subspaces in the Dirichlet space[END_REF][START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift[END_REF][START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift and pseudocontinuations[END_REF].

The capacity associated with D(µ) is denoted by c µ and is given by

c µ (E) := inf f 2 µ : f ∈ D h (µ), |f | ≥ 1 a.e
. on a neighborhood of E . Since the L 2 norm is dominated by the Dirichlet norm . µ , it is obvious that c µ -capacity 0 implies Lebesgue measure 0. We say that a property holds c µ -quasi-everywhere (c µ -q.e.) if it holds everywhere outside a set of zero c µ capacity. Note that c µ -q.e implies a.e. and we have

c µ (E) = inf f 2 µ : f ∈ D h (µ), |f | ≥ 1 c µ -q.e
. on E . For more details see [START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF]. Furthermore every function f ∈ D(µ) has non-tangential limits c µ -q.e. on T [3, Theorem 2.1.9]. Note also that if E is a closed subset of T such that c µ (E) = 0, then there exists a function f ∈ D(µ) uniformly continuous on T such that the zero set Z(f

) := {ζ ∈ T : f (ζ) = 0} = E [7, Theorem 1].
Recall that if I ⊂ T be the arc of lenght |I| = 1 -ρ with midpoint ζ ∈ T, then

1 c µ (I) ≍ 1 + ρ 0 dr (1 -r)P µ (rζ) + (1 -r) 2 , (1) 
where the implied constants are absolute. For the proof see [START_REF] El-Fallah | Kernel estimate and capacity in Dirichlet space[END_REF]Theorem 2].

Let E be a subset of T, the set E is said to be a uniqueness set for D(µ) if, for each f ∈ D(µ) such that its non-tangential limit f = 0 c µ -q.e on E, we have f = 0. It is well known that for the Hardy space the uniqueness sets coincide with the sets of positive length on T. Note that if dµ = dm the normalized arc measure on T, then the space D(µ) coincides with the classical Dirichlet space D given by

D = {f ∈ H 2 : D |f ′ (z)| 2 dA(z) < ∞}.
In this case, c m is comparable to the logarithmic capacity and c m (I) ≍ | log |I|| -1 for every arc I ⊂ T, [START_REF] Meyers | A theory of capacities for potentials of functions in Lebesgue classes[END_REF]Theorem 14]. Khavin and Maz'ya proved in [START_REF] Khavin | Application of the (p, l)-capacity to certain problems of theory of exceptional sets[END_REF] that a Borel subset E of T is a uniqueness set for D if there exists a family of pairwise disjoint open arcs (I n ) such that

n |I n | log |I n | c m (E ∩ I n ) = -∞.
For other uniqueness results for D see also [START_REF] Carleson | Sets of uniqueness for functions regular in the unit circle[END_REF][START_REF] Carleson | An example concerning analytic functions with finite Dirichlet integrals. Investigations on linear operators and the theory of functions[END_REF][START_REF] Guillot | Blaschke condition and zero sets in weighted Dirichlet spaces[END_REF][START_REF] El-Fallah | A Primer on the Dirichlet Space[END_REF][START_REF] Kellay | Poincaré type inequality for Dirichlet spaces and application to the uniqueness set[END_REF]. Our aim in this paper is to extend Khavin and Maz'ya uniqueness theorem to general Dirichlet spaces D(µ).

Let γ > 1 and let I = (e ia , e ib ). The arc γI is given by γI = (e i(a-(γ-1) b-a 2 ) , e i(b+(γ-1) b-a 2 ) ). The main result of this paper is the following theorem.

Theorem 1.1. Let E be a Borel subset of T. Suppose that there exists a family of open arcs (I n ) such that (γI n ) are pairwise disjoint for some γ > 1 and

n |I n | log |I n | c µ (E ∩ I n ) = -∞;
then E is a uniqueness set for D(µ).

The key of the proof of the this theorem is an upper estimate of the average 1

|I| I |f (ζ)||dζ|, for f ∈ D(µ) vanishing on a set E ⊂ T, in terms of capacity of E ∩ I , for any open arc I.
The next section is devoted to the proof of Theorem 1.1. In section 3 we give some examples of positive Borel measures µ and uniqueness sets for D(µ).

Throughout the paper, we use the following notations: A B means that there is an absolute constant C such that A ≤ CB and A ≍ B if both A B and B A.

Proof

First, let us introduce some notations which will be useful in the sequel. Let J and L be arcs of T and let f be a Borel function defined on T. We set

D J,L,µ (f ) := ζ∈J ξ∈L |f (ζ) -f (ξ)| 2 |ζ -ξ| 2 |dζ| 2π dµ(ξ),
and

f J := 1 |J| J |f (ξ)||dξ|.
The following lemma is the key in the proof of theorem 1.1.

Lemma 2.1. Let γ > 1 and let f ∈ D(µ) such that f | E = 0 for some Borel subset E of T. Then, for any open arc I ⊂ T f 2 I ≤ κ D γI,T,µ (f ) + γI |f | 2 c µ (E ∩ I) ,
where κ is a constant depending only on γ.

Proof. Without loss of generality, we can suppose that I = (e -iθ , e iθ ) with 2θ < π. In this case γI = (e -iγθ , e iγθ ).

Let φ be a positive function on T, 0 ≤ φ ≤ 1, such that supp φ = 1 + γ 2 I, φ = 1 on I and

|φ(ζ) -φ(ξ)| ≤ c 1 |I| |ζ -ξ|, ζ, ξ ∈ T.
where c 1 depends only on γ. Set L = 1 + γ 2 I and consider

F (ζ) := φ(ζ) 1 - |f (ζ)| f L , ζ ∈ T.
Hence F ≥ 0 and F = 1 c µ -q.e on E ∩ I. Therefore,

c µ (E ∩ I) ≤ F 2 µ .
We claim that

F 2 µ ≤ κ D γI,T,µ (f ) + L |f | 2 f 2 L . (2) 
where κ depends only on γ. Indeed, we have

F 2 µ = T |F (ζ)| 2 |dζ| 2π + T T |F (ζ) -F (ξ)| 2 |ζ -ξ| 2 |dζ| 2π dµ(ξ) ≤ 1 f 2 L L | f L -|f (ζ)|| 2 |dζ| 2π + γI γI |F (ζ) -F (ξ)| 2 |ζ -ξ| 2 |dζ| 2π dµ(ξ) + 1 f 2 L ζ∈T\γI ξ∈L | f L -|f (ξ)|| 2 |ζ -ξ| 2 |dζ| 2π dµ(ξ) + 1 f 2 L ζ∈L ξ∈T\γI | f L -|f (ζ)|| 2 |ζ -ξ| 2 |dζ| 2π dµ(ξ) = A 2π f 2 L + B 2π + C 2π f 2 L + D 2π f 2 L . (3) 
By Cauchy-Schwarz inequality we have

| f L -|f (ξ)|| 2 ≤ 1 |L| L |f (η) -f (ξ)| 2 |dη|. (4) 
Hence

A := L | f L -|f (ζ)|| 2 |dζ| ≤ 1 |L| L L |f (η) -f (ξ)| 2 |dη||dξ| ≤ 2 |L| L L |f (η)| 2 |dη||dξ| + 2 |L| L L |f (ξ)| 2 |dη||dξ| = 4 L |f (ζ)| 2 |dζ|. (5) 
Next we estimate B. For (ζ, ξ) ∈ T × T, we have

|F (ζ) -F (ξ)| = φ(ζ) 1 - |f (ζ)| f L -1 - |f (ξ)| f L + (φ(ζ) -φ(ξ)) 1 - |f (ξ)| f L ≤ 1 f L |f (ζ) -f (ξ)| + c 1 f L |ζ -ξ| |I| | f L -|f (ξ)||. (6)
By ( 6) and ( 4) we get

B := γI γI |F (ζ) -F (ξ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) ≤ 2 f 2 L γI γI |f (ζ) -f (ξ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) + 2 × c 2 1 f 2 L |I| 2 |L| γI γI L |f (η) -f (ξ)| 2 |dη||dζ|dµ(ξ) ≤ 2 f 2 L γI γI |f (ζ) -f (ξ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) + 2 × c 2 1 × γ f 2 L |I||L| γI L |f (η) -f (ξ)| 2 |dη|dµ(ξ) ≤ 2 f 2 L γI γI |f (ζ) -f (ξ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) + c 2 f 2 L γI γI |f (η) -f (ξ)| 2 |η -ξ| 2 |dη|dµ(ξ) ≤ c 3 D γI,γI,µ (f ) f 2 L . ( 7 
)
where c 2 and c 3 depend only on γ.

Using again (4) , we see that

C := ζ∈T\γI ξ∈L | f L -|f (ξ)|| 2 |ζ -ξ| 2 |dζ|dµ(ξ) ≤ ζ∈T\γI |dζ| d(ζ, L) 2 ξ∈L | f L -|f (ξ)|| 2 dµ(ξ) ≤ c 4 |I| ξ∈L | f L -|f (ξ)|| 2 dµ(ξ) ≤ c 5 |I| 2 γI γI |f (η) -f (ξ)| 2 |dη|dµ(ξ) ≤ c 5 γI γI |f (η) -f (ξ)| 2 |η -ξ| 2 |dη|dµ(ξ) = 2πc 5 D γI,γI,µ (f ), (8) 
where c 4 and c 5 depend only on γ.

We have

|ζ -ξ| ≥ γ -1 4 |I| and |η -ξ| ≤ 1 + 2γ γ -1 |ζ -ξ| (ξ, ζ, η) ∈ (T\γI) × L × L.
Therefore, by (4) we oblain

D := ξ∈T\γI ζ∈L | f L -|f (ζ)|| 2 |ζ -ξ| 2 |dζ|dµ(ξ) ≤ ξ∈T\γI ζ∈L 1 |L| η∈L |f (η) -f (ξ) + f (ξ) -f (ζ)| 2 |ζ -ξ| 2 |dζ||dη|dµ(ξ) ≤ 2 ξ∈T\γI η∈L ζ∈L |f (η) -f (ξ)| 2 |ζ -ξ| 2 |dζ||dη|dµ(ξ) + 2 ξ∈T\γI ζ∈L |f (ξ) -f (ζ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) ≤ c 6 |I| ξ∈T\γI η∈L ζ∈L |f (η) -f (ξ)| 2 |η -ξ| 2 |dζ||dη|dµ(ξ) + 2 ξ∈T\γI ζ∈L |f (ξ) -f (ζ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) = c 7 ξ∈T\γI ζ∈L |f (ξ) -f (ζ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) ≤ 2πc 7 D γI,T\γI,µ (f ), (9) 
where c 6 and c 7 depend only on γ. Combining (3), ( 5), ( 7), ( 8) and ( 9) we get (2) and the proof is complete. 

and Jensen's inequality it follows that

In

log |f (ξ)||dξ| = n |I n | 1 |I n | In log |f (ξ)||dξ| ≤ 1 2 n |I n | log f 2 In ≤ 1 2 n |I n | log κ D γIn,T,µ (f ) + γIn |f (ζ)| 2 |dζ| c µ (E ∩ I n ) = 1 2 (ℓ log κ + I),
where

I = n |I n | log |I n | c µ (E ∩ I n ) + n |I n | log D γIn,T,µ (f ) + γIn |f (ζ)| 2 |dζ| |I n | J
Using again Jensen inequality and since (γI n ) are pairwise disjoint, we get

J = ℓ n |I n | ℓ log D γIn,T,µ (f ) + γIn |f (ζ)| 2 |dζ| |I n | ≤ ℓ log 1 ℓ n D γIn,T,µ (f ) + γIn |f (ζ)| 2 |dζ| ≤ ℓ log 1 ℓ D µ (f ) + f 2 2 = ℓ log f 2 µ ℓ .
Therefore I = -∞. So by Fatou's Theorem we obtain f = 0 and the proof is complete.

Remarks and examples

3.1. By (1), see also [5, Theorem 2], we have c µ (ζ) > 0, for some ζ ∈ T, if and only if

1 0 dr (1 -r)P µ (rζ) + (1 -r) 2 < ∞.
In this case, for every f ∈ D(µ), the non tangential limit, f (ζ), at ζ exists. We have the following upper estimate For β ∈ (0, 1/2) and f ∈ D µ , we have 

|f (z) -f (ζ)| 2 ≤ C S(ζ,β) |f ′ (z)| 2 P µ (z)dA(z) β 0 dx xP µ ((1 -x)ζ) + x 2 ,
f ∈ D(µ) then f ∈ L 2 (T, dµ) and f L 2 (T,dµ) ≤ (1 + µ(T) 1/2 ) f µ , [4, Theorem 8.1.2]. Therefore c µ (E) ≥ µ(E)/(1 + µ(T) 1/2 ) 2 .
We obtain the following result 

f 2 I ≤ κ D γI,T,µ (f ) + γI |f | 2 µ(E ∩ I) , .
where κ is a constant depending only on γ.

3.3.

First observe that for the Dirac measure δ ζ it is known, (see [START_REF] El-Fallah | A Primer on the Dirichlet Space[END_REF]), that

D(δ ζ ) = C + (z -ζ)H 2 .
Then a Borel set E is a uniqueness set for D(δ ζ ) if and only if the E has a positive Lebesgue measure. This result can be extended to some other discrete measures. For a positive Borel measure µ we will denote by V 2 (µ) the Newtonian potential given by

V 2 (µ)(ζ) = 2π 0
dµ(e it ) |e it -ζ| 2 . D. Guillot showed in [9, Theorem 2.1] that if there exists f ∈ D µ such that f = 0 µ a.e on T then

T log V 2 (µ)(ζ)|dζ| < ∞.
He also proved that the converse is true for all discrete measures. The following result is an immediate consequence of [START_REF] Guillot | Blaschke condition and zero sets in weighted Dirichlet spaces[END_REF].

Proposition 3.3. Consider a positive sequence (a n ) n≥1 such that n≥1 a n = 1 and let µ = n a n δ ζn where ζ n ∈ T. If T log V 2 (µ)(ζ)|dζ| < ∞, then a Borel set E ⊂ T is a uniqueness set for D(µ) if and only if |E| > 0.
Proof. Since D(µ) ⊂ H 2 , it is obvious that the condition |E| > 0 is sufficient. Conversely, Let E ⊂ T be a Borel set such that |E| = 0, there exists a function ϕ ∈ H ∞ \ {0} such that ϕ has non-tangential boundary limits 0 on E. By [START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF], there exists f ∈ D(µ) ∩ H ∞ \ {0} such that f (ζ n ) = 0, (n ≥ 1). Now it suffices to prove that ϕf ∈ D(µ). Indeed,

D µ (ϕf ) = T T ϕf (ζ) -ϕf (ζ ′ ) ζ -ζ ′ 2 |dζ|dµ(ζ ′ ) = T T ϕf (ζ) ζ -ζ ′ 2 |dζ|dµ(ζ ′ ) ≤ ϕ 2 ∞ T T f (ζ) ζ -ζ ′ 2 |dζ|dµ(ζ ′ ) = ϕ 2 ∞ T T f (ζ) -f (ζ ′ ) ζ -ζ ′ 2 |dζ|dµ(ζ ′ ) = ϕ 2 ∞ D µ (f )
which completes the proof.

Note that for a positive Borel measures µ = n a n δ ζn where ζ n ∈ T such that

T log V 2 (µ)(ζ)|dζ| = ∞, (10) 
we have no complete characterization for uniqueness sets for D(µ). In this case, by [START_REF] Guillot | Blaschke condition and zero sets in weighted Dirichlet spaces[END_REF] the countable set {ζ ∈ T : µ(ζ) = 0} is a uniqueness set for D(µ). The situation is more complicated than in the previous case. In fact, using theorem 1.1, we will construct smaller uniqueness set for D(µ). Before stating this result, we give an example of discrete measures µ satisfying [START_REF] Khavin | Application of the (p, l)-capacity to certain problems of theory of exceptional sets[END_REF]. A closed set E ⊂ T is said to be a Carleson set if We have

T log dist(ζ, E)|dζ| > -∞.
T log V 2 (µ)(ζ)|dζ| ≥ n≥1 bn an log b n -a n dist 2 (e it , {a n , b n }) dt ≥ n≥1 bn an log b n -a n (b n -a n ) 2 dt = n≥1 (b n -a n ) log 1 b n -a n = +∞.
3.4. Here we give an example of positive measure µ and a countable closed set E such that µ(E) = 0 and E is uniqueness set for D(µ) (see Corollary 3.6). This result was easily obtain from Theorem 1.1. We can also obtain this result by more direct method using Lemma 3.1 and easy estimates of harmonic measures for some suitably domains.

Lemma 3.5. Let ζ ∈ T, a ∈ (0, 1/2). Let µ be a probability measure on T such that µ ≥ k≥2 ak -2 δ ζe ia k , then c µ ({ζ}) √ a.

Proof. Let ν = k≥2 a k 2 δ ζe ia k .
By (1), we have

1 c µ ({ζ}) 1 + 1 0 dr (1 -r)P ν (rζ) + (1 -r) 2 . For a ≤ 1 -r, we have (1 -r)P ν (rζ) ≍ k≥2 a(1 -r) 2 k 2 ((1 -r) 2 + a 2k ) ≍ k≥2 a k 2 ≍ a.
For 1 -r < a, let k r be a real number such that 1 -r = a kr . Since x -→ x 2 a 2x ; x 1, is a decreasing function, we have

(1 -r)P ν (rζ) ≍ k≥2 a(1 -r) 2 k 2 ((1 -r) 2 + a 2k ) = k≥kr a k 2 + k<kr a(1 -r) 2 k 2 a 2k ≍ a log(1/a) log(1/1 -r) .
Then we obtain

1 c µ ({ζ}) ≤ 1 + 1-a 0 dr a + (1 -r) 2 + 1 1-a dr a log(1/a) log(1/1-r) + (1 -r) 2 1 √ a
and the lemma is proved. Corollary 3.6. There exists a discrete probability measure µ on the unit circle and a countable closed set E ⊂ T, such that µ(E) = 0 and E is a set of uniqueness for D(µ). Let I n = (e i(log(n+1)) -1 , e i(log n) -1 ). Note that

n≥2 |I n | log |I n | = -∞.
We reproduce the generalized Cantor set in each I n , denoted by K n . We have

c µ (K n ∩ I n ) ≍ c µ (K)|I n | α .
Consider now E = {1} ∪ n K n , we have c µ (E) = 0 and we get

n |I n | log |I n | c µ (E ∩ I n ) = -∞.
So by Theorem 1.1, E is uniqueness set for D(µ).
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