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HAVIN-MAZYA TYPE UNIQUENESS THEOREM FOR

DIRICHLET SPACES

H. BAHAJJI-EL IDRISSI, O. EL-FALLAH, AND K. KELLAY

Abstract. Let µ be a positive finite Borel measure on the unit circle.
The associated Dirichlet space D(µ) consists of holomorphic functions
on the unit disc whose derivatives are square integrable when weighted
against the Poisson integral of µ. We give a sufficient condition on a
Borel subset E of the unit circle which ensures that E is a uniqueness
set for D(µ). As application, we give an example of positive measure µ

and a countable closed set E such that µ(E) = 0 and E is uniqueness
set for D(µ).

1. Introduction

Let µ be a positive finite Borel measure on the unit circle T, the harmon-
ically weighted Dirichlet space Dh(µ) is the set of all functions f ∈ L2(T)
for which

Dµ(f) =

∫

T

Dξ(f)dµ(ξ) < ∞,

where Dξ(f) is the local Dirichlet integral of f at ξ ∈ T given by

Dξ(f) :=

∫

T

∣∣∣f(ζ)− f(ξ)

ζ − ξ

∣∣∣
2 |dζ|
2π

.

The space Dh(µ) is endowed with the norm

‖f‖2µ := ‖f‖2L2(T) +Dµ(f).

The analytic weighted Dirichlet space D(µ) is defined by

D(µ) = {f ∈ Dh(µ) : f̂(n) = 0, n < 0}.
Let D be the open unit disc in the complex plane. Let H2 denote the Hardy
space of analytic functions on D. As usual, we use the identification H2 =

{f ∈ L2(T) : f̂(n) = 0, n < 0}. Since D(µ) ⊂ H2, every function f ∈ D(µ)
has non-tangential limits almost everywhere on T. We denote by f(ζ) the
non-tangential limit of f at ζ ∈ T if it exists. Note that by Douglas Formula
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the Dirichlet-type space D(µ) is the set of analytic functions f ∈ H2, such
that

Dµ(f) :=

∫

D

|f ′(z)|2Pµ(z)dA(z) < ∞,

where dA(z) = dxdy/π stands for the normalized area measure in D and Pµ

is the Poisson integral of µ

Pµ(z) :=

∫

T

1− |z|2
|ζ − z|2 dµ(ζ), z ∈ D.

For a proof of this fact see [4, Theorem 7.2.5] and for numerous results on
the Dirichlet-type space and operators acting thereon see [4, 12, 13, 14, 15].

The capacity associated with D(µ) is denoted by cµ and is given by

cµ(E) := inf
{
‖f‖2µ : f ∈ Dh(µ), |f | ≥ 1 a.e. on a neighborhood of E

}
.

Since the L2 norm is dominated by the Dirichlet norm ‖.‖µ, it is obvious
that cµ–capacity 0 implies Lebesgue measure 0. We say that a property
holds cµ-quasi-everywhere (cµ-q.e.) if it holds everywhere outside a set of
zero cµ capacity. Note that cµ-q.e implies a.e. Furthermore every function
f ∈ D(µ) has non-tangential limits cµ-q.e. on T [3, Theorem 2.1.9]. For
more details see [6].

Recall that if I ⊂ T be the arc of lenght |I| = 1− ρ with midpoint ζ ∈ T,
then

1

cµ(I)
≍ 1 +

∫ ρ

0

dr

(1− r)Pµ(rζ) + (1− r)2
, (1)

where the implied constants are absolute. For the proof see [5, Theorem 2].
Let E be a subset of T, the set E is said to be a uniqueness set for D(µ) if,
for each f ∈ D(µ) such that its non-tangential limit f = 0 on E, we have
f = 0.
Note that if dµ = dm the normalized arc measure on T, then the space D(µ)
coincides with the classical Dirichlet space D given by

D = {f ∈ H2 :

∫

D

|f ′(z)|2dA(z) < ∞}.

In this case, cm is comparable to the logarithmic capacity and cm(I) ≍
| log |I||−1 for every arc I ⊂ T, [11, Theorem 14].
Khavin and Maz’ya proved in [9] that a Borel subset E of T is a uniqueness
set for D if there exists a family of pairwise disjoint open arcs (In) such that

∑

n

|In| log
|In|

cm(E ∩ In)
= −∞.

For other uniqueness results for D see also [1, 2, 7, 4, 8].
Our aim in this paper is to extend Khavin and Maz’ya uniqueness theorem

to a general Dirichlet spaces D(µ).
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Let γ ∈ (0, 1) and let I = (eia, eib). The arc γI is given by

γI = (ei(a+(1−γ) b−a
2

), ei(b−(1−γ) b−a
2

)).

The main result of this paper is the following theorem.

Theorem 1. Let E be a Borel subset of T of Lebesgue measure zero. suppose
that there exists a family of pairwise disjoint open arcs (In) and γ ∈ (0, 1)
such that ∑

n

|In| log
|In|

cµ(E ∩ γIn)
= −∞;

then E is a uniqueness set for D(µ).

As application, we give in section 3, an exemple of positive measure µ
and a countable closed set E such that µ(E) = 0 and E is uniqueness set
for D(µ).
The key of the proof of the main theorem is an upper bound for 1

I

∫
I |f | in

terms of capacity of E ∩ I , for any open arc |I|.

The next section is devoted to the proof of Theorem 1. In section 3 we
discuss the case of discrete measures.

Throughout the paper, we use the following notations: A . B means
that there is an absolute constant C such that A ≤ CB and A ≍ B if both
A . B and B . A.

2. Proof

First, let us introduce some notations which will be useful in the sequel.
Let J and L be arcs of T and let f be a borelian function defined on T. We
set

DJ,L,µ(f) :=

∫

ζ∈J

∫

ξ∈L

|f(ζ)− f(ξ)|2
|ζ − ξ|2

|dζ|
2π

dµ(ξ),

and

〈f〉J :=
1

|J |

∫

J
|f(ξ)||dξ|.

The following lemma is the key in the proof of theorem 1.

Lemma 2. Let 0 < γ < 1 and let f ∈ D(µ) such that f |E = 0 for some
borelian subset E of T. Then, for any open arc I ⊂ T

〈f〉2γI ≤ κ
DI,T,µ(f) +

∫
I |f |2

Cµ(E ∩ γI)
, .

where κ is a constant depending only on γ.

Proof. Without loss of generality, we can suppose that I = (e−iθ, eiθ) with
2θ < π. In this case γI = (e−iγθ, eiγθ).
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Let φ be a positive function on T, 0 ≤ φ ≤ 1, such that suppφ = 1+γ
2 I,

φ = 1 on γI and

|φ(ζ)− φ(ξ)| ≤ c1
|I| |ζ − ξ|, ζ, ξ ∈ T.

where c1 depends only on γ. Set L = 1+γ
2 I and consider

F (ζ) := φ(ζ)
∣∣∣1− |f(ζ)|

〈f〉L

∣∣∣, ζ ∈ T.

Hence F ≥ 0 and F = 1 cµ-q.e on E ∩ γI. Therefore,

cµ(E ∩ γI) ≤ ‖F‖2µ.

We claim that

‖F‖2µ ≤ κ
DI,T,µ(f) +

∫
L |f |2

〈f〉2L
. (2)

where κ depends only on γ.
Indeed, we have

‖F‖2µ =

∫

T

|F (ζ)|2 |dζ|
2π

+

∫

T

∫

T

|F (ζ)− F (ξ)|2
|ζ − ξ|2

|dζ|
2π

dµ(ξ)

≤ 1

〈f〉2L

∫

L
|〈f〉L − |f(ζ)||2 |dζ|

2π
+

∫

I

∫

I

|F (ζ)− F (ξ)|2
|ζ − ξ|2

|dζ|
2π

dµ(ξ)

+
1

〈f〉2L

∫

ζ∈T\I

∫

ξ∈L

|〈f〉L − |f(ξ)||2
|ζ − ξ|2

|dζ|
2π

dµ(ξ)

+
1

〈f〉2L

∫

ζ∈L

∫

ξ∈T\I

|〈f〉L − |f(ζ)||2
|ζ − ξ|2

|dζ|
2π

dµ(ξ)

=
A

2π〈f〉2L
+

B

2π
+

C

2π〈f〉2L
+

D

2π〈f〉2L
.

(3)

By Cauchy-Schwarz inequality we have

|〈f〉L − |f(ξ)||2 ≤ 1

|L|

∫

L
|f(η)− f(ξ)|2|dη|. (4)

Hence
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A :=

∫

L
|〈f〉L − |f(ζ)||2|dζ|

≤ 1

|L|

∫

L

∫

L
|f(η)− f(ξ)|2|dη||dξ|

≤ 2

|L|

∫

L

∫

L
|f(η)|2|dη||dξ| + 2

|L|

∫

L

∫

L
|f(ξ)|2|dη||dξ|

= 4

∫

L
|f(ζ)|2|dζ|. (5)

Next we estimate B. For (ζ, ξ) ∈ T× T, we have

|F (ζ)−F (ξ)| =
∣∣∣φ(ζ)

(∣∣∣1− |f(ζ)|
〈f〉L

∣∣∣−
∣∣∣1− |f(ξ)|

〈f〉L

∣∣∣
)
+(φ(ζ)−φ(ξ))

∣∣∣1− |f(ξ)|
〈f〉L

∣∣∣
∣∣∣

≤ 1

〈f〉L
|f(ζ)− f(ξ)|+ c1

〈f〉L
|ζ − ξ|
|I| |〈f〉L − |f(ξ)||. (6)

By (6) and (4) we get

B :=

∫

I

∫

I

|F (ζ)− F (ξ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

≤ 2

〈f〉2L

∫

I

∫

I

|f(ζ)− f(ξ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

+
2× c21

〈f〉2L|I|2|L|

∫

I

∫

I

∫

L
|f(η)− f(ξ)|2|dη||dζ|dµ(ξ)

≤ 2

〈f〉2L

∫

I

∫

I

|f(ζ)− f(ξ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

+
2× c21

〈f〉2L|I||L|

∫

I

∫

L
|f(η)− f(ξ)|2|dη|dµ(ξ)

≤ 2

〈f〉2L

∫

I

∫

I

|f(ζ)− f(ξ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

+
c2

〈f〉2L

∫

I

∫

I

|f(η)− f(ξ)|2
|η − ξ|2 |dη|dµ(ξ)

≤ c3
DI,I,µ(f)

〈f〉2L
. (7)

where c2 and c3 depend only on γ.
Using again (4) , we see that
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C :=

∫

ζ∈T\I

∫

ξ∈L

|〈f〉L − |f(ξ)||2
|ζ − ξ|2 |dζ|dµ(ξ)

≤
∫

ζ∈T\I

|dζ|
d(ζ, L)2

∫

ξ∈L
|〈f〉L − |f(ξ)||2dµ(ξ)

≤ c4
|I|

∫

ξ∈L
|〈f〉L − |f(ξ)||2dµ(ξ)

≤ c5
|I|2

∫

I

∫

I
|f(η)− f(ξ)|2|dη|dµ(ξ)

≤ c5

∫

I

∫

I

|f(η)− f(ξ)|2
|η − ξ|2 |dη|dµ(ξ)

= 2πc5DI,I,µ(f), (8)

where c4 and c5 depend only on γ.
Obviously, we have

|ζ − ξ| ≥ 1− γ

4
and |η − ξ| ≤ 4

1− γ
|ζ − ξ| (ξ, ζ, η) ∈ T\I × L× L.

Therefore, by (4) we oblain

D :=

∫

ξ∈T\I

∫

ζ∈L

|〈f〉L − |f(ζ)||2
|ζ − ξ|2 |dζ|dµ(ξ)

≤
∫

ξ∈T\I

∫

ζ∈L

1

|L|

∫

η∈L

|f(η)− f(ξ) + f(ξ)− f(ζ)|2
|ζ − ξ|2 |dζ||dη|dµ(ξ)

≤ 2

∫

ξ∈T\I

∫

η∈L

∫

ζ∈L

|f(η)− f(ξ)|2
|ζ − ξ|2 |dζ||dη|dµ(ξ)

+2

∫

ξ∈T\I

∫

ζ∈L

|f(ξ)− f(ζ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

≤ c6
|I|

∫

ξ∈T\I

∫

η∈L

∫

ζ∈L

|f(η)− f(ξ)|2
|η − ξ|2 |dζ||dη|dµ(ξ)

+2

∫

ξ∈T\I

∫

ζ∈L

|f(ξ)− f(ζ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

= c7

∫

ξ∈T\I

∫

ζ∈L

|f(ξ)− f(ζ)|2
|ζ − ξ|2 |dζ|dµ(ξ)

≤ 2πc7DI,T\I,µ(f), (9)

where c6 and c7 depend only on γ.
Combining (3), (5), (7), (8) and (9) we get (2) and the proof is complete.

�
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Proof of Theorem 1. Let f ∈ D(µ) such that f |E = 0 and set ℓ =
∑

n |In|.
By Lemma 2 and Jensen’s inequality it follows that

∫
⋃

γIn

log |f(ξ)||dξ| =
∑

n

γ|In|
1

γ|In|

∫

γIn

log |f(ξ)||dξ|

≤ γ

2

∑

n

|In| log〈f〉2γIn

≤ γ

2

∑

n

|In| log
(
κ
DIn,T,µ(f) +

∫
In

|f(ζ)|2|dζ|
Cµ(E ∩ γIn)

)

=
γ

2
ℓ log κ+

γ

2
I,

where

I =
∑

n

|In| log
|In|

Cµ(E ∩ γIn)
+

∑

n

|In| log
(DIn,T,µ(f) +

∫
In

|f(ζ)|2|dζ|
|In|

)

Using again Jensen inequality, we get

ℓ
∑

n

|In|
ℓ

log
(DIn,T,µ(f) +

∫
In

|f(ζ)|2|dζ|
|In|

)
≤ ℓ log

[1
ℓ

(∑

n

DIn,T,µ(f) +

∫

In

|f(ζ)|2|dζ|
)]

≤ ℓ log
[1
ℓ

(
Dµ(f) + ‖f‖22

)]

= ℓ log
‖f‖2µ
ℓ

.

Therefore I = −∞. So by Fatou’s Theorem we obtain f = 0 and the proof
is complete.

3. Countable sum of Dirac measures

First observe that for the Dirac measure δζ it is known, (see [4]), that
D(δζ) = C + (z − ζ)H2. Then a Borel set E is a uniqueness set for D(δζ)
if and only if the E has a positive Lebesgue measure. This result can be
extended to some other discrete measures. For a positive Borel measure µ
we will denote by V2(µ) the Newtonian potential given by

V2(µ)(ζ) =

∫ 2π

0

dµ(eit)

|eit − ζ|2 .

D. Guillot showed in [7, Theorem 2.1] that if there exists f ∈ Dµ such that
f = 0 µ a.e on T then

∫

T

log V2(µ)(ζ)|dζ| < ∞.

He also proved that the converse is true for all discrete measures. The
following result is an immediate consequence of [7].
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Proposition 3. Consider a positive sequence (an)n≥1 such that
∑

n≥1

an = 1

and let µ =
∑

n anδζn where ζn ∈ T. If
∫

T

log V2(µ)(ζ)|dζ| < ∞,

then a Borel set E ⊂ T is a uniqueness set for D(µ) if and only if |E| > 0.

Proof. Since D(µ) ⊂ H2, it is obvious that the condition |E| > 0 is sufficient.
Conversely, Let E ⊂ T be a Borel set such that |E| = 0, there exists a
function ϕ ∈ H∞ \ {0} such that ϕ|E = 0. By [6], there exists f ∈ D(µ) ∩
H∞ \ {0} such that f(ζn) = 0, (n ≥ 1). Now it suffices to prove that
ϕf ∈ D(µ). Indeed,

Dµ(ϕf) =

∫

T

∫

T

∣∣∣ϕf(ζ)− ϕf(ζ ′)

ζ − ζ ′

∣∣∣
2
|dζ|dµ(ζ ′)

=

∫

T

∫

T

∣∣∣ϕf(ζ)
ζ − ζ ′

∣∣∣
2
|dζ|dµ(ζ ′)

≤ ‖ϕ‖2∞
∫

T

∫

T

∣∣∣ f(ζ)
ζ − ζ ′

∣∣∣
2
|dζ|dµ(ζ ′)

= ‖ϕ‖2∞
∫

T

∫

T

∣∣∣f(ζ)− f(ζ ′)

ζ − ζ ′

∣∣∣
2
|dζ|dµ(ζ ′)

= ‖ϕ‖2∞Dµ(f).

Which complete the proof. �

Note that for a positive Borel measures µ =
∑

n anδζn where ζn ∈ T such
that ∫

T

log V2(µ)(ζ)|dζ| = ∞, (10)

we have no complete characterization for uniqueness sets for D(µ). In this
case, by [7] the countable set {ζ ∈ T : µ(ζ) 6= 0} is a uniqueness set for D(µ).
The situation is more complicated than the previous case. In fact, Using
theorem 1, we will construct more smaller uniqueness set for D(µ). Before
stating this result, we give an example of discrete measures µ satisfying (10).
A closed set E ⊂ T is said to be a Carleson set if∫

T

log dist(ζ,E)|dζ| > −∞.

This condition is equivalent to |E| = 0 and
∑

n

|ℓn| log |ℓn| > −∞,

where ℓn are the complementary intervals of E, For more informations on
Carleson sets, see e.g. [4, §4.4].
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Proposition 4. Let E be a countable closed set of the unit circle such that
E is non Carleson set. Then there exists a discrete measure µ on the unit
circle such that E = {ζ ∈ T : µ(ζ) 6= 0} and (10) is satisfied.

Proof. Let T\E =
⋃
(an, bn) and let µ =

∑

n≥1

cn(δan+δbn), with cn = bn−an.

We have

∫

T

log V2(µ)(ζ)|dζ| ≥
∑

n≥1

∫ bn

an

log
cn

dist2(eit, {an, bn})
dt

≥
∑

n≥1

∫ bn

an

log
cn

(bn − an)2
dt

=
∑

n≥1

(bn − an) log
1

bn − an
= +∞.

�

Theorem 5. There exists a discrete probability measure µ on the unit circle
and a countable closed set E ⊂ T, such that µ(E) = 0 and E is a set of
uniqueness for D(µ).

To prove this result we need the following lemma.

Lemma 6. Let ζ ∈ T, a ∈ (0, 1/2). Let µ be a probability measure on T

such that µ ≥ ∑
k≥2 ak

−2δ
ζeiak

, then cµ({ζ}) &
√
a.

Proof. Let

ν =
∑

k≥2

a

k2
δ
ζeiak

.

By (1), see also [5, Theorem 2], we have

1

cµ(ζ)
≍ 1 +

∫ 1

0

dr

(1− r)Pµ(rζ) + (1− r)2

. 1 +

∫ 1

0

dr

(1− r)Pν(rζ) + (1− r)2

For a ≤ 1− r, we have

(1− r)Pν(rζ) ≍
∑

k≥2

a(1− r)2

k2((1− r)2 + a2k)

≍
∑

k≥2

a

k2

≍ a.
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For 1 − r < a, let kr be a real number such that 1 − r = akr . Since
x 7−→ x2a2x; x > 1, is a decreasing function, we have

(1− r)Pν(rζ) ≍
∑

k≥2

a(1− r)2

k2((1− r)2 + a2k)

=
∑

k≥kr

a

k2
+

∑

k<kr

a(1− r)2

k2a2k

≍ a

kr

=
a log(1/a)

log(1/1 − r)
.

Then we obtain

1

cµ(ζ)
≤ 1 +

∫ 1−a

0

dr

a+ (1− r)2
+

∫ 1

1−a

dr
a log(1/a)
log(1/1−r) + (1− r)2

≤ 1 +
1√
a

∫ 1
√

a

0

du

1 + u2
+

∫ 1

1−a

log(1/1 − r)dr

a log(1/a)

≍ 1√
a

and the lemma is proved. �

Proof of Theorem 5. Let E be the set define by

E :=
{
ζn = eiθn : n > 3

}
∪ {1} ,

with θn := 1/log(n). Let an = ε(θn − θn+1) for some small ε > 0. Consider
the sequence ζn,k = eiθn,k where

θn,k := θn + akn k > 2.

The measure µ is given by

µ :=
∑

n>3

∑

k>2

an
k2

δζn,k
.

To prove that E is a uniqueness set for D(µ), we use theorem 1. Let In =
(θn − an, θn + an). By lemma 6; we have cµ(ζn) ≥

√
an. Then

∑

n

|In| log
(
cµ(In ∩ E)

|In|

)
=

∑

n

|In| log
(
cµ(ζn)

|In|

)

≥
∑

n

an log

(
1

an

)
= +∞

and the proof is complete.
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