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Stochasticity is an ingredient that may allow the breaking of the frozen-in law in the reconnec-
tion process. It will first be argued that non-ideal effects may be considered as an implicit way
to introduce stochasticity. Yet there also exists an explicit stochasticity that does not require the
invocation of non-ideal effects. This comes from the spatial (or Eulerian) chaos of magnetic field
lines that can show up only in a truly three-dimensional description of magnetic reconnection since
two-dimensional models impose the integrability of the magnetic field lines. Some implications of
this magnetic braiding, such as the increased particle finite-time Lyapunov exponents and increased
acceleration of charged particles, are discussed in the frame of tokamak sawteeth that form a labora-
tory prototype of spontaneous magnetic reconnection. A justification for an increased reconnection
rate with chaotic vs integrable magnetic field lines is proposed. Moreover, in 3D, the Eulerian
chaos of magnetic field lines may coexist with the Eulerian chaos of velocity field lines, that is more
commonly named turbulence.

I. INTRODUCTION

Seventy years ago, the concept of reconnection was
suggested by Giovanelli [1] to explain the particle ac-
celeration in solar flares. Since then, the mechanism of
magnetic reconnection has been a remarkably active and
puzzling subject of research.

Magnetic reconnection can be defined, in a minimal
way, as a sudden rearrangement of magnetic field that
converts magnetic energy to plasma energy. It is indeed
now thought to be at the core of many space physics
phenomena as the trigger that releases the energy from
the magnetic field [2, 3]. For instance, magnetic recon-
nection has been identified to be the underlying mech-
anism behind complex astrophysical phenomena such as
solar flares, magnetospheric substorms [4], or gamma-ray
bursts. Apart from those space manifestations, magnetic
reconnection has also become a major concern in mag-
netic confinement fusion devices. It is at play in a generic
phenomenon of tokamak plasmas known as sawteeth, di-
agnosed for the first time in the early 1970s [5]. In this
regime, quantities like the core plasma density or tem-
perature undergo a slow rise before suddenly crashing on
a periodic basis, so that the resulting time trace of these
quantities resembles the edge of a saw. The crash phases
coincide with a rearrangement of the magnetic field lines
and the expulsion of heat and particles from the plasma
core. The basic picture of the sawtooth magnetic recon-
nection frame is represented on Figure 1. This sawtooth
regime, in which the central tokamak plasma suffers al-
most periodic abrupt heat and particle rearrangements
along with impulsive magnetic field reorganizations, can
be considered as a prototype of finite-B (or general) mag-
netic reconnection, since the toroidal magnetic field may
be viewed as a guide field.

Some fundamental issues remain to be clarified and un-
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FIG. 1. In certain tokamak operational conditions, axisym-
metry breaks and a macroscopic magnetic island is linearly
destabilized resulting in a change of the magnetic field topol-
ogy. This is a well-known laboratory occurrence of spon-
taneous magnetic reconnection. The early (linear) stage is
represented on the figure showing some snapshot of the in-
tersection of magnetic field lines with some tokamak poloidal
cross-section. Some points are highlighted to emphasize the
region of separatrices.

derstood to fully unveil the mechanisms behind magnetic
reconnection [6]. In particular, for magnetic reconnection
to be possible, the electrons have at some point to get free
from magnetic slavery, according to von Steiger’s formu-
lation [6] so that the frozen-in law may be broken. Yet
the reason why and how this may happen is unclear. In
this article, it will be argued that stochasticity may be
considered as one possible ingredient through which this
may be realized in the magnetic reconnection process.
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Two ways of having stochasticity in the magnetic field
will be discussed. First, it will be argued that non-ideal
effects may be considered as a “hidden” way to introduce
stochasticity. However, there is some accumulating ex-
perimental and numerical evidence that this effect may
not by itself prove sufficient to account for the fastness of
magnetic reconnection. Then, the remaining part of this
study will be devoted to the role and importance played
by another source of stochasticity, namely by the spatial
chaos of magnetic field lines. This will be shown to ne-
cessitate a three-dimensional magnetic description. The
far-reaching impact of magnetic field lines being chaotic
will be illustrated by numerical simulations of test bed
models of tokamak sawteeth. It will be shown that par-
ticle acceleration about the crash (reconnection) phase
is more efficient and realistic in the case with spatially
stochastic magnetic field lines.

II. NON-IDEAL EFFECTS AND
STOCHASTICITY

Neglecting the displacement current in the Maxwell-
Ampère equation compared with the electric current due
to moving charges and using Ohm’s law, which is recalled
to be a phenomenological relationship stating the propor-
tionality of the electric current and electric field in the
fluid reference frame, yields the induction equation

∂B/∂t = ∇∧ (u ∧B) + λ∇2B, (1)

where u(x, t) stands for the velocity field and λ for the
magnetic diffusivity of the fluid. It is meaningful to note
that the induction equation (1) bears a formal analogy
with the vorticity equation, obtained by taking the curl
of the Navier-Stokes equation in the case of a barotropic
fluid with uniform density,

∂ω/∂t = ∇∧ (u ∧ ω) + ν∇2ω. (2)

Here ω = ∇ ∧ u denotes the vorticity field and ν the
kinematic viscosity. However, because ω is related to u,
Eq. (2) is nonlinear while Eq. (1) is linear in B.
Equations (1) and (2) are of the form of convection-

diffusion partial differential equations. The diffusion part
is an invitation to connect the solution to the expectation
value of some random walk. Indeed, let us remind that a
Fokker-Planck equation, that is of the type of a diffusion
equation, written (here in 1D for simplicity) as

∂P (x, t)

∂t
= − ∂

∂x
[F (x)P (x, t)] +

1

2
D
∂2P (x, t)

∂x2
(3)

describes the time evolution of the probability density
function of the velocity of a particle under the influence
of drag forces and random forces, as in Brownian motion,
according to the Langevin equation

dx

dt
= F (x) + η(t). (4)

Here the noise η is a Gaussian white noise with corre-
lations ⟨η(t)η(t′)⟩ = Dδ(t − t′) and P is the probability
distribution

P (x, t) ≡ ⟨δ(x− x(t))⟩η (5)

where x(t) is the solution of the Langevin Eq. (4) and
thus depends on the noise η, and ⟨. . .⟩η is an average with
respect to the noise.

Historically in this process, Chorin [8] produced a sem-
inal work by proposing to solve the deterministic vorticity
equation (2) in two space dimensions, that takes the form
of a Fokker-Planck equation, through a stochastic ap-
proach. Recently, a stochastic formulation of the incom-
pressible Navier-Stokes equation was derived in the thesis
by Iyer [9] that rigorously provided an interpretation of
viscous fluids as ideal inviscid fluids plus Brownian mo-
tion. An historical account of the main results obtained
between those two works may be found there. Lately,
similar results have been derived in the incompressible
amplified, magnetohydrodynamic, frame by Eyink [10].
In particular, he showed that viscous and resistive incom-
pressible magnetohydrodynamic (MHD) equations were
equivalent to having some stochastic conservation laws,
and that similar results could be obtained in more refined
non-ideal models, such as the Hall MHD and two-fluid
plasma models with incompressible velocities.

The physical picture that emerges from those results in
the frame of the induction equation (1) is the following.
The magnetic field lines at any given initial time may
be viewed as being frozen to the stochastic fluid flows
and thus become themselves stochastic. The determin-
istic magnetic field at any point at a later time is the
random ensemble average (or expectation value) of the
magnetic field vectors that are advected to that point
by the stochastic flows. It is in this sense that it was
written in the introduction that non-ideal effects, such
as resistive effects that are introduced in a phenomeno-
logical way through the Ohm’s law, may be viewed as an
implicit way to introduce stochasticity. This stochastic
interpretation, related to the diffusion term in Eq. (1),
takes place irrespective of the space dimension chosen
in the modeling. However, the recurrent problem with
this picture is that it predicts timescales for magnetic
reconnection that are usually far longer than the realis-
tic timescales, at least if one restricts non-ideal effects
simply to resistive effects, which is a crude assumption.

Indeed, let us consider the well-known (two-
dimensional) Sweet-Parker model [11, 12] for magnetic
reconnection using the frame of resistive magnetohydro-
dynamics. The Lundquist number, S, that denotes the
order of magnitude of the ratio between the resistive to
the Alfven timescale, is of the order 1014 in the solar
corona. In this case, the timescale for magnetic recon-
nection obtained for the Sweet-Parker model is the geo-
metric mean of the resistive and Alfven timescales, of the
order of 107 seconds, that is of the order of three months,
whereas the typical timescale for solar flares is about less
than one hour.
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Yet, it will now be shown that there exists a generic
intrinsic stochasticity of magnetic field lines in 3D space
that does not require the invocation of non-ideal effects.

III. HAMILTONIAN FORMULATION OF
MAGNETIC FIELD LINES

Everyone who attended physics classes in high school
has in mind a picture of magnetic field lines from the
classical experiment of iron filings aligning on them after
being sprinkled on a sheet of paper held over some mag-
net. It happens that, at each given time, these magnetic
field lines may be viewed as trajectories of an Hamilto-
nian system [13, 15]. This comes from the single universal
property of the magnetic field, namely its divergence-free,
or solenoidal, nature. This property is obviously more
general than the induction equation, that is a MHD equa-
tion and thus relies on a fluid modeling of the plasma,
although diluted hot plasma physics is generically kinetic,
and on the Ohm’s law that is a phenomenological approx-
imation.
Considering an arbitrary parametrization x = x(λ) =

(x1(λ), x2(λ), x3(λ)) of the magnetic field lines, Cary and
Littlejohn [14] showed that the variational principle

δ

∫
dλA(x) · dx

dλ
= 0,

is identical to a dynamical variational principle. Conse-
quently, the equations of magnetic field lines, that are
the resulting Euler-Lagrange equations

(∇×A)× dx

dλ
= B× dx

dλ
= 0,

were established to derive from a Hamiltonian system.
One can then choose the parameter λ as a combination

of the coordinates to eliminate it. For instance, if the
field lines move in the direction of say x3, one may take
λ = x3. The magnetic field lines at each given time may
then be viewed as trajectories of a Hamiltonian system
H of the (non-canonical) variables (x1, x2, x3).
Yet, chaos theory tells us that the minimal number of

degrees of freedom required then for the possible emer-
gence of chaos is three. Therefore, two-dimensional mod-
els, or models in which the effective dimension is reduced
due to some symmetry, can only have integrable mag-
netic field lines, whereas three-dimensional models may
potentially exhibit some spatially chaotic magnetic field
lines.
The fact that magnetic field lines are generically

chaotic in 3D space has important consequences in the
representation of the problem of magnetic reconnection:
a magnetic field line in a bounded 3D domain may wan-
der and never close. Consequently, the classical smooth
pictures of 2D projections of the reconnection of mag-
netic field lines could be wrong and misleading. Generic
2D Poincaré sections of magnetic field lines should gener-
ically display some stochastic component.

Let us finally comment on the role of the geometry. In
toroidal devices for magnetic confinement fusion, mag-
netic field lines are dominantly along the toroidal direc-
tion and the poloidal cross-sections form natural Poincaré
sections. This is obviously no longer valid usually in the
astrophysical context. However, the absence of natural
cross-sections does not affect the validity of the Hamilto-
nian formulation of magnetic field lines coming from the
divergence-free property of the magnetic field. As em-
phasized in [16], the Hamiltonian description of magnetic
field lines is general and can be obtained independent of
the geometry of field lines or the particular coordinate
system used. The Hamiltonian formalism is useful in that
it allows to connect to some of the nicest achievements
of twentieth century’s mathematical physics, accompa-
nying Kolmogorov-Arnold-Moser theory, some of which
emanating from plasma physicists (the Reader is referred
to Ref. [17] for a recent review).

IV. THE EXAMPLE OF SAWTEETH

We shall now turn to the example of sawteeth in toka-
mak plasmas to investigate the impact of the spatial
chaos of magnetic field lines on the reconnection fea-
tures. Some evidence of the existence of spatially chaotic
magnetic field lines in the collapse reconnection phase in
sawteeth has been presented elsewhere through extensive
numerical studies [21]. Indeed, using a realistic frame for
the time evolution of the electromagnetic field in saw-
teeth, our numerical results pointed to the necessity of
having stochastic magnetic field lines to reproduce the
experimental evolution of some heavy test particles dur-
ing the reconnection phase. Our focus will be here on the
impact of this spatial chaos on the dynamical behaviour
and acceleration of charged particles during the sawtooth
crash.

A. Electromagnetic description of the magnetic
reconnection in tokamaks

In the toroidally shaped fusion devices, the double
poloidal and azimuthal periodicity is used to Fourier
decompose the fields on the m poloidal and n toroidal
components. The winding of the equilibrium axisym-
metric magnetic field as a function of the minor radius,
r, is measured by the so-called q-profile, with q(r) ≃
r/R×Btor/Bpol, with R denoting the major radius. Saw-
tooth cycles are initiated in situations where the tokamak
plasmas become linearly unstable to the m = 1, n = 1 in-
ternal mode. This necessitates that the q-profile be less
than one. In the typical course of a sawtooth cycle, the
n = 1 mode appears first, being linearly triggered, with
the dominant poloidal harmonics m = 1. This means
that the associated magnetic island start to grow. Then,
n = 2 and later n = 3 modes are nonlinearly triggered
[18, 19].
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Much of the ignorance and incompleteness of the un-
derstanding of magnetic reconnection comes from the dif-
ficulty to diagnose it with a sufficient resolution either in
space or in laboratory magnetic confinement devices. For
instance, in tokamak plasmas, it is only possible to access
experimentally to the toroidal (n) spectrum of the mag-
netic perturbations without resolving it poloidally. Nu-
merical simulations of reconnection in astrophysical plas-
mas and sawteeth are also notably difficult since these
problems involve a wide range of space and time scales.
Because our objective is to single out the effect of the
spatial chaos of the magnetic field lines, we have used
a different framework. From the electromagnetic point
of view, the sawtooth collapse phase is associated to an
abrupt variation of the magnetic field perturbation for
some tens of Alfvèn times. This collapse phase will be
modeled using two electromagnetic sets: one in which
helical symmetry is assumed and only m = n modes are
retained making the problem two-dimensional and one
in which one allows for some additional m ̸= n modes so
that the problem is truly three-dimensional and stochas-
ticity may show up above some thresholds in the mode
amplitudes. The associated perturbations of the electric
field have been computed using an ideal MHD hypothesis.
This ideal treatment for the electric field is an approxi-
mation to the real electric field that enables to have the
magnetic perturbations as the single set of control param-
eters, so that we can focus on the impact of the magnetic
chaos. Indeed the flow velocity u(r, t) that serves to ex-
press the electric field as E(r, t) = −u(r, t)×B(r, t) may
be related to the time derivative of the mode displace-
ments ξm,n(r, t) that parameter the magnetic field lines.
In this framework, extensive numerical simulations of

the time evolution of collections of test particles during
the sawtooth collapse phase have been performed [20, 21]
solving the equations of motion

m
d2r

dt2
= q

(
dr

dt
− u (r, t)

)
×B (r, t) . (6)

In the present study, the test particles, of mass m and
charge q, were either impurity ions or protons. We chose
to use here nickel ions as impurity ions to reproduce the
conditions of some tokamak experiments [22].

B. The two classes of magnetic models

As previously said, two classes of models for the time
behavior of the magnetic mode amplitudes ξmn

0 (t) around
the sawtooth crash were chosen.
In the first class (C2D), that serves as a reference, only

modes having the same helicity have been retained. The
conservation of helicity ensures that the effective dimen-
sionality of these models is two: magnetic field lines de-
rive from Hamiltonians depending solely a radial variable
and on the helical angle θ − ϕ.
In the second class of models (C3D), this restriction is

lifted and the effective dimensionality is three. Practi-

cally speaking, the (m,n) modes involved are the (1, 1)
and (2, 2) modes in C2D models while they are the (1, 1),
(2, 2), (2, 1), (3, 2) and (4, 3) modes in C3D models, the
last two modes being subdominant compared with (2, 1).
The two classes of models are represented on Figure 2.
Poincaré sections are used to probe the chaos of the mag-
netic field lines at some given time.

FIG. 2. (a) Model for the time behavior of the mode
amplitudes ξmn

0 (t) around the sawtooth crash. The two-
dimensional integrable model (C2D) consists in retaining only
the (1, 1) and (2, 2) modes. The three-dimensional model
(C3D) takes also the (2, 1), (3, 2) and (4, 3) modes. Poincaré
sections of the B lines in the integrable scenario are plotted
in (b1) at the crash onset when t = 100µs, (b2) in the middle
of the crash for t = 125µs. The corresponding plots for the
stochastic C3D model are in (c1) and (c2).

C. From Eulerian magnetic to Lagrangian particle
chaos

The spatial chaos of the magnetic field lines may not
be sufficient to imply that the motion of charged parti-
cles in these fields is chaotic. Therefore it is desirable
to quantify chaos at the level of the charged particles
and answer the question: How do the chaotic properties
of the magnetic field lines transfer to the plasma par-
ticles during the sawtooth crash ? As shown below, a
proper indicator will be provided by the local (maximal)
finite-time Lyapunov exponent (FTLE). Let us note that
this is only a qualitative indicator of chaos in the sense
that the true indicator, namely the maximum Lyapunov
exponent being strictly positive, is only defined asymp-
totically in time. A FTLE of an integrable system may
appear strictly positive due to its evaluation in a finite
time. In the numerical simulations, we used nickel ions
as charged test-particles to compute the FTLE in both
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an integrable (C2D) and a chaotic (C3D) models of mag-
netic field lines for the sawtooth reconnection collapse
phase.
At time t0 = 0, let us consider an arbitrary point r0.

A nickel particle put initially in this point will be located
after the crash time T at a position r(r0,v0, T ) ≡ ΛT

v0
(r0)

obtained from the integration of the equation of motion
(6) and the additional data of the initial velocity v0. For
clarity, let us assume that at time t0 all particles have
the same velocity v0, so that one can use the short-hand
notation ΛT (r0). Let us consider any arbitrarily oriented
infinitesimal displacement δr0. A particle put initially at
the point r0+δr0 will have deviated after a time interval
T from a particle initially put at point r0 by the pertur-
bation vector (up to O(∥δr0∥2) second order terms)

δr(T ) = ΛT (r0 + δr0)− ΛT (r0) =
dΛT (r0)

dr
δr0. (7)

Its norm is then ∥δr(T )∥ = ⟨δr0,M(r0, T )δr0⟩1/2, where

M(r0, T ) ≡
(
dΛT (r0)

dr

)†
dΛT (r0)

dr
(8)

is a symmetric matrix. If λ
M(r0,T )
max denotes its larger

eigenvalue, then the FTLE at point r0 with a finite inte-
gration time T , σT (r0), is defined through

max
δr0 ̸=0

∥δr(T )∥
∥δr0∥

=

√
λ
M(r0,T )
max ≡ eσ

T (r0)T . (9)

The numerical computation of the FTLE field is shown
in Fig. 3. For the parameters chosen, it follows from the

FIG. 3. Numerical FTLE σT field for the nickel motion plot-
ted in a poloidal cross-section using (a) the integrable and
(b) the stochastic models for magnetic field lines, as shown
on Fig. 2, associated to the crash phase. Time zero is chosen
as in Fig. 2(a) and T = 200µs. The scale unit is s−1.

inspection of Figure 3 that two nickel particles initially
separated by say 1mm will be separated after the 200µs
(near-)crash phase by at most a few centimeters with the
non-chaotic model (a) of B lines, versus by distances as
large as 20 meters, that is a toroidal excursion, in the
chaotic case (b). In the case of integrable magnetic field
lines, the FTLE is then globally smaller than in the case
of chaotic magnetic field lines. The local maxima of the

FTLE field in the 2D case with integrable magnetic field
lines come from the region of the magnetic x-point and
separatrices.

Let us explore more closely the connection between
the Eulerian properties of the magnetic field and the
Lagrangian properties of the particle motions. The lin-
earization of the equations of motion (6) about some ref-
erence trajectory r(t) yields

m
d2δr

dt2
= q

dδr

dt
×B (r, t)+q

(
dr

dt
− u(r, t)

)
×δr. ∇|(r,t) B

− qδr. ∇|(r,t) u×B (r, t) . (10)

In the right hand side of Eq. (10), the second term
involves the Jacobian of the magnetic field and the third
term the Jacobian of the velocity field. In 3D, the mag-
netic field lines, as well as the velocity field lines, may
become spatially chaotic. This Eulerian chaos of velocity
field lines is sometimes taken in the fluid mechanics com-
munity as the definition of turbulence [23, 24]. In this
case, space gradients are of the order of the local spa-
tial exponentiation rates of these fields. In 2D, these are
null, yet some space discontinuities (e.g. due to shocks)
associated with large space gradients may promote the
spreading of the charged particles whatever the space di-
mension.

V. IMPACT OF THE CHAOS OF MAGNETIC
FIELD LINES ON RECONNECTION

OBSERVABLES

A. Chaos or stochasticity ?

Let us start by some clarifying point. It is sufficient
for the magnetic field lines to be locally chaotic that a
small subset of magnetic modes be destabilized. As the
amplitudes of these modes grow, the Chirikov resonance-
overlap criterion [25] is eventually reached, signifying the
onset of large scale chaos between the nonlinear reso-
nances [26]. One usually speaks of stochasticity when
there is a large spectrum of excited modes and when the
phase space does no longer possess any remnant of coher-
ent structures. Stochasticity refers to pure noise whereas
the phase space of chaotic systems may be modeled by
a mixture of stochastic and coherent components. It is
however sufficient to have chaotic magnetic and/or ve-
locity field lines to impact the evaluation of macroscopic
observables. In order to motivate this statement, let us,
for instance, consider the rate of energy transfer between
the magnetic field and the plasma.
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B. Justification for an increased reconnection rate
with chaotic B lines vs regular B lines

The rate of energy transfer from the magnetic field to
the plasma at time t is

s(t) =

∫∫∫
j(r, t) ·E(r, t)d3x

=
1

µ0

∫∫∫
u(r, t) · [j(r, t)×B(r, t)] d3x,

using the ideal MHD approximation. Approximating
the plasma equation of motion by the collisionless MHD
equation

ρ
du(r, t)

dt
= j(r, t)×B(r, t)−∇p(r, t), (11)

we have then

s(t) =
1

µ0

∫∫∫
u(r, t) ·

(
ρ
du(r, t)

dt
+∇p(r, t)

)
d3x

=
d

dt

(
1

µ0

∫∫∫
1

2
ρu2d3x

)
+

1

µ0

∫∫∫
u · ∇pd3x.

Our aim is to compare the rate of energy transfer from
the magnetic field to the plasma in the case where the
magnetic field lines are chaotic, so that the Hamiltonian
model governing magnetic field lines possesses some er-
godic component (or chaotic sea), with the case where
magnetic field lines are regular.
In doing this comparison, we consider a stage in the re-

connection process at the border of chaos i.e. just prior
to the onset of nonlinearities. Then the convective term
(u · ∇)u remains negligible and the inertia term may be
neglected [18]. We consider this stage when the displace-
ment ξ keeps growing at a constant rate (with u ≡ ∂ξ/∂t
constant) and the Laplace force is balanced by the pres-
sure gradient in (11). Then we consider two options for
the subsequent evolution of the system. One in which we
allow for the (local) emergence of the chaos of magnetic
field lines in the reconnection zone and one in which we
assume that magnetic field lines remain regular every-
where.
Let us denote by sc(t) the rate of energy transfer in the

first chaotic configuration and by sr(t) its counterpart in
the regular case. Basically, we shall assume that mag-
netic field lines are almost identical in both cases except
within the reconnection zone, denoted by Vrec, in which
magnetic chaos may develop about the separatrices and
we shall neglect the possible discrepancies in the velocity
field u(r, t) between the two cases. We have then

sc(t)−sr(t) =

∫∫∫
Vrec

u(r, t)·{∇p(r, t)|c − ∇p(r, t)|r} d
3x.

(12)
At equilibrium, Eq. (11) yields

B(r, t) · ∇p(r, t) = 0. (13)

The fulfilment of this equality requires that the pressure
gradient vanishes identically in the space region of the
magnetic ergodic component, meaning that the pressure
be constant in this region. (Let us note that this is in-
deed in agreement with the results of some sophisticated
experimental tokamak diagnostics that do indicate that
the pressure (and electron temperature) profiles flatten in
the reconnection zone just before the sawtooth collapses
[27].) In this situation, the difference (12) between the
rates of energy transfer to the plasma in the chaotic ver-
sus the regular magnetic cases becomes

sc(t)− sr(t) ≃ −
∫∫∫
Vrec

u(r, t) · ∇p(r, t)|r d
3x. (14)

In the reconnection region Vrec (see Fig. 1), transverse
gradients are large and plasma gradients must remain fi-
nite to be physical. The velocity u is dominantly rigidly
directed towards the reconnection zone in the opposite
direction of the magnetic island. The plasma pressure
is high in the tokamak core and low about the tokamak
edges, so that the gradient pressure is in the direction
opposite to the velocity u in the domain Vrec. This leads
to the prediction, derived within the sawtooth example,
that the introduction of some local chaos of the mag-
netic field lines, inducing the creation of some ergodic
component, enhance the rate of energy transfer from the
magnetic field to the plasma with

sc(t) > sr(t). (15)

C. Particle acceleration in the collapse
reconnection phase

Some numerical simulations on large collections of test
charged particles have been performed in order to mea-
sure the variation of particle energies in various electro-
magnetic models during the sawtooth collapse phase. As
already said, the timescale for the sawtooth collapse in
tokamaks is of the order of one hundred microseconds.

In order to measure the impact of the chaos of magnetic
field lines, all other things being equal, we used as, in
the previous Section, two different sets of magnetic field
lines with the same amount of non-axisymmetric mag-
netic pertubation δB/B in both cases. More precisely,
in a first class of models (C2D), the integrability of mag-
netic field lines is ensured by using an electromagnetic
field perturbation with only m = n modes, typically con-
sisting of the (1, 1) mode and possibly also of the (2, 2)
mode. In the second class of models (C3D), the electro-
magnetic model for the non-axisymmetric perturbation
includes (m,n) modes with m ̸= n, so that magnetic field
lines become globally chaotic above some threshold in
the magnetic field perturbation δB/B. In the case when
the m = n = 1 and m = 2, n = 1 modes are retained,
this occurs when the magnetic islands associated to the
(1, 1) mode and to the (2, 1) mode overlap. Before this
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threshold in the (C3D) cases, there exist already some
phase space zones, bounded by KAM tori, with ergodic
components in the region of the separatrices and mostly
about the x-points. This means that, within a three-
dimensional modeling, the chaos of magnetic field lines
linked to the excitation of plasmoids first emanates in the
reconnection zone. Typically the area of the chaotic sea
or ergodic component is a growing function of δB/B in
this case.
Figure 4 represents the time evolution of the modes

composing the magnetic perturbation associated to the
tokamak sawtooth crash with a) integrable magnetic field
lines and b) with some chaos of magnetic field lines in the
reconnection region (q = 1 surface). In those two electro-
magnetic models for the sawtooth collapse, the dynamics
of ten millions test protons have been integrated being
initially uniformly distributed in the reconnection zone
(about q = 1). At initial time, i.e. just before the saw-
tooth collapse, all the protons were taken to have the
same energy E0 = 4keV and their initial velocities were
isotropically distributed.
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FIG. 4. Time evolution of the magnetic mode amplitudes
during the sawtooth reconnection collapse with a magnetic
perturbation composed of a) (1, 1) and (2, 2) modes, b) (1, 1)
and (2, 1) modes. In both cases, the magnitude of the mag-
netic field perturbation δB/B is identical.

The energy distribution of protons at the end of the
sawtooth collapse is represented on Figure 5. Despite
the smallness of the duration of the collapse phase, this
Figure shows a significant difference in the energy dis-
tribution of protons at the end of the collapse between
the magnetic integrable and the chaotic cases. In the
chaotic b) case, the variance of the energy distribution
is measured to be about three times larger than in the
integrable a) case. This means that protons have been
more heated during the collapse phase in the case with
chaotic magnetic field lines.
If the magnetic mode amplitudes are reduced, being

for instance reduce to the fourth of the case just con-
sidered in Figure 4, this differential heating is strongly
attenuated as seen on Figure 6. Figure 7 shows the in-
termediary case in which the mode amplitudes of Figure
4 are rescaled by one half. On all cases, the variance
of the energy distribution is always larger in the case b)
with a magnetic perturbation composed of the (1, 1) and
(2, 1) modes compared with the integrable case a) with
the (1, 1) and (2, 2) modes, although the ratio of the per-
turbation δB/B is the same in both cases. In the case of
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FIG. 5. At the onset of the collapse (t = 0 in Fig. 4) an
ensemble of protons are uniformly distributed in the recon-
nection region (about the q = 1 surface) all having the same
energy E0. Displayed on the Figure is their energy distribu-
tion at the end of the sawtooth collapse for the cases a) and
b) of Fig. 4. The scale is logarithmic along the y-axis. Ten
millions of protons have been used.
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FIG. 6. Same as in Figure 5 for one fourth of the magnetic
mode amplitudes of Figure 4 with a collection of ten millions
of protons.

Figure 6, there is no large scale chaos i.e. no resonance
overlap between the (1, 1) and (2, 1) modes and the ratio
of the energy variance between case b) and case a) is 1.5.
This ratio goes to 2.2 in Figure 7 and to 2.8 in Figure
5 suggesting a differential impact of the chaos of mag-
netic field lines on particle heating during the collapse
reconnection phase.

VI. CONCLUSION

The present study has been devoted to the rela-
tionships between magnetic reconnection and stochastic
properties. In a first part, it has been recalled that the
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FIG. 7. Same as in Figure 5 for one half of the magnetic
mode amplitudes of Figure 4 with a collection of ten millions
of protons.

dissipative term associated with plasma resistivity in the
evolution (induction) equation of the magnetic field could
be equivalently interpreted as a stochastic (noise) term in
a corresponding Langevin equation approach for the evo-
lution of magnetic field lines. However, in most physical
situations, the timescales given by a simple resistive in-
terpretation of magnetic reconnection are far larger than
the measured ones so that there is a general agreement
that one needs to search for additional ingredients to ex-
plain the fastness of magnetic reconnection.
Leaving apart potential non-ideal effects other than

resistivity, we have introduced in the second part of
this study another source of stochasticity, coming from
the spatial (or Eulerian) chaos of magnetic field lines.
This may only show up in a three-dimensional descrip-
tion of magnetic reconnection, since any two-dimensional
description will force the integrability of magnetic field
lines. In the situation of spontaneous magnetic reconnec-
tion, in which reconnection initiates from an instability
and the formation of plasmoid(s), the reconnection region

contains magnetic x-points and is prone to the develop-
ment of chaos. The impact of this introduction of chaotic
magnetic field lines in the reconnection zone has been in-
vestigated. A general theoretical estimate of differences
of the rate of energy transfer from the magnetic field to
the plasma between the cases of integrable and chaotic
magnetic field lines has been presented. This indicates
that the rate of energy transfer is larger when magnetic
field lines become chaotic in the reconnection zone com-
pared with the integrable case.

Simulations also reveal that chaotic magnetic field lines
can efficiently mix charged particles so that there must be
an intimate connection in plasmas undergoing magnetic
reconnection between turbulence at the fluid level (i.e.
velocity field being non laminar) and turbulence in the
magnetic field (magnetic field lines being chaotic at each
given time).

Finally, tokamak sawteeth form a unique frame in
which a conclusive answer to the longstanding problem
of the fastness of (spontaneous) magnetic reconnection
could someday be reached. Even if the reconnection zone
is tiny which makes in-situ measurements almost impos-
sible, contrarily to space situations, the space compact-
ness of the process naturally solves the difficult prob-
lem of the boundary conditions in the astrophysical sit-
uations. A dialog between magnetic reconnection com-
munities in astrophysical and laboratory plasmas should
certainly push forward the field. The implication of the
results presented here to the recent outcomes of some 3D
magnetic reconnection dedicated experiment [28] should
also be explored.
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