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Sparse Accelerated Exponential Weights

We consider the stochastic optimization problem where a convex function is minimized observing recursively the gradients. We introduce SAEW, a new procedure that accelerates exponential weights procedures with the slow rate 1/ √ T to procedures achieving the fast rate 1/T . Under the strong convexity of the risk, we achieve the optimal rate of convergence for approximating sparse parameters in R d . The acceleration is achieved by using successive averaging steps in an online fashion. The procedure also produces sparse estimators thanks to additional hard threshold steps.

Introduction

Stochastic optimization procedures have encountered more and more success in the past few years. This common framework includes machine learning methods minimizing the empirical risk. [START_REF] Lecun | Large scale online learning[END_REF] emphasized the utility of Stochastic Gradient Descent (SGD) procedures compared with batch procedures; the lack of accuracy in the optimization is balanced by the robustness of the procedure to any random environment. [START_REF] Zinkevich | Online convex programming and generalized infinitesimal gradient ascent[END_REF] formalized this robustness property by proving a d/ √ T rate of convergence in any possible convex environment for a d-dimensional parametric bounded space. This rate is optimal with no additional condition. However, under strong convexity of the risk, accelerated SGD procedures achieve the fast rate d/T , that is also optimal [START_REF] Agarwal | Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[END_REF]. One of the most popular acceleration procedure is obtained by a simple averaging step, see [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] and [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n)[END_REF]. Other robust and adaptive procedures using exponential weights have been studied in the setting of individual sequences by [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]. The link with the stochastic optimization problem has been done in [START_REF] Kivinen | Exponentiated gradient versus gradient descent for linear predictors[END_REF], providing in the 1 -ball algorithms with an optimal logarithmic dependence on the dimension d but a slow rate 1/ √ T . The fast rate log(T ) on the regret has been achieved in some strongly convex cases as in Theorem 3.3 of Cesa-Bianchi and Lugosi [2006]. Thus, the expectation of the risk of their averaging, studied under the name of progressive mixture rule by [START_REF] Catoni | Statistical learning theory and stochastic optimization[END_REF], also achieves the fast rate log(T )/T . However, progressive mixture rules do not achieve the fast rate with high probability, see [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF] and their complexity is prohibitive (of order d T ). The aim of this paper is to propose an efficient acceleration of exponential weights procedures that achieves the fast rate 1/T with high probability.

In parallel, optimal rates of convergence for the risk were provided by [START_REF] Bunea | Aggregation for gaussian regression[END_REF] in the sparse setting. When the optimal parameter θ * is of dimension d 0 = θ * 0 smaller than the dimension of the parametric space d, the optimal rate of convergence is d 0 log(d)/T . Such fast rates can be achieved for polynomial time algorithm only up to the multiplicative factor α -1 where α is the strong convexity constant of the risk, see [START_REF] Zhang | Lower bounds on the performance of polynomial-time algorithms for sparse linear regression[END_REF]. For instance, the Lasso procedure achieves this optimal rate for least square linear regression, see Assumption (A3) (implying strong convexity of the risk) of [START_REF] Bunea | Aggregation for gaussian regression[END_REF]. Other more robust optimal batch procedures such as 0 penalization or exploration of the parametric space suffer serious complexity drawbacks and are known to be NP-hard. Most of the stochastic algorithms do not match this rate, with the exception of SeqSEW (in expectation only), see [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF]. As the strong convexity constant α does not appear in the bounds of [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF], one suspects that the algorithm is NP-hard.

The aim of this paper is to provide the first acceleration of exponential weights procedures achieving the optimal rate of convergence d 0 log(d)/(αT ) in the identically and independently distributed (i.i.d.) online optimization setting with sparse solution θ * . The acceleration is obtained by localizing the exponential weights around their averages in an online fashion. The idea is that the averaging alone suffers too much from the exploration of the entire parameter space. The sparsity is achieved by an additional hard-truncation step, producing sparse approximations of the optimal parameter θ * . The acceleration procedure is not computationally hard as its complexity is O(dT ). We obtain theoretical optimal bounds on the risk similar to the Lasso for random design, see [START_REF] Bunea | Aggregation for gaussian regression[END_REF].

We also obtain optimal bounds on the cumulative risk of the exploration of the parameter space.

The paper is organized as follows. After some preliminaries in Section 2, we present our acceleration procedure and we prove that it achieves the optimal rate of convergence in Section 3. We refine the constants for least square linear regression in Section 4. Finally, we give some simulations in Section 5.

Preliminaries

We consider a sequence t : R d → R, t 1 of i.i.d. random loss functions. We define the instantaneous risk as E[ t ] : θ → E[ t (θ)] † . We assume that the risk is (2α)-strongly convex, i.e., for all

θ 1 , θ 2 ∈ R d E t (θ 1 ) -t (θ 2 ) E ∇ t (θ 1 ) (θ 1 -θ 2 ) -α θ 1 -θ 2 2 2 . (SC)
The (unique) risk minimizer in R d is denoted θ * and its effective dimension is θ * 0 d 0 . We insist on the fact that the strong convexity is only required on the risk and not on the loss function. This condition is satisfied for many non strongly convex loss functions such as the quantile loss (see Section 5) and necessary to obtain fast rates of convergence (see [START_REF] Agarwal | Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[END_REF]). † Because the losses are i.i.d, the risk does not depend on t 1. However, we still use the time index in the notation to emphasize that a quantity indexed by s 1 cannot depend on t for any t > s. The notation E[ t]( θ t-1 ) denotes E t( θ t-1 ) 1 , . . . , t-1 .

Online optimization setting For each t 1, we provide two parameters ( θ t-1 , θt-1 ) ∈ R d × R d having observed the past gradients of the first parameter ∇ s ( θ s-1 ) ∈ R d for s t -1 only.

Our aim is to provide high-probability upper-bounds on the cumulative excess risk (also called cumulative risk for simplicity) of the sequence ( θ t-1 ) and on the instantaneous excess risk of θt-1 :

• Cumulative risk: the online exploration vs. exploitation problem aims at minimizing the cumulative risk of the sequence ( θ t-1 ) defined as

Risk 1:T ( θ 0:(T -1) ) := T t=1 Risk( θ t-1 ) , (1) 
where

Risk(θ) := E[ t ](θ)-E[ t ](θ *
) is the instantaneous excess risk. This goal is useful in a predictive scenario when the observation of ∇ t ( θ t-1 ) comes at the cost of Risk( θ t-1 ).

• Instantaneous excess risk : simultaneously, at any time t 1, we provide an estimator θt-1 of θ * that minimizes the instantaneous risk. This problem has been widely studied in statistics and the known solutions are mostly batch algorithms. Under the strong convexity of the risk, a small instantaneous risk ensures in particular that θt-1 is close in 2 -norm to the true parameter θ * (by Lemma 5, Appendix A.1).

To make a parallel with the multi-armed bandit setting, minimizing the cumulative risk is related to minimizing the cumulative regret. In contrast, the second goal is related to simple regret (see [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF]): the cost of exploration only comes in terms of resources (time steps T ) rather than of costs depending on the exploration.

By convexity of the risk, the averaging θT -1 := (1/T ) T t=1 θ t-1 has an instantaneous risk upperbounded by the cumulative risk

Risk( θT -1 ) Risk 1:T ( θ 0:(T -1) )/T . (2) 
Therefore, upper bounds on the cumulative risk lead to upper bounds on the instantaneous risk for θT -1 = θT -1 . However, we will provide another solution to build θT -1 with better guarantees than the one obtained by (2). On the contrary, since each θt-1 minimizes the instantaneous risk at time t, it is tempting to use them in the exploration vs. exploitation problem. However, it is impossible in our setting as the parameters ( θt ) are constructed upon the observation of the gradients ∇ s ( θ s-1 ), s < t. Remark that our bounds on the cumulative risk are optimal as of the same order than T t=1 Risk( θt-1 ). Our main contribution (see Theorems 1 and 2) is to introduce a new acceleration procedure that simultaneously ensures (up to loglog terms) both optimal risk for θt-1 and optimal cumulative risk for ( θ t-1 ). Up to our knowledge, this is the first polynomial time online procedure that recovers the minimax rate obtained in a sparse strongly convex setting. Its instantaneous risk achieves the optimal rate of convergence

min B 2 d 0 log(d) αT , U B log(d) T , (3) 
where B sup θ: θ 1 2U ∇ t (θ) ∞ is an almost sure bound on the gradients,

θ * 1 U and θ * 0 d 0 . (4) 
For least square linear regression (see Theorem 3), B 2 is replaced in (3) with a term of order σ

2 := E[ t (θ * )].
In the batch setting, the Lasso achieves a similar rate under the slightly stronger Assumption (A3) of [START_REF] Bunea | Aggregation for gaussian regression[END_REF].

Acceleration procedure for known parameters

We propose SAEW (described in Algorithm 2) that depends on the parameters (d 0 , α, U, B) and performs an optimal online optimization in the 1 ball of radius U . SAEW accelerates a convex optimization subroutine (see Algorithm 1). If the latter achieves a slow rate of convergence on its cumulative regret, SAEW achieves a fast rate of convergence on its cumulative and instantaneous risks. We describe first what is expected from the subroutine.

Convex optimization in the 1 -ball with a slow rate of convergence

Assume that a generic subroutine (Algorithm 1), denoted by S, performs online convex optimization into the 1 -ball B 1 θ center , ε := θ ∈ R d : θ -θ center 1 ε of center θ center ∈ R d and radius ε > 0. Centers and radii will be settled online thanks to SAEW. We assume that the subroutine S applied on any sequence of convex sub-differentiable losses ( t ) t tstart Algorithm 1: Subroutine S: convex optimization in 1 -ball Parameters: B > 0, t start > 0, θ center ∈ R d and ε > 0.

For each t = t start , t start + 1, . . . ,

• predict θ t-1 ∈ B 1 (θ center , ε) (thanks to some online gradient procedure)

• suffer loss t θ t-1 ∈ R and observe the gradient

∇ t θ t-1 ∈ R d
satisfies the following upper-bound on its cumulative regret: for all t end t start and for all θ ∈ B 1 θ center , ε

t end t=tstart t ( θ t-1 )-t (θ) aε t end tstart ∇ t ( θ t-1 ) 2 ∞ +bεB ,
(5) for some non-negative constants a, b that may depend on the dimension d.

Several online optimization algorithms do satisfy the regret bound (5) while being totally tuned, see for instance Gerchinovitz [2011, Corollary 2.1] or [START_REF] Cesa-Bianchi | Improved second-order bounds for prediction with expert advice[END_REF], [START_REF] Gaillard | A second-order bound with excess losses[END_REF], [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. The regret bound is satisfied for instance with ‡ a √ log d and b log d by a well online-calibrated Exponentiated Gradient (EG) forecaster combining the corners of B 1 θ center , ε . This logarithmic dependence on the dimension is crucial here and possible because the optimization is performed in the 1 -ball. SGD optimizing in the 2 -ball, such as RDA of [START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF], suffer a linear dependence on d. Therefore, they cannot be used as subroutines.

The regret bound yields the slow rate of convergence O (log d)(t end -t start ) (with respect to the length of the session) on the cumulative risk. Our acceleration procedure provides a generic method to also achieve a fast rate under sparsity.

The acceleration procedure

Our acceleration procedure (SAEW, described in Algorithm 2) performs the subroutine S on sessions of adaptive length optimizing in exponentially decreasing 1 -balls. The sessions are indexed by i 0 and denoted S i . The algorithm defines in an online fashion ‡ As in the rest of the paper, the sign denotes an inequality which is fulfilled up to multiplicative constants.

Algorithm 2: SAEW Parameters: d 0 1, α > 0, U > 0, B > 0, δ > 0 and a subroutine S that satisfies (5)

Initialization: t 0 = t = 1, ε 0 = U and θ0 = 0
For each i = 0, 1, . . .

• define [ θti-1 ] d0 by rounding to zero the d -d 0 smallest coefficients of θti-1

• start a new instance S i of the subroutine S with parameters t start = t i , θ center = [ θti-1 ] d0 , ε = U 2 -i/2
and B,

• for t = t i , t i + 1, . . . and while ε t-1 > U 2 -(i+1)/2
forecast θ t-1 by using the subroutine S i observe ∇ t ( θ t-1 )

update the bound

Err t := a i t s=ti ∇ s ( θ s-1 ) 2 ∞ + b i B
with a i and b i resp. defined in ( 10) and ( 11).

update the confidence radius

ε t := 2 2d 0 U 2 -i/2 α(t -t i + 1) Err t
update the averaged estimator θt := (t -t i + 1) -1 t s=ti θ s-1

update the estimator θt := θarg min 0 s t εs

• stop the instance S i and define t i+1 := t + 1 a sequence of starting times 1 = t 0 < t 1 < . . . such that the instance S i is used to perform predictions between times t start = t i and t end = t i+1 -1. The idea is that our accuracy in the estimation of θ * increases over time so that S i can be a localized optimization subroutine in a small ball B 1 [ θti-1 ] d0 , U 2 -i/2 around the current sparse estimator [ θti-1 ] d0 of θ * at time t i , see Algorithm 2 for the definition of [ θti-1 ] d0 .

The cumulative risk suffered during each session will remain constant: the increasing rate

ti+1-1 ti ∇ t ( θ t-1 ) 2 ∞ 1/2 B √
t i+1 -t i due to the length of the session (see Equation ( 5)) will be shown to be of order 2 i/2 . But it will be offset by the decreasing radius ε = U 2 -i/2 . By using a linear-time subroutine S, the global time and storage complexities of SAEW are also O(dT ).

Our main theorem is stated below. It controls the excess risk of the instantaneous estimators of SAEW. The proof is deferred to Appendix A.2.

Theorem 1. Under Assumption (SC), SAEW satisfies with probability at least 1 -δ, 0 < δ < 1, for all T 1 Risk θT min U B a 2 T + 4b T + αU 2 8d 0 T , d 0 B 2 α 2 7 a 2 T + 2 11 b 2 T 2 + 2αU 2 d 0 T 2 , where a = a + 6 log(1 + 3 log T ) -2 log δ and b = b + 1/2 + 3 log(1 + 3 log t) -log δ.
Remark 3.1. Using EG as the subroutines, the main term of the excess risk becomes of order

Risk θT = O T d 0 B 2 αT log d log T δ . ( 6 
)
Remark 3.2. From the strong convexity assumption, Theorem 1 also ensures that, with probability 1 -δ, the estimator θT is close enough to θ * :

θT -θ * 2 √ d 0 B α √ T a 2 log 2 T + b 2 T + αU 2 d 0 T .
Theorem 2. Under the assumptions and the notation of Theorem 1, the cumulative risk of SAEW is upperbounded with probability at least 1 -δ as

Risk 1:T ( θ 0:(T -1) ) min 4U B(a √ T + b + 1), 2 5 d 0 B 2 α a 2 log 2 T + 4U B(1 + b ) + αU 2 8d 0 .
Remark 3.3. Using EG as the subroutines, we get a cumulative risk of order

Risk 1:T ( θ 0:(T -1) ) = O T d 0 B 2 αT log d log T δ log T .
The averaged cumulative risk bound has an additional factor log T in comparison to the excess risk of θT . This logarithmic factor is unavoidable. Indeed, at time t, the rate stated in Equation ( 6) is optimal for any estimator. An optimal rate for the cumulative risk can thus be obtained by summing this rate of order O(1/t) over t introducing the log factor. Remark 3.4. Adapting Corollary 13 of [START_REF] Gerchinovitz | Sparsity regret bounds for individual sequences in online linear regression[END_REF], the boundedness of ∇ t can be weakened to unknown B under the subgaussian condition. The price of this adaptation is a multiplicative factor of order log(dT ) in the final bounds. Remark 3.5. Using the strong convexity property, the averaging of SAEW has much faster rate (log T /T on the excess risk) than the averaging of the EG procedure itself (only slow rate 1/ √ T with high probability, see [START_REF] Audibert | Progressive mixture rules are deviation suboptimal[END_REF]). But the last averaging θT achieves the best rate overall. Also note the difference of the impact of the 1 -ball radius U on the rates: for the overall average θT it is U 2 /T whereas it is U 2 /T 2 for the last averaging θT . On the contrary to the overall averaging, the last averaging forgets the cost of the exploration of the initial 1 -ball.

Square linear regression

Consider the common least square linear regression setting. Let (X t , Y t ), t 1 be i.i.d. random pairs taking values in R d × R. For simplicity, we assume that X t ∞ X and |Y t | Y almost surely for some constants X, Y > 0. We aim at estimating linearly the conditional mean of Y t given X t , by approaching θ * = arg min θ∈R d E (Y t -X t θ) 2 . Notice that the strong convexity of the risk is equivalent to the positivity of the covariance matrix of X t as α λ min E X t X t ] , where λ min is the smallest eigenvalue.

Applying the previous general setting to the square loss function t : θ → (Y t -X t θ) 2 , we get the following Theorem 3. It improves upon Theorem 1 the factor B 2 in the main term into a factor X 2 σ 2 , where

σ 2 := E (Y t -X t θ * ) 2
is the expected loss of the best linear predictor. This is achieved without the additional knowledge of σ 2 . The proof of the theorem is highly inspired from the one of Theorem 1 and is deferred to Appendix A.6.

Theorem 3. SAEW tuned with B = 2X Y + 2XU satisfies with probability at least 1 -δ the bound

Risk( θT ) min U X σa √ T + (Y + XU )c T + αU 2 d 0 T , X 2 d 0 α σ 2 a 2 T + (Y + XU ) 2 c 2 T 2 + αU 2 d 0 T 2 ,
for all T 1, where a a + log(1/δ) + log log T and b b + log(1/δ) + log log T .

Remark 4.1. Using a well-calibrated EG for the subroutines, the main term of the excess risk is of order

Risk θT = O T d 0 X 2 σ 2 αT log d log T δ .
Remark 4.2. Similarly to Remark 3.4, if (X t , Y t ) are subgaussian only (and not necessary bounded), classical arguments show that Theorem 3 still holds with X of order O(log(dT )) and Y = O(log T ).

Remark 4.3. The improvement from Theorem 1 to Theorem 3 (i.e., replacing B with X 2 σ 2 in the main term) is less significant if we apply it to the cumulative risk (Theorem 2). This would improve B 2 log T to B 2 + X 2 σ 2 log T and thus lead to a bound on the cumulative risk of order O(d 0 σ 2 log(T )/α).

Calibration of the parameters

To achieve the bound of Theorem 3, SAEW is given the parameters d 0 , α, U , and B beforehand. We provide here how to tune these parameters in order to sequentially get an estimator achieving high rate on its excess risk. To do so, we use a combination of well-known calibration techniques: doubling trick, meta-algorithm, and clipping. We only prove the calibration in the setting of linear regression with square loss (i.e., for Theorem 3 only and not for the general Theorem 1). It remains an open question whether the calibration of the parameters can be performed in the general setting of Section 3. We leave this question for future research. Furthermore, for the sake of clarity the adaption to Y (which is only necessary for clipping) is not considered here. However, it can be achieved simultaneously by updating the clipping range based on the past observations Y s , s t -1 (see [Gerchinovitz, 2013, Section 4.5]).

The calibration algorithm (Algorithm 3) works as follows. We define large enough grids of parameters for each doubling session j 0

G j = (d 0 ,α, U, B) ∈ [1, . . . , d] × R 3 + such that d 0 ∈ {0} ∪ 2 k , k = 0, . . . , log 2 d α ∈ 2 k , k = -2j + log 2 (Bd 0 /Y 2 ) , . . . , j + log 2 d 0 U ∈ 2 k , k = -2j, . . . , 2j + 2 log 2 Y Algorithm 3: Calibration algorithm Parameters: Y > 0, δ > 0 Initialization: t 0 = t = 1 and θ(0) = 0
For each j = 0, 1, . . .

• Define the grid G j as in (7)

• For parameters p = (d 0 , α, U, B) ∈ G j : -Define δ j = δ/(2(j + 1) 2 ) -Run SAEW with parameter (d 0 , α, U, B, δ j )
for t = 0, . . . , 2 j -1 and get the estimator θ2 j -1 , denoted by θp,j .

-Define the clipped predictor

f p,j : x → [x θp,j ] Y where [ • ] Y := max -Y, min{ • , Y } . • For t = 2 j , . . . , 2 j+1 -1, -predict f t-1 (X t ) by performing BOA with experts (f p,j ) p∈Gj -output the estimator ft-1 = fj • Define the average estimator fj+1 = 2 -j 2 j+1 -1 t=2 j f t-1 . B ∈ 2 k , k = -2j, . . . , 2j + 2 log 2 Y } . (7) 
For each set of parameters p = (d 0 , α, U, B) ∈ G j , we perform a local version of SAEW to obtain an estimator θp,j at time t = 2 j -1. Then, the calibration algorithm uses the online aggregation procedure BOA of [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF] to make predictions from t = 2 j to 2 j+1 -1. Its predictions are based on online combinations of the (clipped) forecasts made by the θp,j .

Theorem 4. Let Y > max t=1,...,T |Y t | almost surely.
With probability 1 -δ, the excess risk of the estimator fT produced by Algorithm 3 is of order

O T Y 2 T log (log d)(log T + log Y ) δ + d 0 X 2 σ 2 α * T log d log T δ ,
where d 0 = θ * 0 and α * > 0 is the largest value of α satisfying Inequality (SC).

The proof is postponed to Appendix A.7.

Remark 4.4. Similarly to the restricting eigenvalue condition of the Lasso, we believe that the strong convexity condition for α * might be necessary on subspaces of dimension lower than d 0 only. However, to do so, SAEW should be used with a subroutine that produces sparse θ t-1 . Up to our knowledge, such procedures do not exist for convex optimization in the 1 -ball. As stated previously, sparse procedures such as RDA of [START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF] cannot be used as subroutines since they perform optimization in the 2 -ball and suffer a linear dependence on d. We leave this question for future work.

Remark 4.5. For the sake of clarity, the above result is only stated asymptotically. However the bound also holds in finite time up to universal multiplicative constant (as done in the proof). Additional negligible terms of order O(1/T 2 ) then appear in the bound. Furthermore, the finite time bound also achieves the best of the two regimes (slow rate vs fast rate) as in Theorem 3.

Remark 4.6. Theorem 4 has been proven only for square linear regression. However, it also holds for any strongly-convex loss function, with locally bounded gradients (i.e., with LIST condition, see [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]).

Remark 4.7. To perform the calibration, we left the original framework of Section 2. First, because of the clipping, the estimators ft-1 produced by Algorithm 3 are not linear any-more. Second, the meta-algorithm implies that we can observe the gradients of all subroutines SAEW simultaneously. Tuning the parameters in the original setting is left for future work.

Simulations

In this section, we provide computational experiments on simulated data. We compare three online aggregation procedures:

• RDA: a 1 -regularized dual averaging method as proposed by Algorithm 2 of [START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF]. The method was shown to produce sparse estimators.

It obtained good performance on the MNIST data set of handwritten digits [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]]. We optimize the parameters γ, ρ, and λ in hindsight on the grid E := {10 -5 , . . . , 10 3 }.

• BOA: the Bernstein Online Aggregation of [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. It proposes an adaptive calibration of its learning parameters and achieves the fast rate for the model selection problem (see [START_REF] Nemirovski | Topics in non-parametric[END_REF]). BOA is initially designed to perform aggregation in the simplex, for the setting of prediction with expert advice (see [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]). We use it together with the trick of [START_REF] Kivinen | Exponentiated gradient versus gradient descent for linear predictors[END_REF] to extend it to optimization in the 1 -ball B 1 (0, θ * 1 ).

• SAEW: the acceleration procedure as detailed in Algorithm 2. We use BOA for the subroutines since it satisfies a regret bound of the form (5).

For the parameters, we use δ = 0.95, U = θ * 1 and d 0 = θ * 0 . We calibrate α and B on the grid E in hindsight. Our objective here is only to show the potential of the acceleration of BOA for a well-chosen set of parameters in the general setting of Section 3.

Application to square linear regression

We consider the square linear regression setting of Section 4. We simulate X t ∼ N (0, 1) for d = 500 and

Y t = X t θ * + ε t with ε t ∼ N (0, 0.01) i.i.d. ,
where d 0 = θ * 0 = 5, θ * 1 = 1 with non-zero coordinates independently sampled proportional to N (0, 1). Figure 1a illustrates the results obtained by the different procedures after the observation of T = 2 000 data points. It plots the box-plot of the 2 estimation errors of θ * , which is also approximatively the instantaneous risk, over 30 experiments. In contrast to BOA and SAEW, RDA does not have the knowledge of θ * 1 in advance. This might explain the better performance obtained by BOA and SAEW. Another likely explanation comes from the theoretical guarantees of RDA, which is only linear in d (due to the sum of the squared gradients) though the 1 -penalization.

RDA

In a batch context, the Lasso (together with crossvalidation) may provide a better estimator for high dimensions d (its averaged error would be log θT ≈ -8.8 in Figure 1a). This is mostly due to two facts. First, because of the online setting, our online procedures are here allowed to pass only once through the data. If we allowed multiple passes, their performance would be much improved. Second, although BOA satisfies theoretical guarantees in √ log d, its performance is deeply deteriorated when d becomes too large and does not converge before T being very large. We believe our acceleration procedure should thus be used with sparse online sub-procedures instead of BOA, but we leave this for future research. Figure 2 shows the decrease of the 2 -error over time in log/log scale. The performance is averaged over the 30 experiments. We see that SAEW starts by following BOA, until it considers to be accurate enough to accelerate the process (around log t ≈ 6.2). Note that shortly after the acceleration start, the performance is shortly worse than the one of BOA. This can be explained by the doubling trick: the algorithm start learning again almost from scratch. The cumulative risks are displayed in Figure 3. SAEW and BOA seem to achieve logarithmic cumulative risk, in contrast to RDA which seems to be of order O( √ T ). In reality, the cumulative risk of BOA is of order O(σ 2 √ T log d + log d). In the previous experiment, because of the small value of the noise σ 2 = 0.01, the first term is negligible in comparison to the second one unless T is very large. The behavior in √ T of BOA is thus better observed with higher noise and smaller di- mension d, so that the first term becomes predominant. To illustrate this fact, we end the application on square linear regression with a simulation in small dimension d 0 = d = 2 with higher noise σ = 0.3. Our acceleration procedure can still be useful to obtain fast rates. 

0 2 4 6 -7 -6 -5 -4 -3 -2 -1 RDA BOA SAEW log(||θ t ~- θ * || 2 2 ) log(t)

Application to linear quantile regression

Let α ∈ (0, 1). Here, we aim at estimating the conditional α-quantile of Y t given X t . A popular approach introduced by [START_REF] Koenker | Regression quantiles[END_REF] consists in estimating the quantiles via the pinball loss defined for all u ∈ R by ρ α (u) = u(α -1 u<0 ). It can be shown that the conditional quantile q α (Y t |X t ) is the solution of the minimization problem

q α (Y t |X t ) ∈ arg min g E ρ α Y t -g(X t ) X t .
In linear quantile regression, we assume the conditional quantiles to be well-explained by linear functions of the covariates. [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF] proved that under some assumption the risk is strongly convex. We can thus apply our setting by using the loss functions

t : θ → ρ α Y t -X t θ).
We perform the same experiment as for linear regression (Y t , X t ), but we aim at predicting the α-quantiles for α = 0.8. To simulate an intercept necessary to predict the quantiles, we add a covariate 1 to the vector X t . Figure 1b shows the improvements obtained by our accelerating procedure over the basic optimization algorithms.

In the next figures, to better display the dependence on T of the procedures, we run them during a longer time T = 10 5 with d = 100 only. We see that unexpectedly most methods, although no theoretical properties, do achieve the fast rate O(1/T ) (which corresponds to a slope -1 on the log/log scale). This explains why we do not really observe the acceleration on Figure 5. However, we only show here the dependence on t and not in d.

In Figure 6, we show how the slow rate highprobability bound on BOA (slope -1/2 in log/log scale) is transformed by SAEW into a fast rate bound (slope -1). To do so, it regularly restarts the algorithm to get smaller and smaller slow-rate bounds. Both BOA (dotted black line) and SAEW do achieve fast rate here though only SAEW guarantees it. It would be interesting in the future to prove the fast rate convergence for the averaged estimator produced by BOA in this context. The classical proof technique that uses a cumulative risk to risk conversion (with Jensen's inequality) will have however to be changed since the fast rate is not achieved for the cumulative risk (see Figure 7). α -1 Risk(θ)

for all θ ∈ R d . Proof. Let θ ∈ R d , by (SC) applied with θ 1 = θ * and θ 2 = θ, we get θ -θ * 2 2 α -1 E t (θ) -t (θ * ) + α -1 E ∇ t (θ * ) (θ * -θ) .
But, E ∇ t (θ * ) (θ * -θ) 0. Otherwise, taking into account the convexity of the domain, the direction d = θ -θ * is a decreasing feasible direction, which contradicts the optimality of θ * .

A.2 Proof of Theorem 1

Let (δ i ) be a non-increasing sequence in (0, 1) such that ∞ i=1 δ i δ.

Step 1. Proof by induction that the subroutines always perform the optimization in the correct 1 -ball. We prove by induction on i 0 that with probability at least 1 -

i j=1 δ j θ * -[ θti-1 ] d0 1 U 2 -i/2 . ( 8 
)
H 0 is satisfied by assumption since θ * 1 U and [ θt0-1 ] d0 = [ θ0 ] d0 = 0 (see SAEW for the definition of [ θ0 ]).
Let i 0 and assume (8). The following Lemma (whose proof is postponed to Appendix A.3) states that the gradients are indeed upper-bounded by B in sup-norm.

Lemma 6. Let i 0. Under (8), for all t ∈ [t i , t i+1 - 1], ∇ t ( θ t-1 ) ∞ B almost surely.
Therefore, from the regret bound (5), the subroutine

S i satisfies for all t ∈ [t i , t i+1 -1] t s=ti s ( θ s-1 ) -s (θ * ) U 2 -i/2 a t s=ti ∇ s ( θ s-1 ) 2 ∞ + bB .
Bounding the cumulative risk with the regret thanks to Theorem 10 in Appendix B.2, it yields with probability at least 1 -

i+1 j=1 δ j , t s=ti E[ s ]( θ s-1 ) -E[ s ](θ * ) U 2 -i/2 Err t (9)
where

Err t := a i t ti ∇ s ( θ s-1 ) 2 ∞ + b i B with a i := a + √ 2 log 1 + 1 2 log t -t i + 1 2 -log δ i+1 , (10) and b 
i := b + 1 2 + log 1 + 1 2 log t -t i + 1 2 -log δ i+1 . (11) 
Thus, recalling that by definition (see SAEW)

θt := (t -t i + 1) -1 t s=ti θ s-1 ,
and because the losses are i.i.d., Jensen's inequality yields

Risk( θt ) = E[ t+1 ]( θt ) -E[ t+1 ](θ * ) Jensen (t -t i + 1) -1 t s=ti E[ s ]( θ s-1 ) -E[ s ](θ * ) (9) U Err t 2 i/2 (t -t i + 1) . ( 12 
)
Together with the strong convexity of the risk (Lemma 5), this entails

θt -θ * 2 2 U Err t α2 i/2 (t -t i + 1) . ( 13 
)
We thus control the 2 -error of θt . However, in order to control the 1 -error without paying a factor d, we need to truncate coordinates of θt . By definition of [ θt ] d0 (see SAEW), we have

[ θt ] d0 ∈ arg min (16)

θ∈R d : θ 0 d0 θt -θ 2 . ( 14 
Therefore, with probability at least 1 -

i+1 j=0 δ j [ θt ] d0 -θ * 1 (16) 2d 0 [ θt ] d0 -θ * 2 2d 0 [ θt ] d0 -θt 2 + θt -θ * 2 (15) 2 2d 0 θt -θ * 2 (13) 2 2d 0 α -1 U Err t 2 -i/2 (t -t i + 1) -1 =: ε t , ( 17 
)
where the last equality holds by definition of ε t (see SAEW). Finally, (H i+1 ) is fulfilled by definition of t i+1 (see SAEW), which satisfies ε ti+1-1 U 2 -(i+1)/2 . The induction is thus completed.

In the rest of the proof, we consider that (8) are satisfied for all i 0. This occurs with probability 1 -∞ δ j 1 -δ as stated by Step 1.

Step 2. Fast rate for the excess risk of θt . First, we prove that the excess risk of θt is upper-bounded as

Risk( θt ) d 0 B 2 α 2 7 a 2 t + 2 11 b 2 t 2 + 2αU 2 d 0 t 2 , ( 18 
)
for all t 1, where a = a 2 log 2 t and b = b 2 log 2 t .

To do so, we start from the risk inequality ( 12). From the definition of ε t (see ( 17)), we get

Risk( θt ) αε 2 t 8d 0 , t 1 . ( 19 
)
Thus by definition of θt := θarg min s t εs , we have

Risk( θt ) α min s t ε 2 s 8d 0 (20)
We conclude the proof with the following lemma proved in Appendix A.4

Lemma 7. Let i 0. Let t i -1 t t i+1 , then

min s t ε s U √ 2γa i √ t + 2 + 4γb i t ,
where γ := 2 4 d 0 B/(αU ).

Let i 0 such that t i -1 t t i+1 . Lemma 7 together with ( 20) and (x+y) 2 2x 2 +2y 2 for x, y 0, yields

Risk( θt ) αU 2 γ 2 8d 0 √ 2a i √ t + 2γ -1 + 4b i t 2 (21) αU 2 γ 2 d 0 a 2 i 2t + 2γ -2 + 8b 2 i t 2 . ( 22 
)
Now, remark that if i 2 log t, then ε ti-1 U 2 -i U/t and from (20), Risk( θt ) αU 2 /(8d 0 t 2 ). Together, with ( 22), we get

Risk( θt ) αU 2 γ 2 d 0 a 2 2t + 2γ -2 + 8b 2 t 2 ,
with a = a 2 log 2 t and b = b 2 log 2 t . Substituting γ = 2 4 d 0 B/(αU ) concludes the proof of Inequality (18).

Step 3. Slow rate for the excess risk of θt . Now, we prove that

Risk( θt ) U B a t/2 + 4b t + αU 2 8d 0 t , t 1 . (23) 
For small values of t, the slow rate will be satisfied from the initial bound of the subroutine during the first session. At some time τ > 0, the fast rate becomes better than the slow rate. This splitting time is defined as the solution of the equality

Err t1-1 t 1 -1 = B √ 2a √ τ + 2γ -1 + 4b τ . (24) 
Let t 1. To control Risk( θt ), we distinguish three cases: 

• if t t 1 -1, then,
Risk( θt ) = Risk( θarg min s t εs ) U 2 -0/2 min s t Err s s U Err t t .
By definition of Err t (see ( 9)) and upper-bounding the gradients by B, we get

Risk( θt ) U B a 0 √ t + b 0 t .
• if t 1 t τ , then following the same reasoning as above, we have

Risk( θt ) U Err t1-1 t 1 -1 ,
which yields by definition of τ (see Equality ( 24)) and by using t τ :

Risk( θt ) U B √ 2a √ τ + 2γ -1 + 4b τ U B √ 2a √ t + 2γ -1 + 4b t .
• if τ t, since by definition of t 1 (see SAEW), ε t1-1 U/2, then by definition of ε t1-1 (see ( 17)),

2 2d 0 α -1 U Err t1-1 t 1 -1 U 2 ,
and thus taking the square and rearranging the terms

d 0 α U 2 5 t 1 -1 Err t1-1 .
Using the definition of γ = 2 4 d 0 B/(αU ) and substituting Err t1-1 with Equality (24), this yields

αU 2 γ 2 8d 0 = 2 5 d 0 B 2 α U B √ 2a √ τ + 2γ -1 + 4b τ -1
.

Finally from Inequality (21), and using τ t

Risk( θt ) U B √ 2a √ t + 2γ -1 + 4b t .
Combining the three cases together and substituting γ = 2 4 d 0 B/(αU ), concludes the proof of Inequality (23).

Step 4. Conclusion of the proof Combining Inequalities ( 18) and ( 23), we get the risk inequality stated in the theorem for θt . It only remains to choose δ j = δ/(j + 1) 2 so that ∞ j=1 δ j δ and to control a = a 2 log 2 t and b = b 2 log 2 t . From (10), we can use δ 2 log 2 t +1 δ/(1 + 2 log 2 t) 2 and T i t. Straighforward calculation yields that a -a is lower than

2 log(1 + 1/2 log(t/2)) -log δ + 2 log(1 + 2 log 2 t) 6 log(1 + 3 log t) -2 log δ. Similarly, for b -b. It is upper-bounded by 1 2 + log 1 + (1/2) log(t/2) -log δ + 2 log(1 + 2 log 2 t) 1/2 + 3 log(1 + 3 log t) -log δ .
This concludes the proof.

A.3 Proof of Lemma 6

Since by assumption B max θ: θ 1 2U ∇ t (θ) ∞ a.s. Therefore, it suffices to show that θ t-1 1 2U . By definition of the session S i ,

θ t-1 ∈ B 1 ([ θti-1 ] d0 , U 2 -i/2 ) .
Thus:

• if i = 0, since [ θ0 ] d0 = 0, θ t-1 1 U . • if i = 1, then since [ θt1-1 ] 1 U as a truncated average of vectors in B 1 (0, U ), we have θ t-1 1 θ t-1 -[ θt1-1 ] d0 1 + [ θt1-1 ] d0 1 U/ √ 2 + U 2U ;
• otherwise, i 2 and θ t-1 1 is bounded by

θ t-1 -[ θti-1 ] d0 1 + [ θti-1 ] d0 -θ * 1 + θ * 1 (8) U 2 -i/2 + U 2 -i/2 + U 2U .
Putting the tree cases together, θ t-1 1 2U , which concludes the proof.

A.4 Proof of Lemma 7

It is enough to control ε ti-1 min s t ε s . To do so, we prove that for every j 0, T j := t j+1 -t j cannot be too large, so that at time t, i will be at least of order log 2 t. Let j 0. We can assume t j+1 > t j , otherwise T j = 0. Thus, from the bound on the gradients (Lemma 6) and from the definition of Err t (see ( 9)) for all t ∈

[t j + 1, t j+1 ], Err t-1 B(a j t -t j + b j ) , (25) 
and from the definition of ε t-1 (see ( 17))

ε t-1 2 2d 0 α -1 U B a j √ t -t j + b j 2 j/2 (t -t j ) .
Since by definition, t j+1 is the smallest integer after t j that satisfies ε tj+1-1 U 2 -(j+1)/2 , we have ε tj+1-2 U 2 -(j+1)/2 . This implies

2 2d 0 α -1 U B a j T j -1 + b j 2 j/2 (T j -1) U 2 -(j+1)/2 ⇔ 2 j/2 2 4 d 0 α -1 U -1 B :=γ a j T j -1 + b j T j -1
Then, by solving a second order equation in T j -1 (see for instance [Gaillard et al., 2014, Lemma 10]), the above inequality entails

T j 1 + 2 j γ 2 a 2 j + 2 j/2 γb j . (26) 
Therefore, summing over j = 0, . . . , i

t i+1 = t 0 + i j=0 T j i j=0 1 + 2 j γ 2 a 2 j + 2 j/2 γb j 2 1+i γ 2 a 2 i + (1 + √ 2)2 (i+1)/2 γb i + i + 1 2 1+i γ 2 a 2 i + 2 (i+1)/2 √ 2 2γb i + 1 ,
where the last inequality is because 2 (i+1)/2 √ 2(i + 1) for i 0. Solving the second-order inequality in 2 (i+1)/2 we get

2 -(i+1)/2 γa i √ t i+1 + √ 2 1 + 2γb i t i+1 .
Thus, since ε ti-1 U 2 -i/2 , we have

ε ti-1 U γ √ 2a i √ t i+1 + 2γ -1 + 4b i t i+1 .
The proof of Lemma 7 finally follows using t t i+1 .

A.5 Proof of Theorem 2

With probability 1 -δ, all inequalities provided in the proof of Theorem 1 are satisfied. We also consider the notation of the previous proof. Let t 1.

Step 1. Slow rate We remark that for any i 0,

(ti+1-1)∧t s=ti E[ s ]( θ s-1 ) -E[ s ](θ * ) (9) 
U 2 -i/2 Err (ti+1-1)∧t

(25) U B2 -i/2 (a i √ t + b i ) (27)
where, in the last inequality, we use that (t i+1 -1)∧t t and t i 1. We will use this inequality for i 2 log t . For i > 2 log t , we use the fact that the gradients are bounded by B, so that by convexity of the risk

(ti+1-1)∧t s=ti E[ s ]( θ s-1 ) -E[ s ](θ * ) (ti+1-1)∧t s=ti E[∇ s ]( θ s-1 ) ∞ θ s-1 -θ * 1 U B2 -i/2 t .
(28) Summing ( 27) over i = 0, . . . , 2 log 2 t and (28) over i = 2 log 2 t , . . . , ∞, we get

Risk 1:t ( θ 0:(t-1) ) := t s=1 E[ s ]( θ s-1 ) -E[ s ](θ * ) U B 2 log 2 t i=0 2 -i/2 (a i √ t + b i ) +U Bt ∞ i= 2 log 2 t 2 -i/2 . ( 29 
)
The second sum is controlled as

∞ i= 2 log 2 t 2 -i/2 t -1 ∞ i=0 2 -i/2 .
Thus, since

∞ i=0 2 -i/2 = 2 + √ 2 4, we have Risk 1:t ( θ 0:(t-1) ) 4U B(a √ t + b ) + 4U B ,
where we recall that a = a 2 log 2 t and b = b 2 log 2 t . This concludes Step 1.

Step 2. Fast rate Let us now prove the fast rate

Risk 1:t θ 0:(t-1) 2 5 d 0 B 2 α a 2 log 2 t + 4BU (1 + b ) + U 2 α 8d 0 ,
for all t 1. First, we remark that similarly to (19), we get for all i 0 that

ti+1-1 s=ti E[ s ]( θ s-1 ) -E[ s ](θ * ) (9) U Err ti+1-1 2 -i/2 T i T i (17) αε 2 ti+1-1 8d 0 T i αU 2 2 -i 16d 0 T i (30)
where the last inequality is because ε ti+1-1 U 2 -(i+1)/2 by definition of t i+1 (see SAEW). We will use this inequality for i 2 log t . Summing (30) over i = 0, . . . , 2 log 2 t and (28) over i = 2 log 2 t , . . . , ∞, we get

Risk 1:t ( θ 0:(t-1) ) := t s=1 E[ s ]( θ s-1 ) -E[ s ](θ * ) U 2 α 2 4 d 0 2 log 2 t i=0 2 -i T i +U Bt ∞ i= 2 log 2 t 2 -i/2 . ( 31 
)
We upper bound both sums. The second one is controlled as we did for ( 29). The first one is upperbounded thanks to ( 26)

2 log 2 t i=0 2 -i T i 2 log 2 t i=0 γ 2 a 2 i + 2 -i/2 γb i + 2 -i 2γ 2 a 2 log 2 t + 4γb + 2 .
Therefore, substituting the two sums into (31), the cumulative risk Risk 1:t ( θ 0:(t-1) ) is upper-bounded by

U 2 α 2 4 d 0 2γ 2 a 2 log 2 t + 4γb + 2 + 4U B ,
which, by substituting γ = 2 4 d 0 B/(αU ), is equal to

2 5 d 0 B 2 α a 2 log 2 t + 4BU (1 + b ) + αU 2 8d 0 .
This concludes the proof.

A.6 Proof of Theorem 3

Let first check that we are indeed in the setting of Theorem 1. The risk is strongly convex because for any

θ 1 , θ 2 ∈ R d E[ t (θ 1 ) -t (θ 2 )] = E (Y t -X t θ 1 ) 2 -(Y t -X t θ 2 ) 2 = E -2(Y t -X t θ 1 )X t (θ 1 -θ 2 ) -X t (θ 1 -θ 2 ) 2 = ∇E[ t ](θ 1 ) (θ 1 -θ 2 ) -(θ 1 -θ 2 ) E X t X t (θ 1 -θ 2 ) .
Assumption (SC) is thus satisfied with α = λ min (E X t X t ). Besides, for all θ such that θ 1 2U , we have

∇ t (θ) ∞ = 2(Y t -X t θ)X t ∞ 2(Y +2XU )X = B .
Now, we mimic the proof of Theorem 1. In the rest of the proof, we consider that (8) are satisfied for all i 0. This occurs with probability 1 -δ and all inequalities stated in the proof of Theorem 1 are satisfied.

The proof is based on the following Lemma that we substitute to Inequality (25) from the proof of Theorem 1.

Lemma 8. For all t ∈ [t i , t i+1 -1], with probability 1 -δ i+1 ,

Err t-1 2 √ 2Xσa i √ t -t i + Bc i ,
where

c i := b i + a i log δ -1 i+1 + √ 2b + 2a .
We recall that Err t-1 is defined in (9).

Proof of Lemma 8. In the particular case of the square loss, the gradients are given by ∇

t (θ) = 2X t (X t θ-Y t ), so that ∇ t ( θ t-1 ) 2 ∞ 4X 2 t ( θ t-1 ) . (32) 
Following [Gerchinovitz, 2013, Corollary 2.2], we get from Inequality (5) that

t end t=tstart t ( θ t-1 )-t (θ * ) 2aU X t end tstart t ( θ t-1 )+bU B .
Solving the second-order inequality (see [Gaillard et al., 2014, Lemma 10]), it yields the improvement for small losses

t end t=tstart t ( θ t-1 ) t end t=tstart t (θ * ) + √ bU B + 2aU X .
Thus, from (32),

t-1 s=ti ∇ s ( θ s-1 ) 2 ∞ 2X t-1 s=ti s (θ * ) + 2X √ bU B + 4aU X 2 .
But, with probability 1 -δ i+1 , we have from Theorem 9

t-1 s=ti s (θ * ) (e -1) t-1 s=ti E[ s (θ * )] + (Y + XU ) 2 log δ -1 i+1 2σ 2 (t -t i ) + (Y + XU ) 2 log δ -1 i+1 , where σ 2 = E[ t (θ * )].
Plugging into the previous inequality and using

√ x + y √ x + √ y for x, y > 0, this yields 2 -1 X -1 t-1 s=ti ∇ s ( θ s-1 ) 2 ∞ (33) √ 2σ √ t -t i + (Y + XU ) log δ -1 i+1 + √ bU B + 2aU X √ 2σ √ t -t i + 2 -1 BX -1 log δ -1 i+1 + √ 2b + 2a , (34) 
where the second inequality is because B/(2X) (Y + XU ) XU . The proof of Lemma 8 is concluded by using the definition of Err t-1 (see ( 9)).

The proof of Theorem 3 is then completed following the one of Theorem 1 by using Lemma 8 instead of Inequality ( 25). Finally, it only suffices to substitute Ba i with 2 √ 2Xσa i and b i with c i in the final results. At the end, b of Theorem 1 must thus be substituted with

c := b + a 2 log(1 + 2 log 2 T ) -log δ + √ 2b + 4a 1/2 + b + 3 log(1 + 3 log T ) -log δ + a + 6 log(1 + 3 log t) -2 log δ 2 log(1 + 3 log T ) -log δ + √ 2b + 2a 1 2 + b + 3 log(1 + 3 log T ) -log δ + 4a 2 +2b + 6 log(1 + 3 log T ) -2 log δ) 1/2 + 3b + 4a 2 + 9 log(1 + 3 log T ) -3 log δ . 1 + b + a 2 + log log T -log δ
However, in contrast to the bound B on the gradients, Lemma 8 only holds with probability 1 -δ i+1 (instead of almost surely). A union bound over all events states that the final result only holds with probability 1 -δ -∞ i=1 δ i+1 = 1 -2δ. To get a result with probability 1 -δ, δ must thus be multiplied by 2 in the results.

This gives that, from the risk bound of Theorem 1, with probability 1 -δ, Risk θt is upper-bounded by

min 4U Xσa √ T + Bc T + αU 2 8d 0 T , d 0 α 2 10 X 2 σ 2 a 2 T + 2 11 B 2 c 2 T 2 + 2αU 2 d 0 T 2 ,
where a = 2a + 2 6 log(1 + 3 log T ) + 2 log(2/δ) and c = 1 + 3b + 4a 2 + 9 log(1 + 3 log T ) + 3 log(2/δ).

The bound of the theorem is then obtained by using that B = 2X(Y + 2XU ).

A.7 Proof of Theorem 4

For the sake of clarity, we only perform this proof up to universal constants. Let B * = 2X(Y + 2X θ * 1 ) max θ∈B(0,2 θ * 1) ∇ t (θ) ∞ almost surely. We also define by α * the maximal number strong convexity parameter that satisfies (SC). Let T 1. Then, by definition (see Alg. 3), fT -1 = fj for j = log 2 T -1.

We aim at controlling the excess risk of the average estimator fj = 2 j+1 -1 t=2 j f t . To do so, we control the cumulative risk for t = 2 j , . . . , 2 j+1 -1

Risk (j) := 2 j+1 -1 t=2 j E t-1 (Y t -f t (X t )) 2 -E (Y t -X t θ * ) 2 , where E t-1 [ • ] = E • |(X 1 , Y 1 ), . . . , (X t-1 , Y t-1 ) . We will use that Risk( fj ) Risk (j) 2 -j Risk (j) T . (35) 
We first prove that it exists a predictor f p,j with p ∈ G j that has a small excess risk. Then, we will apply Theorem 4.5 of [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF] to show that BOA almost achieves this performance.

Step 1. Either it exists a predictor f p,j with small excess risk or Risk (j) is small. Since all predictions f t (X t ) lie in [-Y, Y ] almost surely,

Risk (j) Y 2 2 j Y 2 T . (36) 
Let d 0 in G j (i.e., a power of 2) such that d 0 /2 θ * 0 d 0 . We show that if the conditions of Theorem 3 cannot be satisfied with any parameter of the grid G j , the cumulative risk Risk (j) is small enough. We start with the choice of the parameter U , which should be of order θ * 1 : a) If θ * 1 2 -2j . It exists a predictor in G j such that f p,j = 0 (consider d 0 = 0). In this case,

Risk(f p,j ) = E[(Y t -0) 2 ] B * θ * 1 B * 2 -2j B * T -2 ,
where we used that 2

-j T -1 . b) If θ * 1 2 2j+ 2 log Y , then 2 j
Y -2 θ * 1 2 -j and from Inequality (36), e) if α * < 2 -2j+ log 2 (B 2 d0/Y 2 ) d 0 B 2 2 -2j /Y 2 , then 2 j d 0 B 2 /(Y 2 α * 2 j ) and thus

Risk (j) θ * 1 2 -j
Risk (j) Y 2 2 j Y 2 d 0 B 2 Y 2 α * 2 j θ * 0 (B * ) 2 α * T .
Otherwise, we can choose α in G j such that min{d 0 /T, α * /2} α α * . f ) Applying Theorem 3, with high probability the excess risk of the estimator f p,j with the choice (d 0 , α, U, B) described above satisfies

Risk(f p,j ) clipping Risk( θp,j ) min X 2 γ σ 2 a 2 T + (Y + X θ * 1 ) 2 c 2 T 2 + γ θ * 2 1 T 2 , θ * 1 X σa √ T + (Y + X θ * 1 )c T + γ θ * 2 1 T ,
with γ = max{d 0 /α, 1/T }.

Putting everything together, either (for cases b), d), and e))

Risk (j) B * + θ * 0 (B * ) 2 α * T -1 (37) 
or, for cases a), c), and f), there exists p ∈ G j such that with high probability

Risk(f p,j ) min 1 γ X 2 σ 2 a 2 T + (B * c ) 2 T 2 + γ θ * 2 1 T 2 , θ * 1 X σa √ T + (Y + X θ * 1 )c T + γ θ * 2 1 T + B * T 2 , ( 38 
)
Step 2. Bound of the meta-algorithm. Using that the square loss is 4Y -Lipschitz over the domain [-2Y, 2Y ] and 2-strongly convex, we can apply Theorem 4.5 of [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF] with C b = 4Y , C = 2, and M = #G j . We get that with high enough probability Risk Combining with Inequality (38), we obtain that Risk (j) is at most of order Risk (j) Y 2 log log d + log(log T + log Y ) -log δ

+ min 1 γ X 2 σ 2 a 2 + (B * c ) 2 T + γ θ * 2 1 T , θ * 1 X σa √ T + (Y + X θ * 1 )c + γ θ * 2 1 + B * T .
Finally, using Inequality (35), keeping only the main asymptotic term in 1/T , and substituting a log((d log T )/δ) concludes the proof.

B Martingale inequalities

In this section, we prove two martingale inequalities that are used in the analysis.

B.1 Poissonian inequality

First, we prove a Poissonian inequality which only works for nonnegative increments.

Theorem 9. Let T 1. Let (X t ) t 1 be a sequence of random variables such that X t ∈ [0, B] almost surely, then with probability at least 1 -δ Proof. This is a consequence of Theorem 4.1 of [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. Let δ ∈ (0, 1) and (η t ) t 0 be a sequence adapted to the filtration (F t = { 1 , . . . , t-1 }) t 0 . Then, with the notation 2 j,t ε 2 ∇ t ( θ t-1 ) 2 ∞ , applying Theorem 4.1 of [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF], we get that with probability 1 -δ
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 7 Figure 7: Averaged (over 30 runs) cumulative risk suffered by θ t for quantile regression (d = 100).
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  Figure 6: Logarithm of the 2 -norm of the averaged estimator θt during one run. The dashed lines represent the high probability 2 -bound estimated by SAEW on θt . The gray vertical lines are the stopping times t
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i , i 1. The first session is plotted in red, the second in blue,. . . The dotted and dashed black lines represent the performance (and the theoretical bound) that BOA would have obtained without acceleration.

  since by definition of ε s

	arg min s t	Err s s	s t = arg min	ε s ,
	we get from Inequality (12) that	

  [X t ] + B log(1/δ) . Proof. Let Z t = X t /B ∈ [0, 1]. From [Cesa-Bianchiand Lugosi, 2006, Lemma A.3], for all t 1, and all s > 0E t-1 exp sZ t -(e s -1)E t-1 [Z t ] 1 . T -1 exp sZ T -(e s -1)E T -1 [Z T ]The final result is obtained by substituting Z t = X t /B and by choosing s = 1. ∇ t ( θ t-1 ) ∞ almost surely.

	T	X t (e -1)	T	E exp s = E E exp s T t=1 Z t -(e s -1) T -1 t=1 Z t -(e s -1) T t=1 E t-1 [Z t ] T -1 t=1 E t-1 [Z t ] E exp s T -1 t=1 Z t -(e s -1) T -1 t=1 E t-1 [Z t ] By induction, we get E exp s T t=1 Z t -(e s -1) T t=1 E t-1 [Z t ] 1 . We conclude thanks to Markov's inequality, with prob-ability at least 1 -δ T t=1 Z t e s -1 s T t=1 E t-1 [Z t ] + 1 s log(1/δ) . B.2 From cumulative regret to cumula-tive risk ε 2 log 2 + log(T /2) 2δ T t=1 ∇ t ( θ t-1 ) 2 ∞ + 1 2 + log 1 + 1 2 log(T /2) -log δ εB , E t-1 Thus, where B max θ∈B1(θcenter,ε)
	t=1		t=1	

Theorem 10. Let x > 0. Assume θ * ∈ B 1 (θ center , ε). The cumulative risk of any convex optimization procedure in B 1 (θ center , ε) satisfies, with probability 1 -δ Risk 1:T ( θ 0:(T -1) ) -Reg 1:T ( θ 0:(T -1) )

SUPPLEMENTARY MATERIAL

A Proofs

A.1 Lemma 5

We first state Lemma 5, a classical result in strong convexity, as it will be useful in the proofs. It relates the 2 -error of an estimator with its excess risk when the risk is strongly convex.

Lemma 5. If the risk is 2α-strongly convex, then

where

We obtain the stated inequality from (39), by properly setting the tuning parameters

, where c will be set by the analysis and

Indeed, first we use that that

Then, similarly to the proof of [Cesa-Bianchi et al., 2007, Theorem 5], we can show that the first term in the right-hand side of ( 39) is upper-bounded as

But, by definition of η T , the second term is also controlled as

Plugging these two last inequalities into (39) leads to

We then need to distinguish two cases

Therefore, putting the two cases together

We conclude the proof by substituting Γ and V T with their definitions.