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The	word	“robot”	was	first	coined	in	the	early	20th	century	and	the	seminal	ideas	of	cybernetics	
first	appeared	during	World	War	II	The	birth	of	robotics	 is	generally	pinpointed	to	1961,	with	
the	introduction	of	the	first	industrial	robot	on	the	General	Motors	assembly	line.	This	“Unimate”	
robot	 was	 patented	 by	 George	 Devol	 and	 industrialized	 by	 Joseph	 Engelberger,	 who	 is	
recognized	 as	 the	 founding	 father	 of	 robotics.	 From	 its	 beginning	 in	 the	 1960s,	 to	 its	 broad	
application	 in	 the	 automotive	 industry	by	 the	 end	of	 the	1970s,	 the	 field	of	 robotics	has	been	
viewed	as	a	way	to	improve	production	in	manufacturing	by	providing	a	manipulator	integrated	
into	 a	 well-structured	 environment.	 Stimulated	 by	 programs	 such	 as	 space	 exploration,	 the	
1980s	 saw	 the	 creation	 of	 field	 robotics,	 where	 a	 robot’s	 environment	was	 no	 longer	 closed.	
However,	even	then	the	robot	remained	in	isolation,	only	interacting	with	a	static	world.		
	
At	the	end	of	the	1990s,	robotics	began	to	be	promoted	within	the	service	industry,	which	led	to	
the	 development	 of	 simple	 wheeled	 mobile	 platforms	 capable	 of	 performing	 tasks	 such	 as	
cleaning	or	automated	transportation.	In	the	next	stage	of	development,	arms	were	added	to	the	
platforms,	 which	 allowed	 more	 expressive	 communication.	 This	 generation	 of	 robots,	 most	
recently	“Pepper	the	Robot,”	is	able	to	enter	into	dialogue	with	humans—to	welcome	and	guide	
them	into	public	areas	such	as	supermarkets,	train	stations,	or	airports.	Incorporating	arms	into	
this	 type	 of	 robotic	 design	 also	 allowed	 for	 object	 manipulation	 and	 physical	 interaction.	
However	the	limitations	of	these	wheeled	mobile	robots	soon	became	evident,	sparking	a	quest	
for	more	 anthropomorphic	 robots	 that	would	 be	 able	 to	move	within	 a	 human	 environment,	
including	 using	 stairs	 and	moving	 over	 small	 obstacles.	 These	 features	 would	 allow	 for	 their	
mobility	 on	 any	 terrain;	moreover,	 they	would	 incorporate	 the	 capacity	 to	perform	dexterous	
manipulation.	Achieving	 such	 “humanoid”	 robots	has	become	a	major	 challenge	 in	 the	 field	of	
robotics	and,	if	fully	achieved,	these	devices	will	become	the	paragons	of	robotics	science.	Here	I	
review	 the	 current	 status	 of	 anthropomorphic	 robots	 and	 how	 the	 fields	 of	 robotics,	
neuroscience,	and	biomechanics	are	coalescing	to	drive	robotic	innovation	forward.			
	
Anthropomorphic	action		
	
Human	 beings	 and	 humanoid	 robots	 share	 a	 common	 anthropomorphic	 shape.	 Whereas	 the	
ultimate	 goal	 of	 roboticists	 is	 to	 provide	 humanoid	 robots	 with	 autonomy,	 life	 scientists	 are	
striving	to	gain	an	understanding	of	the	foundations	of	human	action,	in	domains	ranging	from	
medicine	 and	 rehabilitation	 to	 ergonomics.	 Neuroscience	 and	 its	 quest	 to	 understand	 the	
computational	 foundation	of	 the	brain	provides	a	 further	entry	point	 to	robotics.	Despite	their	
different	scientific	cultures	and	backgrounds,	 the	communities	of	 life	scientists	and	roboticists	
are	pursuing	converging	objectives.		
	
A	 key	 to	 understanding	 anthropomorphic	 action	 that	 can	 bridge	 robotics	 and	 life	 sciences	 is	
gaining	 insight	 into	 the	 fundamental	mechanisms	of	 the	human	body.	As	an	example,	consider	
the	 actions	 in	 Fig.	 1,	 performed	 by	 the	 humanoid	 robot	 HRP2	 at	 Laboratory	 for	 Analysis	 of	
Architecture	and	Systems	at	the	French	National	Center	for	Scientific	Research	(LAAS-CNRS).	In	
the	first	scenario,	the	robot	answers	a	single	order:	Give	me	the	purple	ball	(1).	To	accomplish	
the	assigned	objective,	HRP2	decomposes	its	task	into	elementary	sub-tasks	(Scenario	(a)	in	Fig.	
1).	A	dedicated	 software	module	 addresses	 each	 sub-task.	 	 For	 instance,	 to	 reach	 the	ball,	 the	
robot	has	 to	walk	 to	 the	ball.	 “Walking”	 appears	as	 an	elementary	action	 that	 is	 a	 resource	 to	



solve	the	problem,	and	is	processed	by	a	dedicated	locomotion	module.	In	the	second	scenario	
(Scenario	 (b)	 in	 Fig.	 1),	 HRP2	 has	 to	 grasp	 a	 ball	 that	 is	 located	 between	 its	 feet	 (2).	 To	
accomplish	this	objective,	the	robot	has	to	first	step	away	from	the	ball	and	then	grasp	it.	In	this	
scenario,	 the	significance	of	“stepping	away”	becomes	a	vital	 issue.	 In	this	experiment,	 there	 is	
no	dedicated	module	in	charge	of	“stepping,”	which	is	a	direct	consequence	of	“grasping.”	Thus,	
no	 stepping	 “symbol”	appears	as	a	 resource	 for	problem	solving	 in	Scenario	 (b).	The	grasping	
action	is	embedded	in	the	robot’s	body,	allowing	its	legs	to	naturally	contribute	to	the	action.	No	
deliberative	reasoning	is	required	for	the	robot	to	face	complicated	situations	such	as	picking	up	
a	ball	between	the	feet.			
	
To	design	a	 robot	capable	of	 the	embedded	actions	required	 to	execute	Scenerio	 (b),	we	must	
first	 imagine	replacing	 the	humanoid	robot	HRP2	with	a	human	being.	Among	all	 the	possible	
motions	 required	 for	 grasping	 of	 an	 object,	 we	 must	 consider	 the	 underlying	 principle	 for	
selection	of	a	particular	motion	in	humans.	How	does	the	human	organize	his	or	her	behaviors	
to	reach	a	given	objective?	Where	within	the	brain	does	this	reasoning	take	place?	What	are	the	
relative	 contributions	 of	 voluntary	 actions	 computed	 in	 frontal	 cortex,	 to	 reflexive	 actions	
computed	 by	 spinal	 reflexes,	 in	 Scenario	 (a)	 and	 (b)?	 How	 and	 why	 are	 different	 actions	
computed	 by	 different	mechanisms?	What	musculoskeletal	 synergies	 are	 required	 to	 simplify	
control	of	complex	motions?	Such	questions	lie	at	the	core	of	current	research	in	computational	
neuroscience	 and	 biomechanics.	 In	 the	 remainder	 of	 this	 review,	 I	 will	 briefly	 discuss	 three	
viewpoints	 on	 anthropomorphic	 action	 from	 a	 robotics,	 neuroscience,	 and	 biomechanics	
perspective.	 I	 will	 also	 make	 mention	 of	 mathematical	 methods	 for	 anthropomorphic	 action	
modeling.		
	
	
A	robotics	perspective		
		
In	the	quest	for	robot	autonomy,	research	and	development	in	robotics	has	been	stimulated	by	
competition	 between	 computer	 science	 and	 control	 theory,	 and	 between	 abstract	 symbol	
manipulation	 and	 physical	 signal	 processing,	 with	 the	 goal	 of	 embedding	 discrete	 data	
structures	 and	 continuous	 variables	 into	 a	 single	 architecture.	 This	 architecture	 is	 a	 way	 of	
decomposing	complicated	 intelligent	behavior	 into	elementary	modules,	or	 “symbols,”	 capable	
of	 executing	 a	 well-defined	 function.	 Designing	 robot	 architecture	 requires	 the	 well-designed	
“placing”	of	these	symbols.		
	
In	robotics,	centralized	architectures	were	 first	designed	 in	manufacturing.	 In	 this	hierarchical	
paradigm,	 the	 robot	 operates	 in	 a	 top-down	 fashion,	 combining	 pre-defined	 specialized	
functions	 for	 perception,	 decision,	 and	 control.	 Such	 architectures	 perform	well	 in	 structured	
environments	where	a	finite	state	machine	can	describe	the	world	of	possible	actions,	as	is	the	
case	 in	 production	 engineering	 (3).	 Other	 architectures	 promote	 a	 bottom-up	 view,	 a	 seminal	
approach	introduced	by	Rodney	A.	Brooks	(4).	Using	the	concept	of	subsumption,	he	proposed	a	
reactive	 robot	 architecture	 organized	 by	 integrating	 low	 level	 sensory-motor	 loops	 into	 a	
hierarchical	structure.	A	behavior	is	decomposed	into	sub-behaviors	organized	in	a	hierarchy	of	
layers.	Higher	 levels	subsume	 lower	 levels	according	to	 the	context.	This	research	gave	rise	 to	
the	school	of	so-called	“bio-inspired”	robotics,	which	emphasized	mechanism	design	and	control	
(5),	 and	 related	 schools	 in	 artificial	 intelligence,	 including	 multi-agent	 systems	 (6),	 swarm	
robotics	 (7),	 or	 developmental	 robotics	 (XX).	 Other	 types	 of	 architectures	 have	 tended	 to	
combine	top-down	and	bottom-up	views	in	a	hybrid	manner,	integrating	deliberative	reasoning	
and	reactive	behaviors	(8,	9).		
	
The	 aim	 of	 all	 these	 approaches	 is	 to	 provide	 a	 generic	 solution	 for	mobile	 robots	 as	well	 as	
articulated	mechanical	systems,	and	for	the	robotic	design	to	be	independent	of	the	mechanical	
dimensions	 of	 the	 system.	 Further	 developments	 in	 imposing	 anthropomorphic	 body	



considerations	on	humanoid	 robot	 architectures	will	 involve	 the	promotion	of	 “morphological	
computation,”	with	its	emphasis	on	the	role	of	the	body	in	cognition	(10).	
	
A	computational	neuroscience	perspective	
	
How	to	represent	action	is	a	key	issue	today	in	human	science	research,	a	field	that	encompasses	
endeavors	ranging	from	neuroscience	to	the	philosophy	of	mind	(11).	The	subject	 itself,	which	
ponders	such	questions	as	whether	there	can	in	fact	be	“representation”	of	action,		has	long	been	
controversial.	 However,	 the	 discovery	 of	 mirror	 neurons	 by	 Rizzolatti	 (12)	 provided	
physiological	evidence	to	support	the	concept	of	action	representation,	which	was	promoted	by	
philosopher	Edmund	Husserl	at	the	end	of	the	19th	century	(13).		
	
In	terms	of	motor	control,	the	pioneering	work	of	Nicholai	Bernstein	in	the	1960s	revealed	the	
existence	 of	motor	 synergies	 (14).	 The	work	 of	 Bizzi	 and	 colleagues	 then	 provided	 biological	
evidence	 of	 this	 concept	 (15).	 Since	 then,	 numerous	 researchers	 have	 pushed	 the	 borders	 of	
their	 disciplines	 to	 discover	 laws	 and	principles	 underlying	 human	motion,	which	 has	 in	 turn	
established	 the	 fundamental	 building	 blocks	 of	 complex	 movements	 (16−18).	 More	 recently,	
Alain	 Berthoz	 introduced	 the	 word	 “simplexity”	 to	 synthesize	 all	 these	 works	 into	 a	 single	
concept:	 that	 is,	 to	face	the	complexity	of	having	such	high	dimensions	in	motor	control	space,	
living	beings	have	created	laws	that	link	motor	control	variables	and	hence	reduce	computations	
(19).		
	
A	biomechanics	perspective	
In	 the	 19th	 century,	 Étienne-Jules	 Marey	 introduced	 chronophotography	 to	 scientifically	
investigate	 locomotion,	 and	 was	 the	 first	 scientist	 to	 correlate	 ground	 reaction	 forces	 with	
kinetics.	 The	 value	 of	 jointly	 considering	 biomechanics,	modern	mathematics,	 and	 robotics	 is	
illustrated	by	the	famous	“falling	cat”	case	study:	Why	is	it	that	a	falling	cat	always	lands	on	its	
feet?	 The	 answer	 comes	 from	 the	 law	 of	 conservation	 of	 angular	momentum:	 The	 cat	 can	 be	
modeled	as	a	nonholonomic	system	whereby	geometric	control	techniques	perfectly	explain	the	
phenomenon	(20).	Thus,	biomechanics	provides	models	of	motion	generation	(21),	which	have	
subsequently	been	applied	in	ergonomics	(22)	and	studies	of	athletic	performance	(23).		
	
Mathematical	methods	for	anthropomorphic	action	modeling		
	
From	a	mechanistic	point	of	view,	 the	human	(or	humanoid)	body	 is	both	a	redundant	system	
and	an	underactuated	one.	It	is	redundant	because	its	number	of	degrees	of	freedom	is	usually	
much	greater	than	the	dimension	of	the	tasks	to	be	performed.	It	is	underactuated	because	there	
is	no	direct	actuator	allowing	the	body	to	move	from	one	place	to	another	place:	To	do	so,	the	
human	must	use	 its	 internal	degrees	of	 freedom	and	actuate	all	his	 limbs	 following	a	periodic	
process,	 namely	 bipedal	 locomotion.	 Actions	 take	 place	 in	 the	 physical	 place,	 while	 they	
originate	 in	 the	 sensory-motor	 space.	 Thus	 geometry	 is	 the	 core	 abstraction	 linking	 three	
fundamental	 action	 spaces	 (24):	 the	 physical	 space	where	 the	 action	 is	 expressed,	 the	motor	
space,	 and	 the	 sensory	 space.	The	emergence	of	 symbols	 can	be	understood	by	 the	geometric	
structure	of	the	system	configuration	space.	Such	a	structure	depends	on	the	role	of	the	sensors	
in	action	generation	and	control.	As	an	example,	in	a	recent	study,	we	highlighted	the	role	of	the	
gaze	to	explain	the	geometric	shape	of	human	locomotor	trajectories	(25).	
	
Whereas	an	action,	such	as	“walk	to”	or	“grasp”	is	defined	in	the	real	world,	it	originates	in	the	
control	 space.	The	 relationship	between	 “action	 in	 the	 real	world”	and	 “motion	generation”	 in	
the	 motor	 control	 space	 is	 defined	 in	 terms	 of	 differential	 geometry,	 linear	 algebra,	 and	
optimality	 principles	 (26,	 27).	 Optimal	 control	 is	 based	 on	 well-established	 mathematical	
machinery	 ranging	 from	 the	 analytical	 approaches	 initiated	 by	 Pontryagin	 (28)	 to	 the	 recent	
developments	 in	numerical	analysis	 (29).	 It	allows	 for	motion	segmentation	as	well	as	motion	
generation.	On	the	other	hand,	inverse	optimal	control	is	a	way	to	model	human	motion	in	terms	



of	controlled	systems.	Specifically,	if	given	an	underlying	hypothesis	of	a	system,	as	well	as	a	set	
of	 observed	 natural	 actions	 recorded	 from	 an	 experimental	 protocol	 performed	 on	 several	
participants,	 optimization	 acts	 to	 determine	 the	 cost	 function	 of	 the	 system.	 From	 a	
mathematical	 point	 view,	 the	 inverse	 problem	 is	much	more	 challenging	 than	 the	 direct	 one.	
Recent	 studies	 have	 been	 published	 in	 this	 area	 that	 have	 utilized	 numerical	 analysis	 (30),	
statistical	analysis	(31),	and	machine	learning	(32,	33).	
	
Movement	is	a	distinctive	attribute	of	living	systems.	Movement	is	the	source	of	action.	Robots	
are	 computer-controlled	 machines	 endowed	 with	 movement	 ability.	 Whereas	 living	 systems	
move	 to	 survive,	 robots	 move	 to	 perform	 actions	 defined	 by	 humans.	 Exploring	 the	
computational	 foundations	 of	 human	 action	 then	 appears	 as	 a	 promising	 route	 to	 better	
engineering	 the	 future	 humanoid	 robots.	 	 As	movement	 science,	 geometry	 offers	 the	 suitable	
abstraction	 allowing	 for	 fruitful	 dialog	 and	mutual	understanding	between	 roboticists	 and	 life	
scientists.	
	

 
 
 

 
 
 
Figure 1: An introductory example of embodied intelligence.  
Top panels. Scenario (a): The global task “Give me the ball” is decomposed into a sequence of sub-tasks [locate 
the ball], [walk to the ball], [grasp the ball], [locate the operator], [walk to the operator], and [give the ball]. The 
motions [walk to], [grasp], [give] appear as symbols of the decisional process that decomposes the task into sub-
tasks. 
Bottom panels. Scenario (b): To grasp the ball between its feet, the robot has to step away from the ball. In this 
experiment “stepping away” is not a software module, nor a symbol. It is an integral part of the embodied action 
“grasping.” 
The action in Scenario (a) is well segmented. The action in Scenario (b) is not: Unlike the command “walk to,” 
“stepping away” does not constitute a symbol.  
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