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Figure 1 Stones and hammers do not move by themselves. Movement is a prerogative of living

(and robot) system. Plants (and manipulator robots) moves to bring the world to them via

self-centered movements. Animals (and mobile robots) navigate to explore the world. Human

(and humanoid) actions are built from both type of movements.

Abstract

Robots move to act. Actions are defined and operate
in the physical space. At the same time motions origi-
nate in the robot motor control space. How to express
actions in terms of motions? Optimization-based se-
lection principles address these questions while opening
many computational challenges.

1 Action versus motion

Movement is a fundamental characteristic of living sys-
tems (Figure 1). Plants and animals have to move to
survive. Animals are distinguished from plants in that
they have to explore the world to feed. The carnivorius
plant remains at a fixed position to catch the imprudent
insect. Plants have just to make use of self-centered
motions. At the same time the cheetah has to go out
looking for food.

Feeding is a parangon of action. Any action in the
physical world requires self-centered movements, explo-
ration movements or a combination of both. By anal-
ogy, a manipulator robot makes use of self-centered mo-
tions, a mobile robot moves to explore the world and a
humanoid robot combines both types of motions.

Actions take place in the physical space. Motions
originate in the motor control space. Robots -as any
living system- access the physical space only indirectly
through sensors and motors. Robot motion planning
and control explore the relationship between physical,
sensory and motor spaces, the three spaces that are the

foundations of geometry [32]. How to translate actions
expressed in the physical space into a motion expressed
in motor coordinates? This is the fundamental robotics
issue of inversion.

In life sciences, it is recognized that optimality princi-
ples in sensorimotor control explain quite well empirical
observations, or at least in any case better than other
principles [40]. The idea to express robot actions as
motions to be optimized has been developed in robotics
since the nineteen-seventies with the seminal work by
Whitney [41]. It is now well developed in classical robot
control [37], and also along new paradigms jointly de-
veloped in multidisciplinary approaches [35]. Motion
optimization then appears to be a natural principle for
action selection. However, we have seen in the com-
panion paper [24] that optimality equations are most of
the time intractable and numerical optimization is no-
toriously slow in practice. The article intends to make
a short overview of recent progress in the area. We
first show how robot motion optimization techniques
should be viewed as action selection principles for re-
dundant robots. In that perspective, we overview re-
sults and challenges stimulated by recent applications
to humanoid robotics. The rest of the article is then
devoted to inverse optimal control as a means to better
understand natural phenomena and to translate them
into engineering. The question opens highly challeng-
ing problems. In that context, methods based on recent
polynomial optimization techniques appear complemen-
tary to classical machine learning approaches.
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2 From task space to control
space: power and limits of lin-
earization

Translating actions in terms of motions expressed in
the robot control space has received many wordings,
from the operational space formulation [19] to the task
function approach [34], to cite a few. The notion of
task encompasses the notion of action expressed in the
physical space. The task space may be the physical
space (like for putting a manipulator end effector to
some position defined in a world frame) or a sensory
space (like for tracking an object in a robot camera
frame). The role of the so-called task function is to
make the link between the task space and the control
space.

Due to the underlying highly non-linear transforma-
tions, the inversion problem is very costly to solve (min-
utes or hours of computation for seconds of motion). To
meet the time constraints imposed by the control fre-
quency of the robots, the problem is addressed only lo-
cally by considering the tangent spaces of both the task
space and the configuration space. Such a linearization
involves the Jacobian matrix [31] and resorts to all the
machinery of linear algebra. The linearization is par-
ticularly interesting as the tangent space of the config-
uration space gathers the configuration velocities that
usually contain the robot control inputs. Dynamic ex-
tensions of this principle allow considering torque-based
controls [19].

The Jacobian matrix varies with the robot configu-
ration, making the search for a trajectory non linear.
However, for a given configuration, it defines a linear
problem linking the unknown system velocity to the ve-
locity in the task space given as references. From a
numerical point of view, this problem is linear and can
easily be solved at each instant to obtain the system
velocity. The integration of this velocity from the ini-
tial configuration over a time interval draws a trajectory
tending to fulfill the task. The velocity can similarly be
applied in real-time by the robot to control it toward
the goal. The linear problem is re-initialized at each
new configuration updated with the sensor measure-
ments and the process is iterated. This iterative princi-
ple corresponds to the iterative descent algorithms (like
the gradient descent or the Newton-Raphson descent),
which are used to numerically compute the zero value
of a given function. However the method gives more:
the sequence of descent iterations, assuming small de-
scent steps, is a discretization of the real trajectory from
the initial trajectory to the goal. The drawback of the
instantaneous linearization is that it provides no look-
ahead capabilities to the control, which might lead the
robot to a local minimum, typically when approaching
non-convex obstacles. This is the well known curse of
linearization.

3 Motion selection: a question of
dimensionality

The dimension of the task space can be equal, greater
or lower than the dimension of the control space. For
the sake of simplification, let us consider the task space
as a manifold that expresses the position of the end-
effector of a fully actuated manipulator. When the di-
mensions of both the task space and the configuration
space are equal, each point in the task space defines a
single configuration! and the task function can be used
to drive the robot to a unique configuration. There
is no problem of motion selection. The Jacobian ma-
trix is square invertible and solving the linear problem
is easy. The task function approach was initially pro-
posed in this context to define admissibility properties
to connect two points of the configuration space while
avoiding singularities [34].

Optimization is used as motion selection principle in
the other cases. The choice of the optimization criterion
determines the way to invert the Jacobian matrix, as
explained in the following paragraphs.

When the task space has a larger dimension than the
configuration space, it is not always possible to find a
configuration satisfying the task target: the task func-
tion is not onto, i.e. the Jacobian matrix has more rows
than columns. It is then not possible to find a velocity
in the configuration tangent space that corresponds to
the velocity in the task tangent space. For instance, this
is the case in visual servoing when many points should
be tracked in a camera frame [4]. This is also the case
in simultaneous localization and mapping when opti-
mizing the positions of the camera with respect to the
landmarks [13]. Optimization is used to find a veloc-
ity that minimizes the error in the task tangent space.
The problem is then to minimize the distance to the
reference task vector. Generally, the reference task vec-
tor cannot be reached. In the special case, when the
reference belongs to the image space of the Jacobian,
the residual of the optimization is null. This is the case
in visual servoing, when the target image has been ac-
quired from a real scene with no noise.

On the contrary, if the dimension of the task space is
smaller than the dimension of the configuration space,
several configurations correspond to a single task. The
task function is not one-to-one, i.e. the Jacobian ma-
trix has more columns than rows. For instance this is
the case of a thirty-joint humanoid robot picking a ball
with its hand: the dimension of the task space is three
while the dimension of the configuration space is thirty.
Several motions may fulfill the task. The system is said
to be redundant with respect to the task. Optimization
is then used as a criterion to select one motion among
all the admissible ones. In that case, several vectors in
the configuration tangent space produce the same effect
in the task space. Equivalently, some velocities produce

1The non-linearities in the task function can generate a dis-
crete set of configurations accomplishing the task, corresponding
to several optima. In such cases, the discussion holds, but only
locally.



no effect in the task space. This subset of the configura-
tion tangent space is the kernel of the Jacobian matrix
and is called the null space of the task. Any velocity
in the null space leaves the task unchanged. Adding
up a given configuration tangent vector satisfying the
task with the null space gives the vector space of all ve-
locities satisfying the task. The minimization problem
consists in selecting one sample in this space, according
to some criteria, e.g. the least-norm velocity.

In general the task function may neither be onto nor
one-to-one, i.e. the Jacobian matrix is neither full row
rank (i.e. its rows are not linearly independent) nor full
column rank (i.e. its columns are not linearly indepen-
dant). In general, no vector in the configuration tangent
space satisfies the task (since the transformation is not
onto), and there is an infinity of vectors that minimize
the distance to the task vector in the task tangent space
(since the transformation is not one-to-one). Therefore
the selection problem becomes a double minimization
problem: we simultaneously minimize the distance to
the task and the norm of the configuration velocity. A
solution for this double minimization problem is given
by the Moore-Penrose pseudo-inverse [2], also called the
least-square inverse. Notice that other minimization
criteria may be considered in the same framework by
changing the metrics in the tangent spaces. For in-
stance, we can use weighted pseudo-inverses in which
the components of the system input (columns of the
Jacobian matrix) and the task residual (rows of the Ja-
cobian) do not receive the same weight. As before the
sum of the optimal vector with the null space gives the
set of all solutions that are optimal for the first problem
(smallest distance to the task) but only suboptimal for
the second one (smallest velocity norm).

4 Optimization as selection prin-
ciple

4.1 Stack of tasks for redundant sys-
tems

When a robot is redundant with respect to a task, it is
interesting to allocate it a secondary task. This is the
case for humanoid robots that can perform two tasks
simultaneously. Consider for instance two distinct task
functions dealing with the positions of the right and
left hands respectively. How to check if both tasks are
compatible? A simple idea consists is ordering the two
tasks. At each time step of the integration process, a
vector of the configuration tangent space associated to
the first task is selected. Then the secondary task is
considered only within the restricted velocity set lying
in the kernel of the first task. The reasoning that ap-
plies to the first task also applies to the projected sec-
ondary task: the task function may be onto, one-to-one
or neither of it. In particular, if it is not onto, the task
is said to be singular (in the sense that the Jacobian
is rank deficient). Two cases can be distinguished. If
the (not projected) secondary task function is not onto,

then the singularity is said to be kinematic: it is in-
trinsically due to the secondary task. On the opposite,
if the (not projected) secondary task function is onto,
then the singularity is said to be algorithmic: because
of a conflict with the main task, the secondary one be-
comes singular [5]. Outside of algorithmic singularities,
the two tasks are said to be compatible and the order
between them is irrelevant.

The projection process can be iterated for other tasks,
resulting in a so-called stack of tasks [26]. Doing so,
the dimension of the successive null spaces is decreas-
ing. The process stops either when all tasks have been
processed, or as soon as the dimension of the null-space
vanishes (see Figure 3). In the latter, we can still select
the minimun-norm vector among those in the remaining
null space.

The null space was first used in the frame of numer-
ical analysis for guiding the descent of sequential op-
timization [33]. It was used in robotics to perform a
positioning task with a redundant robot while taking
care of the joint limits [25]. A generalization to any
number of tasks was proposed in [30], and its recur-
sive expression was proposed in [38] (see also [1] in the
context of computer animation).

Here, we limit the presentation to inverse kinematics,
i.e. computing the robot velocities from reference veloc-
ity task constraints. The same approach can be used
in inverse dynamics, to compute the system torques
[19] (typically, joint torques, but also tendon forces or
other actuation parameters) from homogeneous opera-
tional constraints (typically, reference forces or acceler-
ations). In that case, the Euclidean norm is irrelevant,
and weighted inverses are generally preferred to enforce
minimum energy along the motion.

4.2 Stack of tasks, quadratic program-
ming and inequality constraints

A stack of tasks can be compared to quadratic program-
ming: a quadratic program is an optimization problem
that involves a set of linear constraints and a quadratic
cost (e.g. a linear function to be approximated in the
least-square sense). It is then similar to a stack with
two tasks: the first task, with higher priority, would be
the constraint, the secondary task would be the cost
to minimize. However the similarity is not total: the
constraint in a quadratic program is supposed to be ad-
missible (at least one feasible solution exists), while it
is not the case for the main task. Also a stack of tasks
can be extended to more than two tasks.

Up to now, we have considered that a task cor-
responds to an equality in the configuration tangent
space, to be satisfied at best in the least-square sense.
Consider now a region defined by a set of inequali-
ties: the robot can move freely inside the region but
should stay inside it; when the task becomes infeasi-
ble, it should minimize its distance to the region in the
least-square sense. Such inequality constraints can not
be solved directly with the method described above.



Historically, the first solution has been to set a zero
velocity in the task space when the inequality constraint
is satisfied. This is the artificial potential field approach
proposed by Khatib [18]: the target region is described
with a low or null cost, while the cost increases when
approaching to the limit of the region, following the be-
havior of the barrier functions used in the interior-point
numerical algorithms. The gradient of the function then
acts as a virtual force that pushes the robot inside the
region when approaching the region boundaries while it
has zero or very little influence inside the region.

For robot control, penalty functions are generally pre-
ferred to barrier functions, to prevent bad numerical
behavior when the robot is pushed to the limits. For a
single task or when the inequality task has the lowest
priority, the obtained behavior is then always satisfac-
tory: the robot does not have to move when the in-
equality is satisfied. However, it is difficult to enforce a
hierarchy using this approach. The gradient-projection
method [27] can be used if the inequality task has a
secondary importance, in particular when enforcing the
robot constraints in a very redundant context (for in-
stance, a three dimensional reaching task performed by
a 6-joint robot arm). When the inequality task has
the priority, the saturation of one boundary of the task
region will correspond to the allocation of one degree
of freedom?, which is allocated to fix the velocity or-
thogonal to the boundary. This degree of freedom is
thus not available anymore for any secondary task. On
the opposite, when freely moving inside the region (far
from the boundaries), this degree of freedom can be
used by the secondary tasks. In order to take advan-
tage of the redundancy offered inside the region defined
by the inequality constraints, the corresponding degrees
of freedom should be dynamically allocated. If the in-
equality constraint is satisfied, the degree of freedom is
left unallocated and can be used by a secondary task:
the constraint is said to be inactive. If the constraint
is violated, then the corresponding degree of freedom is
used to satisfy the constraint at best: the constraint is
said to be active.

The set of all active constraints is called the active
set. Active-set-search algorithms are iterative reso-
lution schemes searching over all possible active con-
straints. At each iteration, a candidate solution is com-
puted that fits the active constraints. Depending on the
status of the active and inactive constraints with respect
to the candidate solution, the active set is modified and
the process is iterated. Active-set-search algorithms are
classical to solve inequality-constrained quadratic pro-
grams. The priority order between multiple conflict-
ing objectives can be introduced, leading to hierarchical
quadratic programs [9]

Let us illustrate the stack-of-tasks framework from
the worked out example of HRP2 humanoid robot per-
forming two simultaneous reaching tasks, while respect-
ing equilibrium constraints. All elementary tasks are

2A degree of freedom is a linear combination of controls in the
configuration tangent space.

embedded into a single global trajectory. We will see
that the hierarchy introduced in quadratic program-
ming induces a structure in the task vector space. Do-
ing so, the global trajectory appears as a composition
of elementary movements, each of them characterizing
a given task (or subtask). Reverse engineering can then
be used to identify the ”meaning” of the motion, i.e.
the various tasks the motion is embedding.

5 DMotion as action signature: a
worked out example in hu-
manoid robotics

We overview here two practical applications of the stack
of tasks on the humanoid robot HRP23. The first one
shows how to express complex actions while involving
all body segments and respecting physical constraints.
The second application shows how it is possible to rec-
ognize actions from motion observation using reverse
engineering techniques.

5.1 From action to motion: the opti-
mization based selection principle
at work

The stack of tasks is a generic tool to generate and to
control a motion of the robot. Given an initial con-
figuration, a motion is generated by adding a set of
tasks into the stack and integrating the resulting veloc-
ity until the convergence of all the active tasks. The
stack of tasks can be used in various robotics scenarios.
In humanoid robotics, classical tasks deal for instance
with reaching (expressed as the placement of an end-
effector), visual servoing (expressed as the regulation of
the gaze on the position of an object in the image plane
of the robot camera), or quasi-static balance (expressed
as the regulation of the center-of-mass in such a way
that its projection on the floor lies inside the support
polygon of the feet).

For example, the motion in Figure 2-(top) is gener-
ated by constraining the two feet and the center of mass
to remain to their initial positions and by setting two
tasks to control the right hand and the gaze both to the
ball in front of the robot. The robot bends forward to
reach the ball. Doing so, it pushes the center of mass
forward. The left hand moves backward to compensate
for this motion of the center of mass. The motion of
the left hand does not answer a specific action. It is a
side-effect of the balance maintenance.

The motion can easily be modified by setting new
tasks or changing the desired value of the active tasks.
For example, the motion in Figure 2-(bottom) is gener-
ated by adding a task that regulates the position and
orientation of the left hand to the final placement of the
left hand in the first scenario. This new task is a reach-
ing task: the left hand has to reach a goal. The two

3A detailed presentation appeared in [12].



movements of the left hand in both scenarios look very
similar, but their meanings are different. In the first
case, the motion is not intentional: the left hand moves
to regulate the center-of-mass position; its motion is
then a side-effect of the other tasks. In the second case,
the motion is intentional: the left-hand explicitly moves
to reach a given target. A careful analysis of slight dif-
ferences between the two left hand motions allows to
eliminate the ambiguity. This is made possible by a
reverse engineering approach.

5.2 From motion to action: a reverse-
engineering approach of action
recognition

The hierarchy artificially decouples the tasks of the
stack in order to prevent any conflict between two differ-
ent tasks. A side effect is that the trajectory into a given
active task space is not influenced by any other task.
For example, on Figure 2-(bottom) the stack of tasks
enforces a decoupling for the left hand, which moves in-
dependently of the two other tasks. The trajectory in
one task space then constitutes a signature of the ac-
tivity of the task in the generation of the robot motion.

Consider now the following problem: we observed
the motion of a system whose possible controllers are
known. Observing only the joint trajectory, the ques-
tion is to reconstruct which of the possible controllers
were active and which were the associated parameters.
Recovering one task is easy: the configuration trajec-
tory is projected in all the candidate task spaces using
the corresponding task function. The best task is se-
lected by fitting the projected trajectory with the task
model (once more, the fitting and thus the selection is
done by optimization).

However, if the stack of tasks artificially decouples
the active tasks, some coupling between the candidate
tasks may occur: for example, there are a lot of similar-
ities between the trajectories of the wrist and the elbow
due to their proximity in the kinematic chain. These
similarities can lead to false positives in the detection.
To avoid this problem, only the most relevant task is
chosen first. The motion due to this task is then can-
celed by projecting the configuration trajectory in the
null space of the detected task. The detection algorithm
then iterates until all the tasks have been found, i.e. un-
til the remaining quantity of movement after successive
projections is null [12].

This detection algorithm can be used for example
to disambiguate the two similar-looking motions per-
formed in Figure 2, without using any contextual infor-
mation. An illustration of the successive projections is
given in Figure 3. The tasks are removed in the order
given by the detection algorithm. The right-hand task
is removed first (second row), followed by the center of
mass (third row): this cancels most of the motion of
the left hand because the coupling between the three
tasks is important; however a small part of left-hand
movement remains. On the contrary, the head move-
ment, which is nearly decoupled from the right-hand

and center-of-mass, remains important. It is totally
nullified after removing the gaze task (fourth row). The
remaining motion of the left hand can only be explained
by the left-hand task, which is detected active and then
removed. Finally, the two feet constraints are detected
and removed. The effect of the first foot removal (sixth
row) is noticeable.

The algorithm achieves very good performances to
recognize actions and to tell the differences between
similar-looking robot motions. Beyond robotics, the
method can be applied to human action recognition.
However, it requires a critical prerequisite: the knowl-
edge of the optimality principles grounding the motion
generation of intentional actions. Indeed, the algorithm
is based on action signatures that are the typical results
of a particular cost function. The approach also requires
a computational model of the coordination strategies
used by the human to compose several simultaneous
motion primitives. They are the promising routes for fu-
ture researches combining computational neuroscience
and robotics.

At this stage, we have seen how optimization princi-
ples and the notion of tasks help to ground a symbolic
representation of actions from motions: an action is
viewed as the result of an optimization process whose
cost represents the signature of the action. The next
section addresses the dual problem of identifying action
signatures from motions.

6 Inverse Optimal Control

Let us introduce the section by a case study taken from
humanoid robotics. Suppose we want a humanoid robot
to walk as a human, that is, following human-like tra-
jectories. So the question is: what are the computa-
tional foundations of human locomotion trajectories?
In a first stage, we showed that locomotor trajecto-
ries are highly stereotypical across repetitions and sub-
jects. The methodology is based on statistical analysis
of a huge motion capture data basis of trajectories (7
subjects, more that 1500 trajectories) [15]. Next, in
a second stage, it is assumed that human locomotion
trajectories obey some optimality principle. This is a
frequent hypothesis in human or animal motion stud-
ies. So the question is: which cost functional is min-
imized in human locomotion? In practice we consider
that the human and the robot obey the same model,
i.e. we know precisely the differential equation that de-
scribes the motions under some control action, and the
constraints that the state of the system should satisfy.
The data basis of trajectories is available. Then based
on this knowledge, determining a cost functional that
is minimized in human locomotion becomes an inverse
optimal control problem.

Pioneering work for inverse optimization in control
dates back to the nineteen-sixties in systems theory ap-
plied to economics [29]. Similarly, for optimal stabi-
lization problems, it was known that every value func-
tion of an optimal stabilization problem is also a Lya-



Simultaneous right-hand and left-hand reaching: the target imposed to the left hand is the final position
reached in the previous (right-hand only) movement.

Figure 2: FEzxamples of motions generated by the stack of task. Top: The stack of tasks is composed of three constraints
(both feet and center of mass should remain at a fized position; all of them are always feasible and satisfied) and two tasks to
control the gaze and the right hand. At the final configuration, the robot has reached the ball with its right hand and the ball
is centered in the robot field of view. The left hand had moved only to regulate the position of the center of mass. Bottom:
The motion is similar but a task has been added to control the position of the left hand: the desired position imposed to the
left hand is the final position reached by the left hand in the previous movement. The two motions look very similar, but their
“meanings” are different. In the top motion, the left hand moves to regulate the balance; in the bottom motion, the left hand

moves to reach a specific position.

punov function for the closed-loop system. Freeman
and Kokotovic [10] have shown that the reciprocal is
true: namely, every Lyapunov function for every stable
closed-loop system is also a value function for a mean-
ingful optimal stabilization problem.

In static optimization, the direct problem consists in
finding in some set K of admissible solutions a feasi-
ble point x that minimizes some given cost function f.
We state the associated inverse optimization problem
as follows: given a feasible point y in K , find a cost
criterion g that minimizes the norm of the error (g — f),
with g being such that y is an optimal solution of the
direct optimization problem with cost criterion g (in-
stead of f). When f is the null function, this is the
static version of the inverse optimal control problem.
Pioneering works date back to the nineteen-nineties for
linear programs, and for the Manhattan norm. For the
latter, the inverse problem is again a linear program of
the same form. Similar results also hold for inverse lin-
ear programs with the infinite norm. In Heuberger [14],
the interested reader will find a nice survey on inverse
optimization for linear programming and combinatorial
optimization problems. Note that, in inverse optimiza-
tion, the main difficulty lies in having a tractable char-
acterization of global optimality for a given point and
some candidate cost criterion. This is why most of all
the above works address linear programs or combinato-
rial optimization problems for which some characteriza-
tion of global optimality is available and can sometimes
be effectively used for practical computation. This ex-
plains why inverse (non linear) optimization has not
attracted much attention in the past.

Recently, some progress has been made in inverse

polynomial optimization, that is, inverse optimization
problems with polynomial objective function and semi-
algebraic set as feasible set of solutions [22]. Power-
ful representation results in real algebraic geometry [21]
permit to describe the global optimality constraint via
some certificate of positivity. These can be stated as
linear matrix inequalities (LMIs) on the unknown vec-
tor of coefficients of the polynomial cost function. The
latter set is a convex set on which we can optimize ef-
ficiently via semidefinite programming [23], a powerful
technique of convex optimization. Then, we can show
that computing an inverse optimal solution reduces to
solving a hierarchy of semidefinite programs of increas-
ing size.

Back to the inverse optimal control problem for an-
thropomorphic locomotion, we can consider a basis of
functions to express the cost function candidate. The
method proposed in [28] is based on two main algo-
rithms: an efficient direct multiple shooting technique
to handle optimal control problems, and a state of the
art optimization technique to guarantee a match be-
tween a solution of the (direct) optimal control problem
and measurements. Once an optimal cost function has
been identified (in the given class of basis functions),
we can implement a direct optimal control solution on
the humanoid robot. So far, the method is rather ef-
ficient at least on a sample of test problems. However
it requires to define an a priori class of basis functions.
Moreover, at each iteration of the algorithm, the direct
shooting method provides only a local optimal solution.
Thus, there is no guarantee of global optimality.

An alternative way to consider the problem is to ex-
tend the methodology developed for inverse polynomial



Figure 3: The original movement refers to Figure 7 (bottom): successive projection of the motion after detecting each of
the seven tasks. From top to bottom: original movement; removing the right-hand task; removing the center-of-mass task;

removing the gaze task; removing the left-hand task; removing the left foot task; removing the right-foot task. On the last row,
all the tasks are canceled, the projected movement is totally nullified.



optimization [22] to the context of inverse optimal con-
trol. Note that the Hamilton-Jacobi-Bellman (HJB)
equation is the perfect tool to certify global optimality
of a given state-control trajectory whenever the opti-
mal value function is known. So the basic idea is to
use a relaxed version of the HJB-optimality equation as
a certificate of global optimality for the experimental
trajectories stored in the data base. Then, the optimal
value function, which is generally assumed to be con-
tinuous, can be approximated on a compact domain by
a polynomial. If we search for an integral cost func-
tional whose integrand & is also a polynomial, then this
certificate of global optimality can be used to compute
h and an associated (polynomial) optimal value func-
tion by solving a semidefinite program. Proceeding as
in [22], we solve a hierarchy of semidefinite programs
of increasing size. At each step of this hierarchy, either
the semidefinite program has no solution or any opti-
mal solution A is such that the trajectories of the data
base are global optimal solutions for the problem with
polynomial cost function h as integrand. The higher in
the hierarchy the better is the quality of the solution
(but also at a higher computational cost)

Apart from polynomial optimization techniques,
other approaches have been recently introduced with
a geometric perspective of optimal control theory. Sig-
nificant results have been obtained in the context of
pointing motions [3]: based on Thom transversability
theory, the cost structure is deduced from qualitative
properties highlighted by the experimental data. These
can be for instance the characterization of inactivity in-
tervals of the muscles during the motion. Such a qual-
itative approach has been also successfully applied to
human locomotion [6].

We have introduced the inverse optimal control prob-
lem from the perspective of biomimetic approaches to
robot control. The question is: how to synthesize nat-
ural motion laws to deduce from them optimal control
models for robots? We emphasized recent developments
in inverse polynomial optimization. It should be no-
ticed that this viewpoint is far from covering all the
approaches to inverse optimal control. Inverse optimal
control is also an active research area in machine learn-
ing. In the context of reinforcement learning [16, 20],
inverse reinforcement learning constitutes another res-
olution paradigm based on Markov decision processes
with spectacular results on challenging problems such as
helicopter control [7]. The method corpus comes from
stochastic control (see [20] and references therein.)

7 Computation: a practical or
theoretical problem?

In computer animation optimization-based motion gen-
eration is experienced as giving excellent results in
terms of realism in mimicking nature. For instance,
it is possible to use numerical optimization to simulate
very realistic walking, stepping or running motions for
human-like artifacts. These complex body structures

include up to 12 body segments and 25 degrees of free-
dom [36]. At first glance, the approach a priori applies
to humanoid robotics. An example where the robot
HRP2 steps over a very large obstacle is given in Fig-
ure 4-(top).

However robotics imposes physical constraints that
are absent from the virtual worlds and that require com-
putation performance. Biped walking is a typical exam-
ple where the technological limitation implies a search
of alternative formulations. The bottleneck is the ca-
pacity of the control algorithm to meet the real-time
constraints.

In the current model-based simulation experiments
the time of computation is evaluated in minutes.
Minute is not a time scale compatible with real-time.
For instance, computation time upper-bounds of few
milliseconds are required to ensure the stability of a
standing-up humanoid robot. So taking advantage of
general optimization techniques for real-time control
necessary requires to build simplified models or to de-
velop dedicated methods. The issue constitutes an ac-
tive line of research combining robot control and nu-
merical optimization.

An example is given by the research on walking mo-
tion generation for humanoid robots. The most popu-
lar walking pattern generator is based on a simplified
model of the anthropomorphic body: the linearized in-
verted pendulum model. It was introduced in [17] and
developed for the HRP2 humanoid robot. The method
is based on two major assumptions: (1) the first one
simplifies the control model by imposing a constant al-
titude of the center of mass; (2) the second one as-
sumes the knowledge of the foot prints. Assumption
(1) has the advantage to transform the original nonlin-
ear problem into a linear one. The corresponding model
is low dimensioned and it is possible to address (1) via
an optimization formulation [8]. With this formula-
tion, assumption (2) is no longer required. The method
then gives rise to an on-line walking motion genera-
tor with automatic foot step placement. This is made
possible by a linear model-predictive control whose as-
sociated quadratic program allows much faster control
loops than the original ones in [17]. Indeed, running the
full quadratic program takes less than 1lms with state
of the art solvers. More than that, in this specific con-
text, it is possible to devise an optimized algorithm that
reduces by 100 the computation time of a solution [§].

An example of this approach is given in Figure 4-
(bottom) that makes the real HRP2 step over an ob-
stacle. The approach based on model reduction enables
the robot to be controlled in real-time. However, the
reduced model does not make a complete use of the
robot dynamics. The generated movement is less opti-
mal than when optimizing the robot whole-body trajec-
tory. Consequently, it is not possible to reach the same
performances (in this case, the same obstacle height):
the whole-body optimization enables the robot to reach
higher performances, but only offline. Reaching the
same performance online requires either more power-
full computers (running the same algorithms) or more



clever algorithms.

8 Conclusion

The notion of robot motion optimality is diverse in both
its definitions and its application domains. One goal
of this overview was to summarize several points of
view and references spread out over various domains:
robotics, control, differential geometry, numerical opti-
mization, machine learning, and even neurophysiology.

The objective was to stress the expressive power of
optimal motion in robot action modeling and to present
current challenges in numerical optimization for real-
time control of complex robots, like the humanoids.
A second objective was to report recent issues in in-
verse optimal control. While its stochastic formulation
is popular in machine learning, other paradigms are cur-
rently emerging in differential geometric control theory
and polynomial optimization.

As testified in a companion paper [24], robotics of-
fers rich benchmarks for optimal control theory. Due
to real-time computation constraints imposed by effec-
tive applications, robotics also induces challenges to nu-
merical optimization. The difficulty for roboticists is to
find the right compromise between generality and speci-
ficity. General algorithms suffer from the classical curse
of dimensionality that constitutes a bottleneck for robot
control. Therefore, they may be used for off-line motion
generation, but they are inefficient for real-time appli-
cations. Real-time robot control requires very fast com-
putations. It requires dedicated numerical optimization
methods. We have seen how bipedal walking illustrates
this tension between generality and specificity. Roboti-
cists are today asking optimization theorists for more
efficient algorithms, while they are developing at the
same time a specific know-how to this end.

Last but not least, let us conclude by referring to a
controversy introduced by neurophysiologist K. Friston.
In a recent paper [11], he asks the provocative question:
“Is optimal control theory useful for understanding mo-
tor behavior or is it a misdirection?” He opposes to op-
timal control the competitive notion of active inference.
While the paper is mainly dedicated to motor control
in life sciences, the issue is of crucial and utmost inter-
est for roboticists and pleads to a reinforcement of the
cooperation between life and engineering sciences.
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Figure 4: Two stepping movements obtained with (top) a whole-body trajectory optimization [36] (courtesy from K. Mombaur)
and (bottom) a linearized-inverted-pendulum based walking pattern generator [17] (courtesy from O. Stasse [39]). The whole-

body optimization enables the robot to reach higher performances but the numerical resolution is yet too slow to obtain an
effective controller.





