N
N

N

HAL

open science

Optimality in Robot Motion: Optimal Versus Optimized
Motion

Jean-Paul Laumond, Nicolas Mansard, Jean-Bernard Lasserre

» To cite this version:

Jean-Paul Laumond, Nicolas Mansard, Jean-Bernard Lasserre. Optimality in Robot Motion: Optimal
Versus Optimized Motion. Communications of the ACM, 2014, 57 (9), pp.82 - 89. 10.1145/2629535 .

hal-01376749

HAL Id: hal-01376749
https://hal.science/hal-01376749
Submitted on 7 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01376749
https://hal.archives-ouvertes.fr

Optimality in Robot Motion:
Optimal versus Optimized Motion

Jean-Paul Laumond

Abstract

The paper emphasizes the distinction between an op-
timal robot motion and a robot motion resulting from
the application of optimization techniques. Most of the
time, optimal motions do not exist and when they exist
they are difficult to compute. A clear distinction should
be made between optimal motion planning and motion
optimization.

1 Introduction

The first book dedicated to “Robot Motions” was pub-

lished in 1982 with the subtitle “Planning and Con-
trol” [5]. The distinction between motion planning
and motion control has mainly historical roots. Some-
times motion planning refers to geometric path plan-
ning, sometimes it refers to open loop control; some-
times motion control refers to open loop control, some-
times it refers to close loop control and stabilization;
sometimes planning is considered as an off-line process
whereas control is real-time. From a historical perspec-
tive, robot motion planning arose from the ambition to
provide robots with motion autonomy: the domain was
born in the computer science and artificial intelligence
communities [22]. Motion planning is about deciding
on the existence of a motion to reach a given goal and
computing one if this one exists. Robot motion control
arose from manufacturing and the control of manipu-
lators [30] with rapid effective applications in automo-
tive industry. Motion control aims at transforming a
task defined in the robot workspace into a set of con-
trol functions defined in the robot motor space: a typ-
ical instance of the problem is to find a way for the
end-effector of a welding robot to follow a predefined
welding line.

What kind of optimality is about in robot motion?
Many facets of the question are treated independently
in different communities ranging from control and com-
puter science, to numerical analysis and differential ge-
ometry, with a large and diverse corpus of methods in-
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cluding e.g. the maximum principle, the applications
of Hamilton-Jacobi-Bellman equation, quadratic pro-
gramming, neural networks, simulated annealing, ge-
netic algorithms, or Bayesian inference. The ultimate
goal of these methods is to compute a so-called optimal
solution whatever the problem is. The objective of the
paper is not to overview this entire corpus that follows
its own routes independently from robotics, but rather
to emphasize the distinction between “optimal motion”
and “optimized motion”. Most of the time, robot algo-
rithms aiming at computing an optimal motion provide
in fact an optimized motion which is not optimal at
all, but is the output of a given optimization method.
Computing an optimal motion is mostly a challenging
issue as it can be illustrated by more than twenty years
of research on wheeled mobile robots (Section 8).

Note that the notion of optimality in robot motion
as it is addressed in this paper is far from covering all
the dimensions of robot motion [7]. It does account
neither for low level dynamical control, nor for sensory-
motor control, nor for high level cognitive approaches
to motion generation (e.g., as developed in the context
of robot soccer or in task planning).

2 What is Optimal in Robot Mo-
tion Planning and Control?

Motion planning explores the computational founda-
tions of robot motion, by facing the question of the
existence of admissible motions for robots moving in an
environment populated with obstacles: how to trans-
form the continuous problem into a combinatorial one?

This research topic [22, 26] evolved in three main
stages. In the early 80’s, Lozano Perez first trans-
formed the problem of moving bodies in the physical
space into a problem of moving a point in some so-
called configuration space [28]. In doing so, he initiated
a well-defined mathematical problem: planning a robot
motion is equivalent to searching for connected compo-
nents in a configuration space. Schwartz and Sharir
then show that the problem is decidable as soon as
we can prove that the connected components are semi-
algebraic sets [35]. Even if a series of papers from com-
putational geometry explored various instances of the
problem, the general “piano mover” problem remains
intractable [14]. Finally by relaxing the completeness
exigence for the benefit of probabilistic completeness,
Barraquand and Latombe introduced in the early 90’s



a new algorithmic paradigm [3] that gave rise to the
popular probabilistic roadmap [20] and rapid random
trees [27] algorithms.

Motion planning solves a point-to-point problem in
the configuration space. Whereas the problem is a dif-
ficult computational challenge that is well understood,
optimal motion planning is a much more difficult chal-
lenge. In addition to finding a solution to the plan-
ning problem (i.e. a path that accounts for collision-
avoidance and kinematic constraints if any), optimal
motion planning refers to finding a solution that opti-
mizes some criterion. These can be the length, the time
or the energy (which are equivalent criteria under some
assumption), or more sophisticated ones, as the number
of maneuvers to park a car.

In such a context many issues are concerned with
optimization:

e For a given system, what are the motions optimiz-
ing some criteria? Do such motions exist? The
existence of optimal motion may depend either on
the presence of obstacles or on the criterion to be
optimized (Section 3).

e When optimal motions exist, are they computable?
If so, how complex is their computation? How
to relax exactness constraints to compute approxi-
mated solutions? Section 4 addresses the combina-
torial structure of the configuration space induced
by the presence of obstacles and by the metric to be
optimized. Time criterion is considered in Section
5, while Section 6 overviews practical approaches
to optimize time along a predefined path.

e Apart from finding a feasible solution to a given
problem, motion planning also wants to optimize
this solution once it has been found. The question
is particularly critical for the motions provided by
probabilistic algorithms that introduce random de-
tours. The challenge here is to optimize no more
in the configuration space of the system, but in the
motion space (Section 7).

In the rest of the paper, optimal motion planning
is understood with the underlying hypothesis that the
entire robot environment is known and the optimization
criterion is given: the quest is to find a global optimum
without considering any practical issue such as model
uncertainties or local sensory feedback.

However, most of the time, robots do not have ac-
cess to a global knowledge of their environment. So
the problem of optimal motion planning becomes a lo-
cal one. At a given time, we can only use the par-
tial information available. This means that the optimal
motions deal with solutions of local optimization prob-
lems. They may be computed on line giving rise to
real-time implementations based on sensory feedback
information, as we will discuss it in the companion pa-
per [23].

3 Optimal Motion Existence

Before trying to compute an optimal motion, the first
question to ask is about its existence. To give some in-
tuition about the importance of this issue, consider a
mobile robot moving among obstacles. For some right-
ful security reason, the robot cannot touch the obsta-
cles. In mathematical language, the robot has to move
in an open domain of the configuration space. Yet, an
optimal motion to go from one place to another one lo-
cated behind some obstacle will necessarily touch the
obstacle. So this optimal motion is not a valid one. It
appears as an ideal motion that cannot be reached. The
best we can do is to get a collision-free motion whose
length approaches the length of this ideal shortest (but
non-admissible) motion. In other words, there is no
optimal solution to the corresponding motion planning
problem. The question here is of topological nature:
combinatorial data structures (e.g. visibility graphs)
may allow to compute solutions that are optimal in the
closure of the free space, and that are not solutions at
all in the open free space.

Even without obstacle, the existence of an optimal
motion is far from being guaranteed. In determinis-
tic continuous-time optimal control problems we usu-
ally search for a time-dependent control function that
optimizes some integral functional over some time in-
terval.

Addressing the issue of existence requires to resort to
geometric control theory [18]: For instance, Fillipov’s
theorem proves the existence of minimum-time trajecto-
ries!, whereas Prontryagin Maximum Principle (PMP)
or Boltyanskii’s conditions give respectively necessary
and sufficient conditions for a trajectory to be optimal.
However it is usually difficult to extract useful informa-
tion from these tools. If PMP may help to character-
ize optimal trajectories locally, it generally fails to give
their global structure. Section 8 shows how subtle the
question may be in various instances of wheeled mobile
robots.

The class of optimal control problems for which the
existence of an optimal solution is guaranteed, is lim-
ited. The minimum time problems for controllable lin-
ear systems with bounded controls belong to this class:
optimal solutions exist and optimal controls are of bang-
bang type. However the so-called Fuller problem may
arise: it makes the optimal solution not practical at all
as it is of bang-bang type with infinitely many switches.
Other examples include the famous linear-quadratic-
Gaussian problem (the cost is quadratic and the dy-
namics is linear in both control and state variables),
and systems with a bounded input and with a dynam-
ics that is affine in the control variables. In the former a
closed loop optimal solution can be computed by solv-
ing algebraic Riccati equations, whereas in the latter
the existence of an optimal control trajectory is guar-
anteed under some appropriate assumptions.

In more general cases, we can only hope to approx-

1Here and in the following, we use the terms trajectory and
motion as synonyms.



Fig. 1: A modern view of the “piano-mover” problem: two
characters have to move a piano while avoiding surrounding
obstacles.

imate as closely as desired the optimal value via a se-
quence of control trajectories. There is indeed no op-
timal solution in the too restricted space of considered
control functions. This has already been realized in the
nineteen-sixties. The limit of such a sequence can be
given a precise meaning as soon as we enlarge the space
of functions under consideration. For instance, in the
class of problems in which the control is affine and the
integral functional is the L;i-norm, the optimal control
is a finite series of impulses and not a function of time
(see e.g. [29]). In some problems such as the control
of satellites, such a solution makes sense as it can ap-
proximately be implemented by gas jets. However, in
general, it cannot be implemented because of the phys-
ical limitations of the actuators.

Changing the mathematical formulation of the prob-
lem (e.g., considering a larger space of control candi-
dates) may allow the existence of an optimal solution.
In the former case of satellite control, the initial formu-
lation is coherent as an “ideal” impulse solution can be
practically approximated by gas jets. However, in other
cases the initial problem formulation may be incorrect
as an ideal impulse solution is not implementable. In-
deed, if we “feel” that a smooth optimal solution should
exist in the initial function space considered and if in
fact it does not exist, then either the dynamics and/or
the constraints do not reflect appropriately the physi-
cal limitations of the system or the cost functional is
not appropriate to guarantee the existence of an opti-
mal solution in that function space. To the best of our
knowledge, this issue is rarely discussed in textbooks or
courses in optimal control.

4 Optimal Path Planning

Considering that a motion is a continuous function of
time in the configuration (or working) space, the im-
age of a motion is a path in that space. The “piano
mover” problem refers to the path planning problem,
i.e. the geometric instance of robot motion planning.
The constraint of obstacle avoidance is taken into ac-
count (see Fig. 1). In that context, optimality deals

with the length of the path without considering time
and control. The issue is to find a shortest path be-
tween two points.

Depending on the metric that equips the configura-
tion space, a shortest path may be unique (e.g. for the
Euclidean metric) or not unique (e.g. for the Manhat-
tan metric). All configuration space metrics are equiv-
alent from a topological point of view (i.e. if there is
a sequence of Euclidean path linking two points, then
there is also a sequence of Manhattan paths linking
these two points). However, different metrics induce
different combinatorial properties in the configuration
space. For instance, for a same obstacle arrangement,
two points may be linked by a Manhattan collision-free
path, while they cannot by a collision-free straight line
segment: both points are mutually visible in a Man-
hattan metric, while they are not in the Euclidean one.
So, according to a given metric, there may or may not
exist a finite number of points that “watch” the entire
space [25]. These combinatorial issues are particularly
critical to devise sampling based motion planning algo-
rithms.

Now, consider the usual case of a configuration space
equipped with an Euclidean metric. Exploring visibility
graph data structures easily solves the problem of find-
ing a bound on the length of the shortest path among
polygonal obstacles. This is nice, but this is no longer
true if we consider three-dimensional spaces populated
with polyhedral obstacles. Indeed finding the short-
est path in that case becomes a NP-Hard problem [14].
So, in general, there is no hope to get an algorithm
that computes an optimal path in presence of obsta-
cles, even if the problem of computing an optimal path
in the absence of obstacle is solved and even if we allow
the piano-robot to touch the obstacles.

As a consequence of such poor results, optimal path
planning is usually addressed by means of numerical
techniques. Among the most popular ones are the dis-
crete search algorithms operating on bitmap represen-
tations of work or configuration spaces [3]. The out-
puts we only obtain are approximately optimal paths,
i.e. paths that are “not so far” from a hypothetical (or
ideal) estimated optimal path. Another type of meth-
ods consists in modeling the obstacles by repulsive po-
tential. In doing so, the goal is expressed by an at-
tractive potential, and the system tends to reach it by
following a gradient descent [21]. The solution is only
locally optimal. Moreover, the method may get stuck
in a local minimum without finding a solution, that a
solution actually exists or not. So it is not complete.
Some extensions may be considered. For instance ex-
ploring harmonic potential fields [8] or devising clever
navigation functions [34] allow providing globally opti-
mal solutions; unfortunately, these methods require an
explicit representation of obstacles in the configuration
space which is generally not an available information.
At this stage, we can see how the presence of obstacles
makes optimal path planning a difficult problem.



5 Optimal Motion Planning

In addition to obstacle avoidance, constraints on robot
controls or robot dynamics add another level of diffi-
culties. The goal here is to compute a minimal-time
motion that goes from a starting state (configuration
and velocity) to a target state while avoiding obstacles
and respecting constraints on velocities and accelera-
tion. This is the so-called kinodynamic motion planning
problem [12]. The seminal algorithm is based on dis-
cretizations of both the state space and the workspace.
It gave rise to many variants including nonuniform dis-
cretization, randomized techniques, and extensions of
A* algorithms (see [26]). They are today the best algo-
rithms to compute approximately optimal motions.

Less popular in the robot motion planning commu-
nity are numerical approaches to optimal robot con-
trol [11]. Numerical methods to solve optimal control
problems fall into three main classes. Dynamic pro-
gramming implements the Bellman optimality princi-
ple saying that any sub-motion of an optimal motion
is optimal. This leads to a partial differential equa-
tion (the so-called Hamilton-Jacobi-Bellman equation
in continuous time) whose solutions may sometimes be
computed numerically. However dynamic programming
suffers from the well-known curse of dimensionality bot-
tleneck. Direct methods constitute a second class. They
discretize in time both control and state trajectories
so that the initial optimal control problem becomes a
standard static non-linear programming (optimization)
problem of potentially large size, for which a large va-
riety of methods can be applied. However, generally,
local optimality is the best one can hope for. Moreover,
potential chattering effects may appear hidden in the
obtained optimal solution when there is no optimal so-
lution in the initial function space. Finally, in the third
category are indirect methods based on optimality con-
ditions provided by the PMP and for which, ultimately,
the resulting two-point boundary value problem to solve
(e.g. by shooting techniques) may be extremely diffi-
cult. In addition, the presence of singular arcs requires
specialized treatments. So direct methods are usually
simpler than indirect ones even though the resulting
problems to solve may have very large size. Indeed,
their structural inherent sparsity can be taken into ac-
count efficiently.

At this stage, we can conclude that exact solutions
for optimal motion planning remain today out of reach.
Only numerical approximate solutions are conceivable.

6 Optimal Motion
along a Path

Planning

A pragmatic way to by-pass (not overcome) the intrin-
sic complexity of the above kinodynamic and numer-
ical approaches is to introduce a decoupled approach
that solves the problem in two stages: first, an (opti-
mal) path planning generates a collision-free-path; then
a time-optimal trajectory along the path is computed

while taking into account robot dynamics and control
constraints. The resulting trajectory is of course not
time-optimal in a global sense; it is just the best tra-
jectory for the predefined path. From a computational
point of view, the problem is much simpler than the
original global one because the search space (named
phase plane) is reduced to two dimensions: the curvi-
linear abscissa along the path and its time-derivative.
Many methods have been developed since the introduc-
tion of dynamic programming approaches by Shin and
McKay [36] in configuration space and simultaneously
by Bobrow et al[4] in the Cartesian space. Many vari-
ants have been considered including the improvement
by Pfeiffer and Johanni [31] that combine forward and
backward integrations, until the recent work by Ver-
scheure et al [39] who transform the problem into a
convex optimization one.

7 Optimization in motion space

Extensions of path tracking methods may be considered
as soon as we allow the deformations of the support-
ing paths. In this section we assume that some motion
planner provides a first path (or trajectory). Depending
on the motion planner, the path may be far from being
optimal. For instance, probabilistic motion planners in-
troduce many useless detours. This is the price to pay
for their effectiveness. So, the initial path has to be
reshaped, i.e. optimized with respect to certain crite-
ria. Geometric paths require to be shortened according
to a given metric. The simplest technique consists in
picking pairs of points on the path and linking them
by a shortest path: if the shortest path is collision-
free, it replaces the corresponding portion of the initial
path. Doing so iteratively, the path becomes shorter
and shorter. The iterative process stops as soon as it
does not improve the quality of the path significantly.
The technique gives good results in practice.

Beside this simple technique, several variational
methods operating in the trajectory space have been
introduced.

Among the very first ones, Barraquand and Fer-
bach [2] propose to replace a constrained problem by
a convergent series of less constrained subproblems in-
creasingly penalizing motions that do not satisfy the
constraints. Each sub-problem is then solved using a
standard motion planner. This principle has been suc-
cessfully extended recently to humanoid robot motion
planning [9].

Another method introduced by Quinlan and Khatib
consists in modeling the motion as a mass-spring sys-
tem [32]. The motion then appears as an elastic band
that is reshaped according to the application of an en-
ergy function optimizer. The method applies for non-
holonomic systems as soon as the nonholonomic metric
is known [16] as well as for real-time obstacle avoidance
in dynamic environments [6].

Recently, successful improvements have been intro-
duced by following the same basic principle of optimiz-
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Fig. 2: A car (logo of the European Project Esprit 3 PRO-
Motion in the 90’s) together with the unicycle model equa-
tions.

ing an initial guess in motion space. Zucker et al take
advantage of a simple functional expressing a combina-
tion of smoothness and clearance to obstacles to apply
gradient descent in the trajectory space [40]. A key
point of the method is to model a trajectory as a geo-
metric object, invariant to parametrization. In the same
framework, Kalakrishman et al propose to replace the
gradient descent with a derivative-free stochastic op-
timization technique allowing to consider non-smooth
costs [19].

8 What we know and what we do
not know about optimal mo-
tion for wheeled mobile robots

Mobile robots constitute a unique class of systems
for which the question of optimal motion is best un-
derstood. Since the seminal work by Dubins in the
nineteen-fifties [13], optimal motion planning and con-
trol for mobile robots has attracted a lot of interest.
We briefly review how some challenging optimal con-
trol problems have been solved and which problems still
remain open.

Let us consider four control models of mobile robots
based on the model of a car (Fig. 2). Two of them are
simplified models of a car: the so-called Dubins (Fig. 3)
and Reeds-Shepp (Fig. 4) cars respectively. Dubins car
moves only forward. Reed-Shepp car can moves forward
and backward. Both of them have a constant velocity of
unitary absolute value. Such models account for a lower
bound on the turning radius, i.e. the typical constraint
of a car. Such a constraint does not exist for a two-wheel
differentially driven mobile robot. This robot may turn
on the spot while a car can’t. Let us consider two simple
controls schemes of a two-driving wheel mobile robot?:
in the first one (Hilare-1), the controls are the linear
velocities of the wheels; in the second one (Hilare-2), the

2The distance between the wheels is supposed to be 2.
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Fig. 4: Reeds-Shepp car

controls are the accelerations (i.e. the second system is
a dynamic extension of the first).

8.1 Time-optimal trajectories

Car-like robots of Figures 3 and 4 represent two exam-
ples of non linear systems for which we know exactly
the structure of the optimal trajectories. Note that in
both examples the norm of the linear velocity is as-
sumed to be constant. In those cases, time-optimal tra-
jectories are supported by the corresponding shortest
paths. Dubins solved the problem for the car moving
only forward [13]. More than thirty years after, Reeds
and Shepp [33] solved the problem for the car moving
both forwards and backwards. The problem has been
completely revisited with the modern perspective of ge-
ometric techniques in optimal control theory [38, 37]:
the application of PMP shows that optimal trajectories
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Fig. 6: Hilare-1: a differential drive mobile robot. First model: the controls are the velocities of the wheels.
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Fig. 7: Hilare-2: a differential drive mobile robot. Second model: the controls are the acceleration of the wheels.
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Fig. 5: The Hilare robot at LAAS-CNRS in the 80’s

are made of arcs of a circle of minimum turning ra-
dius (bang-bang controls) and of straight line segments
(singular trajectories). The complete structure is then
derived from geometric arguments that characterize the
switching functions. Dubins and Reeds-Shepp cars are
among the few examples of non linear systems for which
optimal control is fully understood. The same method-
ology applies for velocity-based controlled differential
drive vehicles (Hilare-1 in Fig. 6). In that case, optimal
trajectories are bang-bang, i.e. made of pure rotations
and straight line segments. The switching functions are
also fully characterized [1]. This is not the case for the
dynamic extension of the system, i.e. for acceleration-
based controlled differential drive vehicle (Hilare-2 in
Fig. 7). Only partial results are known: optimal tra-
jectories are bang-bang (i.e. no singular trajectory ap-
pears) and are made of arcs of clothoid and involutes of

a circle [15]. However, the switching functions remain
unknown. The synthesis of optimal control for Hilare-2
system is still an open problem.

While the existence of optimal trajectories is proven
for the four systems above, a last result is worth men-
tioning. If we consider the Reeds-Shepp car optimal
control problem in presence of an obstacle, even if we
allow the car touching the obstacles, it has been proven
that a shortest path may not exist [10].

8.2 Motion planning

The results above are very useful for motion planning in
the presence of obstacles. In Figures 3 and 4 we display
the reachable domain for both Dubins and Reeds-Shepp
cars. While the reachable set of Reeds-Shepp car is a
neighborhood of the origin, it is not the case for Dubins
car. Stated differently, Reeds-Shepp car is small-time
controllable, while Dubins car is only controllable. The
consequence in terms of motion planning is important.
In the case of Reeds and Shepp car, any collision-free —
not necessarily feasible— path can be approximated by a
sequence of collision-free feasible paths. Optimal paths
allow to build the approximation, giving rise to an ef-
ficient motion planning algorithm [24]. Not only such
algorithm does not apply for Dubins car, but also we
even do not know today whether the motion planning
problem for Dubins car is decidable or not.



In [24], we prove that the number of maneuvers to
park a car varies as the inverse of the square of the
clearance. This result is a direct consequence of the
shape of the reachable sets. So, the combinatorial com-
plexity of (nonholonomic) motion planning problems is
strongly related to optimal control and the shape of the
reachable sets in the underlying (sub-Riemannian) ge-
ometry [17].

9 Conclusion

When optimal solutions cannot be obtained for theo-
retical reasons (e.g., non existence) or for practical ones
(e.g., untractability), we have seen how the problem can
be reformulated either by considering a discrete repre-
sentation of space and/or time, or by slightly changing
the optimization criterion, or by resorting to numeri-
cal optimization algorithms. In all these cases, the re-
sulting solutions are only approximated solutions of the
original problem.

In conclusion to this rapid overview, it appears that
the existence of optimal robot motions is rarely guar-
anteed. When it is, finding a solution has never been
proven to be a decidable problem as the motion plan-
ning problem is. So, “optimal motion” is most of the
time an expression that should be understood as “opti-
mized motion”, i.e. the output of an optimization nu-
merical algorithm. However, motion optimization tech-
niques follow progress in numerical optimization with
effective practical results on real robotic platforms, if
not with new theoretical results.

The distinction between optimal and optimized mo-
tions as it is addressed in this paper is far from covering
all facets of optimality in robot motion. In the compan-
ion paper [23] we consider the issue of motion optimalily
as an action selection principle and we discuss its links
with machine learning and recent approaches to inverse
optimal control.

Acknowledgments

The paper benefits from comments by Quang Cuong
Pham, from a carefull reading by Joel Chavas, and
above all, from the quality of the reviews. The work
has been partly supported by ERC Grant 340050 Ac-
tanthrope, by a grant of the Gaspar Monge Program for
Optimization and Operations Research of the F! dération
Mathématique Jacques Hadamard (FMJH) and by the
grant ANR 13-CORD-002-01 Entracte.

References

[1] D. Balkcom and M. Mason. Time optimal trajec-
tories for differential drive vehicles. The Interna-
tional Journal of Robotics Research, 21(3):199-217,
2002.

[2] J. Barraquand and P. Ferbach. A method
of progressive constraints for manipulation plan-

ning. IEEE Trans. on Robotics and Automation,
13(4):473-485, 1997.

J. Barraquand and J.-C. Latombe. Robot motion
planning: A distributed representation approach.
The International Journal of Robotics Research,
10(6):628-649, 1991.

J. Bobrow, S. Dubowsky, and J. Gibson. Time-
optimal control of robotic manipulators along spec-
ified paths. The International Journal of Robotics
Research, 4(3):3-17, 1985.

M. Brady, J. Hollerbach, T. Johnson, T. Lozano-
Pérez, and M. T. Masson. Robot motion: Planning
and Control. MIT Press, 1983.

O. Brock and O. Khatib. Elastic strips: A frame-
work for motion generation in human environ-
ments. The International Journal of Robotics Re-
search, 21(12):1031-1052, 2002.

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kan-
tor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA,
June 2005.

C. Connolly and R. Grupen. Applications of har-
monic functions to robotics. Journal of Robotic
Systems, 10(7):931-946, 1992.

S. Dalibard, A. E. Khoury, F. Lamiraux,
A. Nakhaei, M. Taix, and J.-P. Laumond. Dy-
namic walking and whole-body motion planning
for humanoid robots: an integrated approach. The

International Journal of Robotics Research, 32(9-
10):1089-1103, 2013.

G. Desaulniers. On shortest paths for a car-like
robot maneuvering around obstacles. Robotics and
Autonomous Systems, 17:139-148, 1996.

M. Diehl and K. Mombaur. Fast Motions in
Biomechanics and Robotics, volume 340 of Lec-
ture Notes in Control and Information Sciences

(LNCIS). Springer Berlin Heidelberg, 2006.

B. Donald, P. Xavier, J. Canny, and J. Reif. Kin-
odynamic motion planning. Journal of the ACM,
40(5):1048-1066, 1993.

L. Dubins. On curves of minimal length with a con-
straint on average curvature and with prescribed
initial and terminal positions and tangents. Amer-
ican Journal of Mathematics, 79:497-516, 1957.

J. Hopcroft, J. Schwartz, and M. Sharir. Plan-
ning, Geometry, and Complezity of Robot Motion.
Ablex, 1987.

P. Jacobs, J.-P. Laumond, and A. Rege. Non-
holonomic motion planning for HILARE-like mo-
bile robots. In M. Vidyasagar and M. Trivedi, ed-
itors, Intelligent Robotics. McGraw Hill, 1991.



[16]

[20]

[25]

28]

[29]

[30]

H. Jaouni, M. Khatib, and J.-P. Laumond. Elas-
tic bands for nonholonomic car-like robots: algo-
rithms and combinatorial issues. In P. Agarwal,
L. Kavraki, and M. Mason, editors, Robotics: The
Algorithmic Perspective. A.K. Peters, 1998.

F. Jean. Complexity of nonholonomic motion plan-
ning. International Journal of Control, T4(8):776—
782, 2001.

V. Jurdjevic. Geometric control theory. Cambridge
University Press, 1996.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pas-
tor, and S. Schaal. Stomp: Stochastic trajectory
optimization for motion planning. In IEEE Int.
Conf. on Robotics and Automation (ICRA), 2011.

L. Kavraki, P. Svestka, J.-C. Latombe, and
M. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration

spaces. IEEE Trans. on Robotics and Automation,
12(4):566-580, 1996.

O. Khatib. Real-time obstacle avoidance for ma-
nipulators and mobile robots. The International
Journal of Robotics Research, 5(1):90-98, 1986.

J.-C. Latombe. Robot Motion Planning. Kluwer
Academic Press, 1991.

J. Laumond, N. Mansard, and J. Lasserre. Robot
motion optimization as action selection principle.
Communications of the ACM, 2014. (to appear).

J.-P. Laumond, P. Jacobs, M. Taix, and R. Mur-
ray. A motion planner for nonholonomic mobile
robots. IEEFE Trans. on Robotics and Automation,
10(5):577-593, 1994.

J.-P. Laumond and T. Siméon. Notes on visibil-
ity roadmaps and path planning. In B. Donald,
K. Lynch, and D. Rus, editors, New Directions in
Algorithmic and Computational Robotics. A.K. Pe-
ters, 2001.

S. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, 2006.

S. LaValle and J. Kuffner. Rapidly-exploring ran-
dom trees: Progress and prospects. In B. Donald,
K. Lynch, and D. Rus, editors, Algorithmic and
Computational Robotics: New Directions, pages
293-308. A.K. Peters, 2001.

T. Lozano-Pérez. Spatial planning: A configura-
tion space approach. IFEFE Transactions on Com-
puters, 32(2):108-120, 1983.

L. Neustadt. Optimization, a moment problem and
non linear programming. SIAM J. Control, 2:33—
53, 1964.

R. Paul. Robot Manipulators: Mathematics, Pro-
gramming, and Control. MIT Press, Cambridge,
MA, USA, 1st edition, 1982.

[31]

[32]

[33]

[39]

[40]

F. Pfeiffer and R. Johanni. A concept for manipula-
tor trajectory planning. IEEFE Journal of Robotics
and Automation, 3(2), 1987.

S. Quinlan and O. Khatib. Elastic bands: connect-
ing path planning and control. In IEEE Int. Conf.
on Robotics and Automation (ICRA), 1993.

J. Reeds and L. Shepp. Optimal paths for a car
that goes both forwards and backwards. Pacific
Journal of Mathematics, 145(2):367-393, 1990.

E. Rimon and Koditschek. Exact robot navigation
using artificial potential fields. IEFE Trans. on
Robotics and Automation, 8(5):501-518, 1992.

J. Schwartz and M. Sharir. On the piano movers
problem II: general techniques for computing topo-
logical properties of real algebraic manifolds. Ad-
vances of Applied Mathematics, 4:298-351, 1938.

K. G. Shin and N. D. McKay. Minimum-time con-
trol of robotic manipulators with geometric path
constraints. IEEE Trans. on Automatic Control,
30(6):531-541, 1985.

P. Soueres and J.-P. Laumond. Shortest paths syn-
thesis for a car-like robot. IEEFE Trans. on Auto-
matic Control, 41(5):672-688, 1996.

H. Sussmann and G. Tang. Shortest paths for the
reeds-shepp car: a worked out example of the use
of geometric techniques in nonlinear optimal con-
trol. In SYCON 91-10, Department of Mathemat-
ics, Rutgers University, 1991.

D. Verscheure, B. Demeulenaere, J. Swevers, J. D.
Schutter, and M. Diehl. Time-optimal path track-
ing for robots: A convex optimization approach.
IEEE Trans. on Automatic Control, 54(10):2318—
2327, 2009.

M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko,
M. Klingensmith, C. Dellin, J. Bagnell, and
S. Srinivasa. Chomp: Covariant hamiltonian op-
timization for motion planning. The International
Journal of Robotics Research, 32(9-10):1164-1193,
2013.



