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August 29, 2017

Abstract

The spacetime evolution of massless spinning particles in a Robertson-Walker back-
ground is derived using the deterministic system of equations of motion due to Papapetrou,
Souriau and Saturnini. A numerical integration of this system of differential equations in
the case of the standard model of cosmology is performed. The deviation of the photon
worldlines from the null geodesics is of the order of the wavelength. Perturbative solu-
tions are also worked out in a more general case. An experimental measurement of this
deviation would test the acceleration of our expanding universe.

To the memory of Pierre Binétruy

1 Introduction

The discovery of the effect of photonic spin on the trajectory of polarized light rays (energy

fluxes) in optical media should historically be credited to Fedorov [17] and Imbert [22]

(for reflection). This subtle deviation from the Snell-Descartes law, see Figure 1 has been

recently revisited and is today known under the name of Spin Hall Effect of Light (SHEL)

either for reflection or for refraction. As shown in [2, 26, 3] by means of a semi-classical

limit of Maxwellian wave optics, light rays experience a tiny shift depending upon their

polarization state. This offset is of the order of magnitude of the wavelength and sideways,

namely normal to the incidence plane on an interface. The effect (not to be confused with
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the longitudinal Goos-Hänchen effect interpreted in terms of evanescent waves) can be

understood as a sort of photonic Magnus effect [2]. It is described in terms of a Berry

connection introduced in order to account for the interaction of the spin with the“gradient”

of the physical field, namely the refractive index in this case. Quite a large number of

articles following these references have, since then, been published in this rapidly evolving

subject in optics; see, e.g., [5] for an up-to-date overview. At this stage, it should be

emphasized that the SHEL, originally studied from a theoretical perspective, has lately

been observed experimentally using techniques of Weak Quantum Measurement [4, 21]

that are well adapted to wavelengths in the nanometer range. Hence the subject rests on

strong theoretical and also experimental bases.

the longitudinal Goos-Hänchen e↵ect interpreted in terms of evanescent waves) can be

understood as a sort of photonic Magnus e↵ect [2]. It is described in terms of a Berry

connection introduced in order to account for the interaction of the spin with the“gradient”

of the physical field, namely the refractive index in this case. Quite a large number of

articles following these references have, since then, been published in this rapidly evolving

subject in optics; see, e.g., [5] for an up-to-date overview. At this stage, it should be

emphasized that the SHEL, originally studied from a theoretical perspective, has lately

been observed experimentally using techniques of Weak Quantum Measurement [4, 21]

that are well adapted to wavelengths in the nanometer range. Hence the subject rests on

strong theoretical and also experimental bases.

++++++
333333

•
•

Figure 1: The Fedorov-Imbert e↵ect for reflection: A plane glass surface (repre-
sented by the rectangle) reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and reflected light
beams onto the glass surface. The dotted line (between the blobs) is the o↵set
between the reflected beam and a hypothetical reflected beam of spinless photons
(not shown in the figure). The o↵set is of the order of the wavelength of the light
beam.

It is noteworthy that the SHEL was shown to admit, rather unexpectedly, a full-

fledged description [13, 14] in terms of symplectic geometry based on the generic coadjoint

orbits of the Euclidean group E(3) with “built-in” Berry connection. This formalism was

then used to derive the equations of motion of photons in arbitrary inhomogeneous [13],

anisotropic [11] optical media, as well as polarized classical light rays in inhomogeneous

media [9]. The crux of the theory was the occurrence, via plain gravitational minimal

coupling, of a spin-curvature coupling term responsible for an anomalous velocity. It is

this specific geometrical standpoint, conveniently adapted to general relativity (GR), that

we will espouse in the present work.

With the advantage of our previous experience with SHEL, our purpose will therefore

2

Figure 1: The Fedorov-Imbert effect for reflection: A plane glass surface (repre-
sented by the rectangle) reflects an incoming, circularly polarized light beam. The
dashed lines indicate the orthogonal projections of incoming and reflected light
beams onto the glass surface. The dotted line (between the blobs) is the offset
between the reflected beam and a hypothetical reflected beam of spinless photons
(not shown in the figure). The offset is of the order of the wavelength of the light
beam.

It is noteworthy that the SHEL was shown to admit, rather unexpectedly, a full-

fledged description [13, 14] in terms of symplectic geometry based on the generic coadjoint

orbits of the Euclidean group E(3) with “built-in” Berry connection. This formalism was

then used to derive the equations of motion of photons in arbitrary inhomogeneous [13],

anisotropic [10] optical media, as well as polarized classical light rays in inhomogeneous

media [11]. The crux of the theory was the occurrence, via plain gravitational minimal

coupling, of a spin-curvature coupling term responsible for an anomalous velocity. It is

this specific geometrical standpoint, conveniently adapted to general relativity (GR), that

we will espouse in the present work.

With the advantage of our previous experience with SHEL, our purpose will therefore

be two-fold. We will first set up a purely geometric (and classical) formalism to describe
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the motion of spinning massless particles in GR. They are governed by highly non-linear

ordinary differential equations presented in Section 2.3 and specialized to the setting of

Robertson-Walker universes subsequently. Secondly, we will integrate numerically these

equations in the flat Lambda Cold Dark Matter model to analyse the new spin-effects.

They again feature offsets of the worldlines of light from the conventional null geodesics

used to define the redshift in cosmology. Again the offsets are of the order of magnitude

of the wavelength.

Let us mention, for completeness, independent contributions to the description of

spinning light rays in GR, starting from semi-classical approximations of the Maxwell

equations in a stationary [18] and static gravitational background [19]. For an overview

of the subject, let us refer to the review [6], and the textbook [36]. This is however not

the approach that we will follow.

It is also worthwhile recalling that the search for a consistent set of differential equa-

tions governing the motion of classical spinning particles in a general relativistic back-

ground has been a long-term endeavor for physicists. It certainly goes back to the first

breakthrough by Mathisson [24] and Papapetrou [27]. See also the more recent contri-

butions [35, 7, 8, 31, 33, 38], and [1] for relevant references. It would be inconceivable

to provide here a full and reasonably complete bibliography for this well-studied subject

which has, since then, triggered new developments in symplectic geometry, supergeometry,

etc.

Now, the main objective of the previous references was to describe the motions of

massive spinning particles in GR. Curiously enough, the case of massless particles endowed

with a classical spin seems to have escaped full consideration; see, however, Saturnini’s

thesis [28] in the wake of Souriau’s foundational memoir [31]. We also refer to the more

recent contribution [16].

The article is organized as follows.

In Section 2 we introduce the universal Mathisson-Papapetrou-Dixon Souriau equa-

tions of motion of classical spinning particles in an external gravitational field. We choose

to take advantage of the geometric derivation proposed by Souriau [31] based on a note-

worthy formulation of the principle of general covariance. The model is then turned into a

deterministic one by means of the so-called phenomenological Tulczyjew condition expres-

sing monolocality of the system. The massless case follows in a straightforward manner

and leads to a new set of equations of motion credited to Souriau [31] and Saturnini [28].

The latter system of differential equations is at the root of our analysis of the trajectories
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of spinning photons in the standard cosmological model. It is independently derived in

Appendix A. Moreover, universal Noetherian conservation laws associated with spacetime

isometries (and conformal rescalings) are worked out in a geometrical way.

Section 3 sets up the explicit form of the equations of motion of massless spinning

photons with helicity s = ±~ in a general Robertson-Walker background. These equations

turn out to describe the time evolution t 7→ (x(t),p(t), s(t)) of the position in comoving

coordinates, the spatial momentum, and the spin vector. Let us emphasize that spin

is no longer parallel to the momentum in GR under a mild assumption concerning the

spin-coupling term. The spin of photons is therefore not “enslaved” [15] and the resulting

extra degrees of freedom are responsible for their localization in curved spacetime — as

opposed to their well-known delocalization in Minkowski spacetime (see Footnote 3). This

is the fundamental point exploited here to describe the offset of the photon worldlines from

standard null geodesics.

Section 4 presents a numerical solution to the equations of motion in the particular

case of the flat Lambda Cold Dark Matter model.

Section 5 returns to flat Robertson-Walker universes and presents the general pertur-

bative solution to the equations of motion in first order.

2 Spinning light rays in general relativity

Let us first recall how the equations governing the motion of spinning classical particles

arise in general relativity. To that end, we shortly review Souriau’s derivation [31] based

on the principle of general covariance applied to the description of matter distributions.

We will then show how these equations of motion specialize to the massless case once a

specific equation of state has been imposed.

2.1 The Mathisson-Papapetrou-Dixon equations

Matter configurations may be viewed as distributions on the set of all Lorentzian metrics,

g, of a given spacetime manifold, M . (We will choose the signature (−,−,−,+), and

assume M to be time and spacetime oriented.) In particular, localized spinning particles

will be described by first-order tensor distributions, TC , supported by a worldline C,

parametrized by τ . Those are of the general form

〈TC , δg〉 =
1

2

∫
C

[Tµν δgµν + Θµνρ∇µδgνρ] dτ (2.1)
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where the compactly supported variations, δg, of the metric serve as test-functions; here,

T dτ and Θ dτ are tensor densities of the curve C that define the distribution TC .1

According to Souriau, the principle of general covariance does apply in this framework

by assuming that the value 〈TC , δg〉 be actually independent of the metric in the orbit

of g under all compactly supported diffeomorphisms of M ; this translates infinitesimally

to the following invariance property, namely

〈TC , LY g〉 = 0 (2.2)

for all vector fields, Y , with compact support in M . In (2.1) and (2.2), ∇ and L represent

the Levi-Civita connection and the Lie derivative, respectively.

This point of view, due to Souriau [31], is extremely convenient for the following

purposes:

• It solves the problem of the equations of motion, using only the invariance under the

group of spacetime diffeomorphisms of an otherwise unspecified matter Lagrangian.

• In the spinless case, it provides an elegant derivation of the geodesic equations, both

in the massive and massless case.

• It also works for extended particles, namely strings, branes, etc. In the case of a

continuous matter distribution, it leads readily to the conservation of the energy-

momentum tensor.

• For pointlike spinning particles, it yields in a straightforward manner the universal

Mathisson-Papapetrou-Dixon (MPD) equations.

• It produces in an algorithmic fashion the Noetherian conservation laws associated

with Killing vector fields independently of the choice of a matter Lagrangian.

The last two purposes will be what we are mainly concerned with in this article.

Elaborate calculations [31] show that (2.2) implies the following form of (2.1), namely

〈TC , δg〉 =
1

2

∫
C

[
PµẊν δgµν + SµνẊρ∇µδgνρ

]
dτ (2.3)

where the linear momentum P = (Pµ), the velocity Ẋ := dX/dτ = (Ẋµ), and the spin

tensor (Sµν), verifying Sµν + Sνµ = 0, at the spacetime location X(τ) ∈ C, turn out to

satisfy the so-called universal Mathisson-Papapetrou-Dixon (MPD) equations [24, 27, 7]

Ṗµ = −1

2
RµραβS

αβẊρ (2.4)

Ṡµν = PµẊν − P νẊµ. (2.5)

1Greek letters µ, ν, ρ, . . . represent everywhere spacetime coordinate indices varying from 1 to 4.
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Here Rµναβ = ∂αΓµβν − ∂βΓµαν + · · · denote the components of the Riemann curvature

of the Levi-Civita connection of (M, g), and the dot stands for the covariant derivative

along C, with respect to τ .

In some parts of the calculation we use linear maps, e.g., S = (Sµν), rather than 2-

tensors, (Sµν), where Sµν := Sµρgρν . We will refer to the former when we suppress indices,

e.g., Tr(S2) := SµνS
ν
µ. The skewsymmetry of (Sµν) translates to the skewsymmetry of S

with respect to the metric: g(SV,W ) = −g(V, SW ) for all vectors V and W . In the same

vein we denote by P the covector associated to the vector P via the metric: Pµ := gµρP
ρ.

The equations (2.4) and (2.5) are widely accepted as those governing the motions of

classical spinning particles under the influence of a gravitational field. They thus read in

coordinate-free form

Ṗ = −1

2
R(S)Ẋ (2.6)

Ṡ = PẊ − ẊP (2.7)

with the skewsymmetric linear map R(S) defined by

R(S)µν = Rµναβ S
αβ. (2.8)

In the sequel, we will use the shorthand P 2 = PµP
µ. Of course, we will ignore spacelike

momenta and the constraints of the model are therefore P 2 ≥ 0 and the skewness of S.

2.2 General conservation laws

If the equations of motion (2.4) and (2.5) hold, Equation (2.3) giving the expression of

the matter distribution yields furthermore [9, 31]

〈TC , LZg〉 =

∫
C
d(Ψ(Z)) (2.9)

for all vector field Z of M , where

Ψ(Z) = PµZ
µ +

1

2
Sµν∇µZν . (2.10)

Therefore, if Z happens to be a Killing vector field of (M, g), i.e., if LZg = 0, then (2.9)

readily entails that

Ψ(Z) = const (2.11)

is a first-integral of the MPD equations (2.6) and (2.7).
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The “moment map”, Ψ, of the isometries yields therefore conserved quantities for

spinning particles freely falling in the gravitational field. Let us emphasize that Equa-

tion (2.10) provides universal conservations laws, independently of any choice of equation

of state such as , e.g., (2.12). They will prove useful in the next sections where spacetime

will admit a large group of isometries.

2.3 The Souriau-Saturnini equations

The system (2.6) and (2.7) is non-deterministic as it clearly lacks an expression for the

velocity, Ẋ. In order to cure this indeterminacy, one has to impose equations of state (or

supplementary condition); one usually posits [37, 7, 31, 33, 20]2

SP = 0 (2.12)

which readily implies

Tr(S2) = const. (2.13)

We will furthermore show in Appendix A that the property of P 2 to be also a constant

of the motion, namely

P 2 = const (2.14)

is compatible with the equations of motion of MPD and the equation of state (2.12)

provided the following consistency condition holds everywhere on the worldline, namely

P 2 +
1

4
Tr(SR(S)) 6= 0. (2.15)

We may therefore promote these constants of the motion to constants of the system, and

consistently describe photons with the two further constraints

P 2 = 0 & − 1

2
Tr(S2) = s2 (2.16)

on mass and spin, where

s = ±~ (2.17)

denotes the scalar spin; the helicity (handedness) of the photon is sign(s).

2We favor the Tulczyjew constraint (2.12) instead of the Pirani condition SẊ = 0 for the following geometrical
reason. It does yield the standard 6-dimensional projective twistor spaces PT3

± as the symplectic spaces of
motions for spinning massless particles with helicity (2.17) in Minkowski spacetime. On the other hand, the
second condition yields another, 10-dimensional, coadjoint orbit of SU(2, 2) featuring, in flat spacetime, extra
degrees of freedom whose physical interpretation remains uncertain; see, e.g., [12].
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The choice (2.12) finally enables us to determine the velocity and, accordingly, the full

system of Souriau-Saturnini equations of motion which takes the very particular form [28]

Ẋ = P +
2

R(S)(S)
SR(S)P (2.18)

Ṗ = −s Pf(R(S))

R(S)(S)
P (2.19)

Ṡ = PẊ − ẊP (2.20)

where3

R(S)(S) := −Tr(SR(S)) = Rµναβ S
µνSαβ. (2.21)

In (2.19), the Pfaffian of a skewsymmetric linear map, e.g., F = R(S) as defined in (2.8),

is such that (?F )F = F (?F ) = Pf(F )1, where ? is the Hodge star; we furthermore have

det(F ) = −Pf(F )2. Let us note that alternatively Pf(F ) = −1
8

√
−det(gαβ) εµνρσF

µνF ρσ

with εµνρσ the Levi-Civita symbol such that ε1234 = 1. A proof of (2.13) and of the above

equations of motion (2.18) and (2.19), specific of the massless case, is given in Appendix A.

We note for further use that Equations (2.12), (2.16) and (2.18) imply that the mo-

mentum P is orthogonal to the velocity Ẋ, i.e.,

PẊ = 0. (2.22)

The above equations of motion have actually another equivalent geometrical origin:

they are given by the characteristic distribution of a presymplectic 2-form on the 9-

dimensional “evolution space” consisting of all triples (X,P, S) satisfying the following

constraints: the skewsymmetry of the spin operator, the orthogonality of spin and mo-

mentum (2.12) and the masslessness of the particle of fixed spin (2.16). Here, we will not

need to rely on these results. See, however, [23, 8, 31, 28] for a complete account of this

model.

3 Photons in Robertson-Walker backgrounds

The metric is given in a spatial Cartesian coordinate patch (x1 = x, x2 = y, x3 = z) by

g = −a(t)2
[
dx2 + dy2 + dz2

b(x, y, z)2

]
+ dt2 & b(x, y, z) = 1 +

K

4
(x2 + y2 + z2) (3.1)

3 In the sequel, we will assume R(S)(S) 6= 0 so as to handle a nonsingular system accounting for localized
test particles; see (3.13). Let us recall that, on the contrary, massless spinning particles are delocalized in (flat)
Minkowski spacetime where they dwell on null affine 3-planes, P⊥, instead of worldlines [30]. Consequently,
although special relativity forbids a non-vanishing spin component transverse to the spatial momentum (spin is
enslaved), the gravitational field in general relativity cures that difficulty as long as (3.13) holds.
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where a is a smooth strictly positive function of the time axis parametrized by x4 = t

(cosmic time), and K ∈ R is related to the spatial scalar curvature R(3) = 6K. We will

use the coordinate patch where b does not vanish.

The non-zero Christoffel symbols read

Γiii = −Kx
i

2b
, Γijj =

Kxi

2b
, Γiij = −Kx

j

2b
, Γii4 =

a′

a
, Γ4

ii =
aa′

b2
(3.2)

for all i, j = 1, 2, 3 and i 6= j.

The Ricci tensor reads Ric = (2K+2a′2+aa′′)/b2
(
dx2 + dy2 + dz2

)
−3(a′′/a)dt2, and

the scalar curvature is R = −6(K + a′2 + aa′′)/a2. Spacetime (M, g) is conformally flat.

3.1 The general equations of motion of photons

In the above coordinate system, the (future pointing) null linear momentum of the particle

is written as

P =


p

a
‖p‖
b

 (3.3)

with p ∈ R3 \ {0}, the spatial linear momentum, and ‖p‖ :=
√
p · p (positive energy).4

Accordingly, the spin tensor reads

S =

 j(s) −(s× p)

‖p‖
b

a

−(s× p)T

‖p‖
a

b
0

 (3.4)

where the spin vector s ∈ R3 \ {0} satisfies, along with P , the constraints (2.12) and

(2.16); the latter yields the scalar spin

s =
s · p
‖p‖ (3.5)

(not to be confused with the norm ‖s‖ of the spin vector) satisfies (2.17) for photons.

Some more calculation yields

R(S) = − 2

a2

 (K + a′2)j(s) −s× p

‖p‖ b a′′

−(s× p)T

‖p‖
a2a′′

b
0

 (3.6)

together with det(R(S)) = 0, hence

Pf(R(S)) = 0 (3.7)

4The dot and cross products are those of Euclidean space R3, the superscript“T”in (3.4) means transposition,
and we have the linear map j(s) : p 7→ s× p.
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which will entail, via Equation (2.19), that the linear momentum, P , is actually parallel-

transported.

We furthermore find

R(S)(S) =
4

a2
(
‖s‖2(aa′′ − (K + a′2))− s2 aa′′

)
. (3.8)

Also do we get

SR(S)P =
2

a2
((K + a′2)− aa′′)

(
‖s‖2P − sW

)
(3.9)

where

W = ‖p‖


s

a
s

b

 (3.10)

is interpreted as the polarization vector of the massless particle in this gravitational field.

With these preparations, extra work is needed to express the original equation (2.18)

for the velocity in terms of that involving the natural parameter: cosmic time, t. We find

dX

dτ
= − 4s2‖p‖

R(S)(S)

(K + a′2)

a2b

dX

dt
(3.11)

with
dX

dt
=

aa′′b

‖p‖(K + a′2)

[
P −

(
1− K + a′2

aa′′

)
W

s

]
(3.12)

where the vector W , given by Equation (3.10), features the polarization-driven anomalous

velocity. Let us anticipate that, by the Friedman equations, K + a′2 6= 0.

We however mention that the reparametrization τ 7→ t in Equation (3.11) will be

considered legitimate provided it be a diffeomorphism, dτ/dt 6= 0, i.e.,

R(S)(S) 6= 0 (3.13)

which is assumed to hold for the time being. We will check this inequality in Section 4

by numerically integrating the equations of motion (3.20)–(3.22) in the particular case of

the flat Lambda Cold Dark Matter model.

We note that PW = 0 and W 2 = −‖p‖2‖s⊥‖2/b2 ≤ 0 where the transverse spin s⊥

has been defined by

s = s
p

‖p‖ + s⊥ (3.14)

in accordance with (3.5). This implies that the spinning photon travels at a speed greater

than the speed of spinless light (tachyonic velocity) since(
dX

dt

)2

= −
[
aa′′ − (K + a′2)

K + a′2

]2 ‖s⊥‖2
s2

. (3.15)

Notice that the RHS of Equation (3.15) vanishes when the spin is “enslaved”, s⊥ = 0, i.e.,

when W becomes the Pauli-Lubanski vector [30, 16].
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3.2 “Energy” of polarized light rays

Moreover, the vector field Θ = a(t)∂/∂t is clearly a conformal-Killing vector field; it is

the “cotemperature” vector field considered in [32]. One checks that

∇µΘν = a′(t) gµν (3.16)

implying that Θ is curlfree and geodesic. It is moreover timelike since Θ2 = a(t)2 > 0,

and clearly future pointing (the time arrow).

The “energy” of the photon relatively to Θ is readily defined by

E = PΘ. (3.17)

Let us show that it is actually a constant of the motion,

E = const. (3.18)

We indeed have Ė = PµΘ̇µ since Ṗ = 0, and thus Ė = PµẊν∇νΘµ = a′(t)PµẊ
µ in view

of (3.16). At last, Equation (2.22) implies Ė = 0.5 We will therefore call E the conserved

“energy”.

3.3 Photons in flat Robertson-Walker backgrounds

From now on, we put K = 0 and express the system (2.18)–(2.20) of equations of motion

for our massless spinning particle (cf. Section 2.3) in the natural coordinate system

X =

(
x
t

)
(3.19)

with the comoving Euclidean coordinates x ∈ R3 and the cosmic time t.

• Equation (3.12) for the velocity with respect to cosmic time readily yields the ex-

pression of the spatial velocity

dx

dt
=
a′′

a′2
p

‖p‖ +
1

a

[
1− aa′′

a′2

]
s

s
. (3.20)

• Likewise, we find that Equations (2.19) and (3.7) yield, together with the expression

(3.2) of the Christoffel symbols, the equation governing the time evolution of the spatial

momentum in (3.3), namely

dp

dt
= −a

′

a

[
aa′′

a′2
p + ‖p‖

(
1− aa′′

a′2

)
s

s

]
. (3.21)

5Equation (3.17) may be viewed, thanks to (3.16), as a special case of the moment map (2.10) adapted to
the conformal-Killing vector field Z = Θ.
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Note that the equation for the evolution of P 4 = ‖p‖, resulting from (2.19), is clearly

compatible with Equation (3.21).

• Equation (2.20) for the spin evolution can now be read off, with the help of (3.4)

and (3.20), as

ds

dt
= −

(
1− aa′′

a′2

)
s

s
× p− a′

a
s +

a′

a

[‖s‖2
s

(
1− aa′′

a′2

)
+ s

aa′′

a′2

]
p

‖p‖ . (3.22)

The non-linear coupled system (3.20)–(3.22) constitutes precisely the deterministic

set of ordinary differential equations that we will be studying from now on to describe

massless particles with spin s in a (spatially) flat Robertson-Walker background.

3.4 Conservation laws

The Euclidean group E(3) = O(3) n R3 being a group of isometries, its generators are

Killing vector fields of the metric (3.1), viz., Z =
(
εijk ω

jxk + γi
)
∂/∂xi, where ω,γ ∈ R3

stand for infinitesimal rotations and translations, respectively; the εijk are the structure

constants of so(3).

Using the general expression (2.10) of the moment map, Ψ, associated with a Killing

vector field, Z, together with the expressions (3.3) and (3.4) for P and S, we find in a

straightforward fashion Ψ(Z) = −L · ω −P · γ where

P = a(t)p +
a′(t)

‖p‖ s× p (3.23)

stands for the conserved linear momentum and

L = x×P + s (3.24)

for the conserved angular momentum featuring an extra spin contribution.

In addition, the constant “energy” (3.17) associated with the cotemperature vector

field of the system then reads

E = a(t) ‖p‖ = const (3.25)

and verifies E > 0 since we have chosen P to be future pointing.

Moreover we find that ‖P‖2 − E2 = a′2‖s× p‖2/‖p‖2 = a′2‖s⊥‖2, and therefore

a′(t)‖s⊥‖ = const (3.26)

is a new first integral of our system associated with transverse spin (3.14).
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4 Numerical solutions

In this section we numerically solve the equations of motion for a massless particle with

non-vanishing spin in flat Robertson-Walker spacetime with a given scale factor a(t), that

we suppose increasing with cosmic time t. To be specific, we take the Friedman solution

of the flat Lambda Cold Dark Matter model, namely

a(t) = a0

(
cosh[

√
3Λ t]− 1

cosh[
√

3Λ t0]− 1

)1/3

(4.1)

where Λ stands for the cosmological constant. We have chosen the origin of cosmic time

at the big bang, t = 0, and note a0 := a(t0) the scale factor today. This model is the

standard model of cosmology and its successes and draw-backs are well reviewed in [25].

Our task is to solve the system (3.20), (3.21), (3.22) of nine first order, ordinary dif-

ferential equations for nine unknowns x(t), p(t), s(t). We choose the nine initial conditions

at t = te, the time of emission (or creation) of the massless particle. We orient our

Cartesian coordinates such that

xe = 0, pe =

‖pe‖0
0

 , se =

 s
s⊥e
0

 (4.2)

with s⊥e := ‖s⊥e ‖ ≥ 0.

Of course, we will use the six conserved quantities L and P , Equations (3.24) and (3.23),

to eliminate the unknowns s(t) by

s(t) =


s +a′e s

⊥
e x

2(t)

s⊥e −a′e s⊥e x1(t) −E x3(t)
+E x2(t)

 (4.3)

and p(t) by

p(t) =
E a(t)−1

1 + (a′(t)2 s2 + a′2
e s
⊥ 2
e )/E2

·


1 +a′e a

′(t) s⊥e s2(t)/E2 +a′(t)2s s1(t)/E2

−a′(t) s3(t)/E −a′e a′(t) s⊥e s1(t)/E2 +a′(t)2s s2(t)/E2

a′(t) s2(t)/E −a′e s2e/E +a′(t)2s s3(t)/E2

 . (4.4)

To obtain the last equation we have used the matrix inverse

[1 + j(z)]−1 =
1

1 + ‖z‖2 [1− j(z) + z zT ] (4.5)
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for all z ∈ R3, and the “conservation” law (3.26) of the transverse component of the spin:

a′(t) s⊥(t) = a′e s
⊥
e (4.6)

with s⊥(t) :=
√
‖s(t)‖2 − s2, and a′e := a′(te).

The remaining equation of motion (3.20) reads:

x′(t) =
a(t) a′′(t)

a′(t)2
p(t)

E +

(
1

a(t)
− a′′(t)

a′(t)2

)
s(t)

s
(4.7)

where p(t) and s(t) are as in (4.4) and (4.3), respectively, E being given by (3.25).

We integrate them using a Runge-Kutta algorithm. To specify our initial conditions

(4.2), we must choose units. We have already put c = 1 and we add ~ = 1 and the Hubble

constant H0 = 1. These three choices determine the units of time, length and mass, which

we call astro-seconds [as], astro-meter [am] and astro-gram [ag]:

as = 13.97/h70 Gyrs = 4.408/h70 · 1017 s, (4.8)

am = 1.321/h70 · 1026 m, (4.9)

ag = 2.664h70 · 10−69 kg, (4.10)

with h70 := h/0.70 and h = 0.673 ± 0.012 today [25]. In these units we have H0 = 1/as,

c = 1 am/as, ~ = 1 ag am2/as, the cosmological constant is Λ = 3 · (0.685 ± 0.017) am−2

and the age of the universe t0 = 0.951 as. (For completeness we record Newton’s constant,

G = 1.49868 · h270 · 10−122 am3 as−2 ag−1, which we do not use explicitly.) Quantum

mechanics tells us that spin one particles have ‖se‖2 = 2~2 and s1e = s = 0,± ~. For

massless particles the projection of the spin onto the momentum direction, i.e., the scalar

spin, is maximal or minimal, s = ± ~ and therefore s⊥e = ~. (A graviton would have

s = ± 2 ~ and s⊥e =
√

2 ~.)

For concreteness, consider a photon from the Lyman α emission line, (period T =

4 · 10−16 s = 8.72 · 10−34 as, wavelength λ = 1.2 · 10−7 m = 8.72 · 10−34 am) and with

redshift z = 2.4. From z+ 1 = a0/a(te) and by numerically inverting the scale factor a(t),

Equation (4.1), we obtain its emission time te = 0.188 as and then a′e = 1.06. The critical

time, a′′(tcrit) = 0, is tcrit = 0.530 as. The photon energy at emission is ‖pe‖ = 2π~/T

and the conserved “energy” E = ae ‖pe‖ = a0 2π~/T/(z + 1).

Of course, a numerical solution with the initial condition for p1 as large as 1034 does

not work and we will start with a modest period of T = 1.2 · 10−2 as instead of that of

Lyman α.
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Printed by Wolfram Mathematica Student Edition

Figure 2: The trajectory of the the photon, x(t), in comoving coordinates is the
helix. The dashed line is the geodesic followed by mass- and spin-less test particles.
The initial transverse direction of the spin, i.e. the x2-direction is indicated by
the short line at the left.

For consistency we must first check that R(S)(S) in the denominator of the equations

of motion (2.18) and (2.19) does not vanish in the domain of numerical integration. We

use the form (3.8) with K = 0 for R(S)(S) and find that it remains positive for the

numerical solution of the trajectory x(t), justifying the assumption (3.13).

Figure 2 shows the trajectory of the photon x(t) in comoving coordinates. It is a

helix around the geodesics of mass- and spin-less test particles or equivalently around the

trajectory of ‘photons’ with alined spin, s⊥ = 0. The periods of the cycles of the helix

vary but remain of the order of the period T of the photon at emission.

The particular form of the helix guarantees that, although being a tachyonic curve,

it does propagate with the speed of light as can be seen from Figure 3. While both

coordinate functions, x1(t) of the photon and x1(t)|x⊥=0 of the light-like geodesic, vary

monotonically from 0 to 1.32, their differences, shown in Figure 3, remain small.

The transverse (comoving) coordinate of the helix x⊥(t) :=
√
x2(t)2 + x3(t)2 is shown

in Figure 4. It varies, but remains of the order of the wavelength of the photon at emission.

These variations vanish around tvanish = 0.66 as, corresponding to a redshift zvanish = 1.6.

We will see in the next section that tvanish is determined by a′e x
1(tvanish) = 1.

The spin vector s(t) rotates in step with the cycles of the helix, see Figure 5. Its
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Figure 3: Details of the race between our photon and a mass- and spin-less test
particle: x1(t)− x1(t)|x⊥=0 as a function of cosmic time.

rotation axis deviates only slightly from the x1-axis.

Naturally, we want to know the evolution of the variable periods of the cycles of

the helix and compute its center and radius in the limit of a small atomic period T or

equivalently of small spin. We do this in the next section by a perturbative computation,

which will also tell us that our numerical result is generic for small spins. The extension to

large spin motivated by macroscopic electromagnetic wavepackets is however not included.

5 Perturbative solutions

In this section we return to flat Robertson-Walker cosmologies. The scale factor a(t) is

arbitrary up to the following constraints that are to be satisfied for all cosmic times t

between emission and today, te ≤ t ≤ t0:

a > 0, a′ > 0, s⊥2 a a′′ − ‖s‖2a′2 6= 0, 1/a− a′′/a′2 6= 0. (5.1)

Let us write out our three equations of motion (4.7) for x(t) by explicitly eliminating

s(t) and p(t). We are dealing with two small parameters of the order of 10−34 from the

longitudinal and transverse initial values of the spin:

η :=
s

E =
±T

2π ae
, ε :=

s⊥e
E (5.2)

as given by (4.2). Let us recall that T is the atomic period at emission. We also choose

the normalization a0 = 1 am.

We consider η to be a fixed, non-zero number and ε to vary between 0 and |η|. Indeed

we know that for ε = 0 our trajectory is the light-like geodesic and we want to know how
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the trajectory of the photon deviates from this geodesic to first order in ε. At the end of

our calculation we will put ε = |η| for the photon. To alleviate notations we will often

suppress the argument t and, as before, denote evaluation at initial time te simply by the

subscript “e”. From Equations (4.7), (4.4) and (4.3) we obtain:

dx1

dt
=

a′′

a′2 (1 + a′2
e ε

2 + a′2 η2)

·
[
1 + a′ea

′ ε2 − a′2
e a
′x1 ε2−a′ea′x3 ε+ a

′2 η2 + a′ea
′2x2 ηε

]
+

(
1

a
− a′′

a′2

)[
1 + a′ex

2 ε

η

]
, (5.3)

dx2

dt
=

a′′

a′2 (1 + a′2
e ε

2 + a′2 η2)

·
[
−a′x2 − a′ea′ ηε− a

′2
e a
′x2 ε2 + a

′2 ηε− a′ea
′2x1 ηε−a′2x3 η

]
+

(
1

a
− a′′

a′2

)[
ε

η
− a′ex1

ε

η
−x3 1

η

]
, (5.4)

dx3

dt
=

a′′

a′2 (1 + a′2
e ε

2 + a′2 η2)

·
[
−a′e ε+a′ ε−a′ea′x1 ε− a′x3+a

′2x2 η
]

+

(
1

a
− a′′

a′2

)
x2

1

η
. (5.5)

Note that here, thanks to the cosmological principle and the symmetries of the model, the

equations of motion are affine.

In the limit ε→ 0 the two transverse coordinates x2 and x3 vanish identically and we

will suppose that the two limits of x2/ε and of x3/ε exist and call them y2(t) and y3(t).

This hypothesis will be supported by the comparison of our perturbative results with the

numerical ones of the preceding section.

Then, to leading order in η and ε, the equations of motion read:

dx1

dt
∼ 1

a
+ a′e

(
1

a
− a′′

a′2

)
y2
ε2

η
, (5.6)

dy2
dt
∼
(

1

a
− a′′

a′2

)[
1− a′ex1−y3

] 1

η
, (5.7)

dy3
dt
∼
(

1

a
− a′′

a′2

)
y2

1

η
. (5.8)

Equation (5.6) may tempt us to think that x1(t) − x1(t)|x⊥=0 is of first order in ε = |η|.
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Figure 4: The transverse coordinate of the helix x⊥(t) :=
√
x2(t)2 + x3(t)2 as a

function of cosmic time. The perturbative bounds of Equation (5.18) are indicated
by dashed and dotted lines. They touch at tvanish.

In fact the difference is of second order: combining Equations (5.6) and (5.8) yields

x1(t)− x1(t)|x⊥=0 ∼ a′e y3(t) ε2.This is important for the race between photons and mass-

and spin-less test particles; compare with Figure 3.

Let us suppose that the scale factor is such that 1/a−a′′/a′2 never vanishes (see (5.1)),

which is true for the scale factor (4.1) of the flat Lambda Cold Dark Matter model. Then,

for non vanishing spin, η 6= 0, we may define a new parameter θ by

dθ

dt
=

1

|η|

(
1

a
− a′′

a′2

)
and θ(te) = 0. (5.9)

To leading order, we have

θ(t) ∼ 1

|η|

[
x1(t) +

1

a′(t)
− 1

a′e

]
, (5.10)

and θ0 := θ(t0) is of the order of 1034. We also define new coordinates by z1(θ) := x1(t(θ))

and z2/3(θ) := y2/3(t(θ)); by abuse of notation we write t(θ) for the inverse function of

θ(t). In the new coordinates the transverse equations of motion read to leading order:

dz2
dθ

= sign(η) (−z3 + 1− a′e z1),
dz3
dθ

= sign(η) z2. (5.11)

Let us combine these two equations:

d2z2
dθ2

+ z2 = − a′e
η

1− aa′′/a′2
. (5.12)

18



0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1.0

Printed by Wolfram Mathematica Student Edition

0.3 0.4 0.5 0.6 0.7 0.8 0.9

-1.0

-0.5

0.5

1.0

Printed by Wolfram Mathematica Student Edition

0.3 0.4 0.5 0.6 0.7 0.8 0.9

-1.0

-0.5

0.5

1.0

Printed by Wolfram Mathematica Student Edition

Figure 5: The three spin components s1(t), s2(t), and s3(t) as a function of
cosmic time.
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To proceed, we write z2(θ) =: z20(θ) + η z21(θ) and obtain two differential equations:

d2z20
dθ2

+ z20 = 0 , (5.13)

d2z21
dθ2

+ z21 = − a′e
1

1− aa′′/a′2
. (5.14)

The solution z21 of the second equation does not concern us because we want x2 = εz2 =

ε (z20 + η z21) only to first order. Solving the first, homogeneous, equation with our initial

condition z2(0) = 0, coming from the first equation in (4.2), we obtain z2 ∼ k sin θ with

one integration constant k. Now we set ε = |η|. The initial condition z3(0) = 0 fixes

k = sign(η) and gives z3 ∼ − cos θ − 1 + a′e z1.

Let us denote by Thelix(t) the period – measured in cosmic time t – of one cycle of

the helix at time t. Measured in the parameter θ this period is 2π and independent of θ.

Therefore

Thelix(t) ∼ 2π
dt

dθ
=

a(t)

ae

a′(t)2

a′(t)2 − a(t) a′′(t)
T =

a(t)

ae

1

1 + q(t)
T , (5.15)

with the definition (5.2) of η, and with the expression q(t) := −a(t) a′′(t) a′(t)−2 of the

deceleration parameter.

At cosmic time t, the center of the helix has comoving coordinates x1(t)
0

|η| [1− a′e x1(t)]

 . (5.16)

Its offset from the light-like geodesic vanishes at time tvanish where the center of the helix

coincides with the trajectory of the null geodesic.

The comoving radius of the helix with respect to its center is |η| and time-independent.

The time-dependence of the comoving transverse coordinate of the helix is now easily

understood:

x⊥(t) ∼ |η|
√

1− 2 cos
x1(t) + 1/a′(t)− 1/a′e

|η| [1− a′e x1(t)] + [1− a′e x1(t)]2. (5.17)

It is bounded by

|η|
∣∣∣1− |1− a′e x1(t)| ∣∣∣ ≤ x⊥(t) ≤ |η|

∣∣∣1 + |1− a′e x1(t)|
∣∣∣. (5.18)

These bounds are indicated in Figure 4, where they touch at time tvanish = 0.66 as in

our example of photons with redshift z = 2.4. The comoving distance between the light-

like geodesic and the position of the photon x⊥(t) may grow unboundedly as |η| a′e x1(t).
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However for reasonable cosmologies, redshifts and atomic periods, this physical distance

a(t)x⊥(t) remains of the order of the wavelength.

The two initial helicity states s = ± ~ yield identical helices except that they turn

in opposite directions. Therefore today, the physical offset between the two positions at

arrival oscillates between 0 and (z + 1)T/π with period

1
2 Thelix(t0) = 1

2

z + 1

1 + q0
T. (5.19)

6 Conclusion

We have proposed to try and understand the effect of the photonic spin on the relativistic

trajectories of light in the gravitational field of our expanding universe. We have found it

worthwhile to start from the Mathisson-Papapetrou-Dixon equations derived by means of

the principle of general covariance adapted to this context by Souriau [31]. The model has

then been specialized to the massless case by means of the specific equation of state (2.12),

leading to the Souriau-Saturnini equations (2.18)–(2.20), a system of nine coupled first-

order ordinary differential equations involving position, x(t), spatial momentum, p(t),

and spin vector, s(t).

These equations of motion have two well-known delicate properties:

• They are degenerate when the consistency condition R(S)(S) 6= 0 (see (3.13)) is

violated which happens in particular in the fieldfree case. When the equations are

not degenerate, one says that the (external) gravitational field localizes (spinning)

photons. Already in 1976 Saturnini [28] has proved that the Schwarzschild metric

localizes photons and he has computed their trajectories. In the same setting it has

been observed that an external electromagnetic field localizes chiral fermions [15, 16];

see also the recent contribution [34]. Let us also note that this approach yields a

geometric derivation [13, 14] of the Fedorov-Imbert effect [17, 22] which has been

confirmed experimentally [4, 21] in 2008.

The present work proves that generic Robertson-Walker metrics do also localize photons.

• When not degenerate the equations of motion involve tachyonic velocities, see Equa-

tion (3.15). The discontinuity in the Fedorov-Imbert effect is an extreme manifesta-

tion of this property, as the velocity is infinite at the discontinuity.

The six conservation laws associated with the isometries coming from the cosmological

principle, as well as the conserved “energy” coming from the conformal-Killing (temper-
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ature) vector field are worked out. Those are used to eliminate momentum and spin

from the previous system of equations, to obtain the three differential equations for the

trajectory. We compute it for two cases: for the flat Lambda Cold Dark Matter model nu-

merically, and for generic flat Robertson-Walker models by linearizing the equations using

two small parameters, namely the suitably normalized scalar spin, s, and the transverse

spin, s⊥e , at emission of the photon.

Let us recall now that the photon remains our most faithful go-between on all distance

scales; it makes no detours and travels untiringly at full throttle c. The photon is also a

taciturn messenger; it only tells us its incoming direction and its spectrum.

This picture is modified if we acknowledge that the photon carries spin. The spin gives

an internal structure to the photon; its straight trajectory in the gravitational field of an

expanding universe curls into two helices, one for each polarization, and we must correct

our notion of full throttle. And maybe, if we listen carefully, a photon having travelled

cosmic scales has more to tell us than just direction and spectrum.

The quantization rules of spin prohibit that the projection of spin on a given direction

is equal to plus or minus the absolute value of spin. Therefore spin cannot be parallel nor

anti-parallel to its momentum, s⊥ 6= 0, “it cannot be enslaved”. Then by Equation (3.15)

the speed of the spinning photon exceeds c. Let us recall that there is another instance

where we must admit particles with tachyonic velocities: the Feynman propagator of the

Dirac operator has a support that leaks out of the light-cone [29]. However an exponential

damping of the leakage prevents transmission of signals with tachyonic speed. In our situ-

ation, the tachyonic velocity of the photon and the form of the helix conspire and prevent

transmission of signals with tachyonic speed over distances exceeding a few wavelengths

of the photon, see Figure 3.

Of course the main question is: can the periodically varying offset between the two

polarization states of the photon at arrival be measured. Recall that this offset turns out

to be of the order of the wavelength of the light just as for the Fedorov-Imbert effect. If

the offset can be measured in the cosmological setting, Equation (5.19) would give us a

new independent measurement of the acceleration of the universe today.
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A Appendix: Proof of Eqs (2.14), (2.18) & (2.19)

As a preparation, we mention the useful relationship [9, 31]

ABA = +
1

2
Tr(AB)A+ Pf(A) ? B (A.1)

for all skewsymmetric linear operators A,B of the tangent plane of M at X.

Let us start with the MPD equations, and assume the equation of state (2.12) to hold.

1) One easily shows using (2.7) that d(Tr(S2))/dτ = 2Tr(SṠ) = 0, leading to Eq. (2.13).

2) Our first task is to prove that P 2 is a constant of motion provided the consistency

condition (2.15) is everywhere satisfied. Since ṠP + SṖ = 0, we have

P (PẊ)− ẊP 2 − 1

2
SR(S)Ẋ = 0 (A.2)

using (2.6) and (2.7), and also PṠṖ = 0 by the skewsymmetry of S. The latter equation

and (2.5) imply PẊ P Ṗ = Ṗ Ẋ P 2 = 0 in view of (2.6) and the skewsymmetry of R(S).

We conclude that

PẊ
dP 2

dτ
= 0 (A.3)

which duly entails that P 2 = const (see (2.14)) or PẊ = 0. It thus remains to in-

vestigate the latter possibility. Equation (A.2) reduces to ẊP 2 + 1
2SR(S)Ẋ = 0; mul-

tiplying by R(S) from the left, we obtain R(S)ẊP 2 + 1
2R(S)SR(S)Ẋ = 0 and hence
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[
P 2 + 1

4Tr(SR(S))
]
R(S)Ẋ+ 1

2Pf(R(S))(? S)Ẋ = 0 by means of (A.1). Multiplying again

by S on the left, we end up with
[
P 2 + 1

4Tr(SR(S))
]
SR(S)Ẋ = 0 since Pf(S) = 0 in

view of (2.12). Then, SR(S)Ẋ = 0 provided

ν := P 2 +
1

4
Tr(SR(S)) 6= 0 (A.4)

which we suppose throughout, and thus (A.2) yields P 2 = 0 if Ẋ 6= 0 everywhere (which is

tacitly assumed). This proves (2.14) assuming ν 6= 0, i.e., the consistency condition (2.15).

3) Let us consider, for completeness, the massive case where P 2 = m2 = const > 0.

Eq. (A.2) implies that Ẋ = λP + SV for some scalar λ and vector V defined on the

worldpath of the particle. Using again Eq. (A.2), we get νSV = −1
2λSR(S)P where ν is

as in (A.4) — this is obtained by using (A.1) with A = S & B = R(S), and Pf(S) = 0.

To sum up, we find the following explicit expression of the velocity, namely

Ẋ = P − 1

2ν
SR(S)P (A.5)

with the above notation, and with the choice λ = 1 enabled by reparametrization.

4) Let us prove Eq. (2.18) in the massless case P 2 = 0, see (2.16). The equation of

state (2.12) implies that S = ?(P ∧ Q) for some vector Q not parallel to P . An easy

computation shows that −1
2Tr(S2) = (PQ)2, hence |PQ| = |s|, and PQ 6= 0 since s 6= 0.

Returning to (A.2), we find that PẊ = 0 because SQ = 0 and PQ 6= 0. Indeed,

since S = ?(P ∧ Q), we necessarily have SQ = 0. Now Equation (A.2) with P 2 = 0

reads P (PẊ) − 1
2SR(S)Ẋ = 0. Taking the scalar product of the latter by Q yields

(QP )(PẊ) = 0, hence PẊ = 0 because PQ 6= 0. Let us again decompose the velocity,

this time in full generality, as Ẋ = λP + µQ + SV for some scalars λ, µ and a vector V .

From PẊ = λP 2 + µPQ+ PSV = 0, we deduce that µ vanishes and that Ẋ = λP + SV

just as before. The preceding computation leads therefore to the same form (A.5) of the

velocity together with the expression (A.4) of ν with P 2 = 0, that is ν = −1
4R(S)(S) with

Definition (2.21). This ends the proof of (2.18).

Let us emphasize at this point that the velocity (A.5) of spinning massive particles

depends continuously on the mass, m, and rather strikingly coincides with the sought

velocity (2.18) in the limit m → 0, of course, provided the consistency condition (A.4)

holds true.
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5) To finish, we provide the proof of Eq. (2.19). We use (2.6) and (A.5) to claim that

Ṗ = −1

2
R(S)Ẋ

= −1

2

[
R(S)P − 1

2ν
R(S)SR(S)P

]

= −Pf(R(S))

R(S)(S)
? (S)P (A.6)

with the help of (A.1) with, this time, A = R(S) & B = S.

Equation (2.19) follows by noting that the Pauli-Lubanski vector W = ?(S)P is

W = s P (A.7)

for massless particles of helicity s.
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