N

N
N

HAL

open science

Towards An Avatar Architecture for the Web of Things

Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer,

Jérome Laplace

» To cite this version:

Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer, Jérome Laplace. Towards An
Avatar Architecture for the Web of Things. [Research Report] Université Lyon 1 - Claude Bernard.

2015. hal-01376637

HAL Id: hal-01376637
https://hal.science/hal-01376637
Submitted on 5 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal.science/hal-01376637
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Towards An Avatar Architecture
for the Web of Things

Michael Mrissa, Lionel Médini, Jean-Paul Jamont, Nicolas Le Sommer and Jérome Laplace

Abstract—The Web of Things (WoT) extends the Internet of
Things considering that each physical object can be accessed and
controlled using Web-based languages and protocols.

In this paper, we summarize ongoing work promoting the
concept of avatar as a new virtual abstraction to extend physical
objects on the Web. An avatar is an extensible and distributed
runtime environment endowed with an autonomous behaviour.
Avatars rely on Web languages, protocols and reasoning about
semantic annotations to dynamically drive connected objects,
exploit their capabilities and expose their functionalities as Web
services. Avatars are also able to collaborate together in order
to achieve complex tasks.

I. INTRODUCTION

The future Internet has been envisioned as an Internet
of Things!, in which billions of heterogeneous objects will
be connected to the Internet using wired or wireless links.
The “Web of Things” (WoT) extends the Internet of Things
in order to enable access and control of physical objects
using Web standards. Objects are expected to expose logical
interfaces through Web services, to describe Web contents and
services using semantic Web languages and annotations, and
to communicate together through standard protocols in order
to provide software interoperability between objects.

Although the number and types of connected objects in-
creases quickly?, the WoT is not yet a reality, as several
issues must be addressed in order to seamlessly interconnect
physical objects, and make these objects accessible on the
Web. On the one hand, objects are heterogeneous and rarely
able to communicate together because most of them implement
proprietary communication protocols instead of Web standard
protocols [1]. Yet, end-users can combine their capabilities,
thus providing meaningful and complex functionalities. On
the other hand, objects usually respond to basic requests using
their sensors and actuators, whereas users require comprehen-
sible and usable services to achieve their goals.

We argue that an open market of software components and
applications dedicated to connected objects that rely on Web

Michael Mrissa, Lionel Médini are members of the LIRIS Laboratory,
Université de Lyon, France, e-mail: {michael.mrissa,lionel.medini} @univ-
lyonl.fr

Jean-Paul Jamont is member of the LCIS Laboratory, Université de Greno-
ble Alpes, France, e-mail: jean-paul.jamont@Icis.grenoble-inp.fr

Nicolas Le Sommer is member of the IRISA Laboratory, Université de
Bretagne Sud, France, e-mail: nicolas.le-sommer@univ-ubs.fr

Jérome Laplace is head of the company “Génération Robots”, France, e-
mail: jl@generationrobots.com

Uhttp://www.itu.int/osg/spu/publications/internetofthings/

2See http://www.ifr.org/service-robots/statistics/, or http://www.ericsson.
com/res/docs/whitepapers/wp-50-billions.pdf and http://www.cisco.com/web/
about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

standards will help the WoT to become a reality. Such a WoT
marketplace should permit developers and industrial compa-
nies to distribute their software applications and components,
and should provide end-users with software pieces allowing
them to implement different functionalities into their objects
in order to perform various tasks.

To reach this objective, a WoT runtime environment (WoT
RE) must be defined. The runtime environment must bridge
the gap between resource-constrained objects and the Web,
which offers complex and heavyweight, but interoperable
and user-friendly technologies. We identified the following
requirements for such an environment:

e (R1) Autonomy and resource management: Connected
objects can be autonomous devices with limited resources
(battery, CPU and memory). Thus, the WoT RE must be
able to estimate the global cost of physical actions in
terms of device usage, computation and networking, to
determine if an object can realize a given action.

¢ (R2) Live reactivity: The WoT RE must be able to adapt
its behavior to its environment at runtime, regarding
functional and QoS aspects. It must be able to provide
a service with graceful degradation if typical service
computation time exceeds time requirements.

¢ (R3) Computation delegation: to promote autonomy, re-
source management and live reactivity, the WoT RE
should allow deploying code modules on the object
processing unit or on a cloud infrastructure and should
identify the most suitable location to execute each mod-
ule.

o (R4) Safety: The WoT RE must ensure the physical and
informational harmlessness of the object for people and
assets, using risk analysis and regulation criteria before
realizing an action.

e (R5) Disconnection tolerance: The WoT RE must be
able to support the connectivity disruptions of between
the mobile objects themselves and between the mobile
objects and the access points of an infrastructure-based
network.

¢ (R6) Interoperability: The WoT RE must be able to
handle heterogeneous objects in terms of size, OS and
protocols. It must also allow objects with similar physical
properties to fulfill the same actions (device indepen-
dence).

¢ (R7) User-understandable interfaces: The WoT RE must
provide entry points to handle requests, and provide
applications that correspond to users’ high-level goals.

The ASAWo0O project® aims at providing an distributed,
open and generic architecture for WoT REs along with a
WoT infrastructure that provides means to execute, secure
and link WoT RE instances, and a WoT application market-
place. WoT REs are called avatars and are endowed with an
autonomous behavior and on Web languages and protocols.
An avatar provides a virtual abstraction of physical objects in
the Web. It can expose object basic capabilities as high-level
functionalities on the Web, connect to and interact with objects
using the most appropriate protocols and languages, perform
different reasoning processes to discover, build and adapt such
functionalities, query external Web services, interact with users
and other objects and execute generic WoT applications. In the
remainder of this paper, we show how our architecture design
meets the requirements above. The (Rn) notation indicates a
specific design to answer the n*” requirement. Our preliminary
results show good insight on the relevance of our approach.

The remainder of the paper is organized as follows. Sec-
tion II describes the approach and gives detail on the avatar
architecture and its lifecycle. Section III gives details on
the different contributions involved in the avatar architecture.
Section IV presents our prototype to show the feasibility of
our work. Section V discusses related work and highlights the
novelty of our contribution. Section VI discusses our ongoing
results and gives some guidelines for future work.

II. AVATAR ARCHITECTURE AND LIFECYCLE

Avatars possess a complex component-based architecture,
allowing to take into account additional information that is
not a priori visible to connected objects but is available
from other Web sources and/or avatars to add intelligence to
object behaviors. The main components that we propose to
leverage such high-level behaviors in WoT applications rely
on Web standards to provide interoperability among objects
and on advances in various domains, such as component-
based programming, embedded systems, cloud computing,
delay-tolerant networks, Web and semantic Web technologies
and multi-agent systems to leverage single and collective
intelligence in object behaviors. As illustrated in Figure 1,
an avatar can be distributed on an object and in a cloud
infrastructure depending on the resources offered by the object
it extends. We identify three categories of connected objects:

1) Resourceful Objects: provide software services and em-
bed a Web server that offers service interfaces. It is often
simple to link these objects with other objects or soft-
ware services, and to deploy all the avatar components
on them.

2) Resource-constrained Objects: cannot embed all avatar
components due to restricted resources but it is possible
to link them to distant hosts that can embed missing
components.

3) Resourceless Objects : These objects are passive objects,
detected using unique identifiers such as QR codes or
RFID tags. They do not have any computation, storage
and memory capability. Their avatars are deployed on
the cloud or on the local network gateway.

3Project homepage: https:/liris.cnrs.fr/asawoo/

J Cloud

)JJHJ f

OSGi Ga(eway‘

\\7 ’._/‘ .

WHU% ‘

| OSGi Gateway
0OSGi Gateway

Fig. 1. Distribution of the Avatar architecture on a resource-constrained
physical object and cloud infrastructure.

According to these categories, it is possible to adapt the
deployment of software components of the avatar to different
places to globally improve its operation. In the following, we
present the avatar architecture and its lifecycle.

A. Avatar Architecture

Our avatar runtime environment has been designed as an
OSGi service-oriented architecture. The implementation of the
runtime environment is entirely decoupled from its logical
architecture. Consequently, it is possible to adapt the avatar
to different types of objects dynamically (R2), as well as to
adapt the distribution of the services implementing the avatar
to different places - object, local network gateway and cloud
- in order to improve the avatar execution (R1, R3).

Therefore, the avatar architecture is structured as a set of
“manager” components (OSGi services) with each a particular
role. Each service can be transparently (R3) and at runtime
(R2) deployed on any physical location depending on the
object and application context. Services interact with each
other according to the principles that guide the behavior of the
avatar during its lifecycle presented below (Sec. II-B). With the
architecture come the necessary inter-service middleware and
service deployment and communication schemes to build the
avatar as a common logical entity, sometimes requiring distant
communication. Figure 2 shows the services available in the
architecture, grouped into functional modules as follows.

1) Core module: The core module includes components
that are central to the architecture and reused in different
steps of the avatar lifecycle. The reasoner allows reasoning
about knowledge representation and is useful to the local
functionality manager, the context manager and the privacy
manager. The local cache improves middleware performance
and speeds up data exchange between the different services
of the architecture. The Component deployment manager
is a core component that decides when and where to deploy
the other components in the architecture. This component is
essential to respect the (R1), (R2), (R3) and (RS5) requirements.

Context
Ontology

Component Deployment
Manager Manager

Local Cache ‘
Discovery Manager
Functionality

Ontology Reasoner

Core Module
Manager

Capability
Manager

Capability
Ontology

Context Manager

Privacy Manager

Appliance Fltering Module

Configuration
data

Appliance
Manager

Appliance
Configuration

Appliance
Driver

Applicative Protocol
Adaptation Manager
DTN Communication
Manager
Network Interface

Manager
Communication Module

Appliance
Driver

Repository

Fig. 2. Web architecture of avatar agents

2) Web service module: The WoT Application Server is
the endpoint that exposes simple (one involved) or complex
(multiple involved) functionalities available as applications.
Both local (one avatar/object involved) and collaborative (mul-
tiple avatars/objects involved) applications are available to
other avatars and end-users. The HTTP Client allows the
avatar to interact with an external Web service available on
the Web, including the applications another avatars provide.
These two components are also in charge of implementing the
inter-avatar negotiation processes, using a Web service-based
communication scheme.

3) WoT Application module: A WoT application (i.e. end-
user understandable, high-level object behavior) is executed
inside a WoT Application Container that can be physically
distributed over the physical layers of the architecture (object,
gateway, cloud) thanks to the WoT Application Deployment
Manager (R7). The different parts of the application are
implemented as “code modules” that are cross-compiled to
be either executed on the object or on the gateway/cloud wrt.
contextual adaptation decisions (R2).

4) Local functionality module: The Capabilities Manager
exchanges with the object to discover and identify its capa-
bilities (see Sec. III-A). The Local Functionality Manager
deducts available functionalities from the set of capabilities of
the capabilities manager* (see Sec. III-C). To do so, it also gets
helped by the context and privacy managers and the reasoner to
reason about exposable functionalities according to the current
situation.

5) Collaboration module: An avatar must identify other
avatars that can provide functionality. To enable object col-
lective behavior, the Collaborative Functionality Discovery
Manager allows to look for external functionality in the avatar

4An observer design pattern can be implemented here for dynamic updates
to answer the (R2) requirement.

WoT Runtime Environment
Collaborative Agent

Collab. Functionality

Collaboration Module

Local functionality

Local Functionality Module

I nteroperability Module

External Web
services

WoT Application Server

HTTP Client

Other " Y
Web Service Module AV atar’ .
~ WoT Application
Deployment Manager
WoT Application Client

Container

WoT app. layer 4

WoT app. layer 3
Code

Repository

WoT app. layer 2

WoT app. layer 1
s il bl Il Kernel/ core components
I woT architecture components
Il \WoT Application modules

community’. By observing the activity of other avatars in its
immediate environment, the Collaborative Agent Manager
can identify if its goals are compatible with the goals of other
avatars. It can also note if a conflict with other avatars occurs
(resource/function access). According these interaction situa-
tions (obstruction, independence, collaboration...), negotiations
with other avatars could be achieved to expose collaborative
functionality in the WoT Application server (cf Sec. III-D).
6) Communication module: The Network Interface Man-
ager and the Application Protocol Adaptation Manager
respectively select the right network (Wi-Fi, Bluetooth, Zig-
bee,...) and application protocols (CoAP, HTTP) according
to available communication interfaces and performance needs
(throughput and energy consumption). In order to support
connectivity disruptions due to mobile contexts, we have
introduced in the communication module of the avatars a
DTN Communication Manager, responsible for initializing
and configuring the opportunistic communication protocol we
have defined and that relies on the “store, carry and forward”
principle (R5). These managers are described in Sect. III-B.
7) Filtering module: The Context Manager aggregates
data from domain ontologies, external services and environ-
ment events into contextual situations [2], in order to per-
form semantic multi-level adaptation, to 1) identify on which
avatar to expose a collaborative function; 2) decide which
functionalities to expose wrt. object context; 3) choose where
(on which layer) to deploy each architecture component and
application code module; 4) determine the most appropriate
protocol stack for the current communication scheme and
contextual conditions. The privacy manager will rely on
models developed in previous work [3] that describe a query
in terms of user role, purpose of the query and data queried

SFor simplicity purpose we assume in this paper that an avatar community
is delimited to the local network.

to reason about privacy constraints and protect data (R4).

8) Interoperability module: The Appliance communica-
tion manager is the high level component of the interoper-
ability module. It communicates with other components in the
architecture through its high level interface and as well works
with the appliance configuration manager and the appliance
driver described below to communicate with the object. The
Appliance configuration manager relies on a database of
object configuration tools to associate communication methods
to objects. For instance, when a Lego Mindstorms sends its
ID on the USB wire, the configuration manager sends the
required drivers to load to enable communicating with the
object. The Appliance driver loads and uses the drivers to
send and receive messages to and from the object. Thanks to
its high level uniform interface drivers are dynamically loaded
and abstracts low level object communication (R6).

All the managers get involved at different, sometimes over-
lapping stages during the avatar lifecycle. We describe the
lifecycle in the following section.

B. Avatar lifecycle

The avatar begins its lifecycle with its instantiation from
the avatar builder that creates an avatar instance. The avatar
builder is designed to be located on the local network gateway
or in layer so that it becomes possible to detect the arrival of
an object in the network (new wifi connection, new bluetooth
device detected, new USB device plugged, etc.).

Upon creation, the avatar deploy the main components
connects to and and exchanges a set of messages with the
object it extends to discover its actuators and sensors (core
communication and interoperability module). Once the sensors
and actuators have been discovered, they form a list of capabil-
ities (local functionality module). Based on this list the avatar
decides with the help of a reasoning engine which capabilities
to expose as functionalities (filtering module). Functionalities
are exposed as Web services and can be discovered and
invoked by other avatars in the context of WoT applications [4]
(communication, WoT application, collaboration and Web
service module).

During the lifetime of the avatar and object, services are
queried by other avatars and end users. Sometimes pluggable
devices are added to or removed from the object, or environ-
mental information changes (day/night, weather, etc.). In such
case the avatar is notified of the change (via polling or observer
pattern) and updates its capabilities and exposed functionalities
accordingly, which answers the live reactivity requirement.

When the lifecycle comes to an end (object disconnection),
the avatar notifies its community that the services it exposed
are not available anymore and terminates all the processes in
memory it is attached to.

ITT. AVATAR COMPONENTS
A. Avatar/Object Introspection

Physical objects can have different capabilities in terms
of processing, memory, communication, sensing and action.
In order to discover an object resources and amongst others
decide how to deploy the avatar of a given object, we perform

an introspection of the object using SAJE (System-Aware-Java
Environment)®. SAJE is a part of the hardware abstraction
layer of the ASAWoO middleware platform. SAJE makes it
possible to give information about the capabilities of physical
objects, and to control some components of these objects such
as the communication interfaces. The discovery of resourceless
objects is not performed directly on the objects, but instead on
the devices they are attached to. This discovery is performed
continuously on some objects, because sensors or actuators
can be plugged (or unplugged) dynamically.

Based on the information returned by SAJE, the deployment
manager of the ASAWoO middleware platform is able to de-
ploy dynamically from a remote repository the OSGi bundles
that allow to monitor and to control the hardware components
(e.g., sensors, actuators) of the physical objects. These bundles
also allow to have a semantic description of the capabilities of
the objects. These capabilities are then used by the ASAWoO
middleware platform in order to decide which functionalities
can be deployed dynamically on the object (or on the cloud).

B. Communication protocols

Depending on the capabilities and on the execution context
of the objects, the avatar runtime environments are able to
select the most suited communication protocols dynamically.
Thus, they can either use a communication protocol based
on HTTP (over TCP), or a standard UDP-based version of
COAP or a disruptions tolerant based version of COAP, which
implements the “store, carry and forward principle” in order
to support the connectivity disruptions. Such connectivity
disruptions can be frequent and impredictable in use cases
involving mobile devices (e.g., robots) equipped with short
range wireless communication interfaces such as Bluetooth,
Wi-Fi or Zigbee.

Opportunistic and disruption/delay tolerant (DT) commu-
nications have been studied in several research works and
projects over the last years [5], but the issues introduced by the
service-oriented opportunistic (ort DT) computing have been
addressed only in few works [6], [7] The disruption tolerant
COAP based protocol implemented in avatars currently relies
on the solution we proposed in [7].

C. Semantic processing

Semantic processing is a major feature of our architecture.
An avatar needs to reason about capabilities and functionali-
ties, while taking into account several aspects from privacy to
security and context. In [4], we proposed a generic model
to describe and exploit the semantic relationships between
a functionality used from the application perspective, and a
capability that expresses the possibility for an object to realize
an action. Our model enables domain-dependent instances to
populate the ontology and provide the means for avatars to get
the information about which simple or complex functionalities
can be exposed, being given a set of available capabilities.
As well, it allows identifying complex functionalities that
are partially implemented with the help of existing objects,

Shttps://www-casa.irisa.ft/saje/

opening the possibilities for additional application when other
avatars enter the community.

As well, the context manager aims at performing multi-level
adaptation [8]. It relies on a semantic context model [9] that
can be processed at different abstraction levels and populated
with functional and QoS data provided by object sensors and
external resources, and on an adaptation engine [10], both
compatible with environmental data and high-level function-
alities.

D. Enabling Collective Behavior between Avatars

An avatar inherits goals, knowledge, sensors and actuators
from its physical object. Its capabilities and its knowledge are
extended with Web information and services but also through
its community. To meet a goal, an avatar need resources
(energy, storage, cpu, bare objects, ...) and skills (Web services,
avatar’s skills, ...).

If local resources and skills are available to accomplish a
goal, an avatar do not generally need collective features. If an
avatar has all the skills to accomplish a task but if the resources
are not sufficient, it will be in a situation of obstruction. A
coordination mechanism will be necessary to avoid harmful
interactions. If resources are sufficient but if an avatar does
not have all the required skills, collaboration mechanisms will
be needed. In these three cases, we assume that the goals of all
the avatars are compatible. If this is not the case, depending
on the availability of resources and skills, avatars could be
in antagonism (individual or collective conflicts if there are
insufficient resources, individual or collective competition if
the skills are not available). A possible solution is to establish
coalition against a subset of other avatars. Avatars, resources
and services could appear or disappear dynamically, so an
avatar must continuously be aware of the situation of inter-
action in which it operates.

IV. PROTOTYPE

Our current prototype is divided in the following parts:

o« A WoT physical infrastructure that contains a gateway
to connect objects and a WoT Processing Unit (e.g. a
cloud infrastructure) that hosts avatar parts outside of the
objects.

e A WOT logical infrastructure that contains an avatar
container and the different ontologies and repositories
depicted in Section 2

e An avatar architecture implemented in Java/OSGi and
designed that can locally or remotely instantiate and
invoke the avatar components and compose the core
module of the avatar architecture

o A WoT Runtime Environment that implements the WoT
component framework on the object layer; its implemen-
tation language depends on the object OS and bridges
this framework with the object hardware

o A discovery module implemented using the SAJE library

o A Web service module using the JAX-RS library

« An interoperability module based on the AllJoyn frame-
work’

https://www.alljoyn.org/

o A set of OWL functionality and capability classes that
describe domain knowledge according to different sce-
nario

o A semantic local functionality module [4] implemented
using the Java OWL API and operated using the HermiT
reasoner

o A preliminary collaboration module adapting the ABT al-
gorithm into a set of HTTP exchanges between RESTful
resources.

e A communication module that implements COAP and
disruption-tolerant protocols, based on the solution pro-
posed in [7]

We are currently implementing the filtering and WoT applica-
tion modules.

V. RELATED WORK: WEB OF THINGS INFRASTRUCTURES

The Web of Things integrates various research and ap-
plication fields, among which embedded systems, wireless
networks, software infrastructure, Web technologies and ar-
tificial intelligence. According to [11] and more recently®, a
Web of Things infrastructure should: allow discovering objects
without configuration, dynamically adapt to its environment,
be secured so that things and applications are harmless and
avoid privacy issues, allow manual or semi-automatic service
composition and provide services that make sense for the
users. From a more technical point of view, it should:

« rely on Web standards to achieve interoperability [12]

e take into account several communication models (re-
quest/response, message-oriented, event-based, publish-
subscribe, streaming...) [13], [14]

« allow executing code on objects or delegating it to the
cloud

o semantically deduce available functions and enrich
data [15]

« open an easy way for developing marketable applications’

« encourage developers to respect good practices'’

2

Several ongoing projects (Webinos!!, Compose'?,
SensorMeasurement!?, CityPulse”...) and infrastructures
([12], [13], [15]) are related to the Web of Things. Each
one highlights a specific point of view or different properties.
For instance, the COMPOSE project is oriented towards
standardizing WoT marketable applications, CityPulse
focuses on event processing, the SensorMeasurement project
proposes a reasoning toolkit to reason on sensor data and
other work focuses on object security’”.

However, if the lack for a standard specification for devel-
oping WoT infrastructures can only be solved by organizations

Shttp://www.w3.0rg/2014/02/wot/papers/ticardo.pdf,
2014/02/wot/papers/karapantelakis.pdf
9http://www.compose- project.eu/sites/default/files/publications/
COMPOSE_v2_factsheet.pdf
10http://iot-datamodels.blogspot.fr/2014/05/
design-patterns-for-internet-of-things.html,
of_Things_Workshop_Breakout_Sessions
http://webinos.org/
Zhttp://www.compose-project.eu/
Bhttp:/sensormeasurement.appspot.com/
http://www.ict-citypulse.eu/
Shttp://www.w3.0rg/2014/02/wot/papers/mattsson.pdf

http://www.w3.org/

https://www.w3.org/wiki/Web_

such as the World Wide Web Consortium'®, it is possible to
define a comprehensive architecture for software objects that
represent physical ones on the Web, such as avatars do. Such
architectures can be contained in a WoT infrastructure that will
cope with yet-to-come WoT standards, assuming that avatar
communication schemes follow state of the art principles in
terms of services and protocols.

A comprehensive architecture for software objects that can
cope with multiple points of view has been proposed for
the IoT in the FI-Ware!” project. But to the best of our
knowledge, a similar architecture that targets WoT standards is
missing. Therefore, such an architecture can take advantage of
advances in each field and one can develop modules related to
specific concerns, as long as these works can be encapsulated
in components. Using this approach, our avatar architecture
proposes different modules that allow plugin heterogeneous
objects, communicating with them using different paradigms
and protocols, deduce and reason about their functionalities,
adapt their behavior according to semantized context repre-
sentations, collaborate with one another and expose standard
services to the users.

VI. CONCLUSION

The connection between the Web and physical objects is not
yet a reality. In this paper, we propose an avatar architecture
that enables connecting objects to the Web and improving
their skills with additional intelligence. Avatars receive data
from the objects they extend and provide reasoning capability
to drive object towards a cleverer behavior, thus naturally
improving object intelligence and rising object possibilities to
a new level.

Future work includes developing multi-agent communica-
tion protocols for effective exchange and creation of value-
added functionality to be exposed to end-users, as well as
studying the limitations of the different parts of our architec-
ture.

ACKNOWLEDGEMENT
This work is supported by the French ANR (Agence Na-
tionale de la Recherche) under the grant number <ANR-13-
INFR-012>.

REFERENCES

[1] Dominique Guinard, A Web of Things Application Architecture ?
Integrating the Real-World into the Web, Ph.D. thesis, PhD thesis No.
19891, ETH Zurich, August 2011.

[2] Luca Buriano, Marco Marchetti, Francesca Carmagnola, Federica Cena,
Cristina Gena, and Ilaria Torre, “The role of ontologies in context-aware
recommender systems,” in Mobile Data Management, 2006. MDM 2006.
7th International Conference on. IEEE, 2006, pp. 80-80.

[3] Salah-Eddine Tbahriti, Chirine Ghedira, Brahim Medjahed, and Michael
Mrissa, “Privacy-enhanced web service composition,” IEEE T. Services
Computing, vol. 7, no. 2, pp. 210-222, 2014.

[4] Michaél Mrissa, Lionel Médini, and Jean-Paul Jamont, “Semantic
Discovery and Invocation of Functionalities for the Web of Things,” in
IEEE International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, June 2014.

1Ohttp://www.w3.org/
http://www.fi-ware.org/

[5] Vinicius F. S. Mota, Felipe D. da Cunha, Daniel F. Macedo, José
Marcos S. Nogueira, and Antonio A. F. Loureiro, “Protocols, mobility
models and tools in opportunistic networks: A survey,” Computer
Communications, vol. 48, pp. 5-19, 2014.

[6] Marco Conti, Emanuel Marzini, Davide Mascitti, Andrea Passarella,
and Laura Ricci, “Service selection and composition in opportunistic
networks,” in IWCMC, Roberto Saracco, Khaled Ben Letaief, Mario
Gerla, Sergio Palazzo, and Luigi Atzori, Eds. 2013, pp. 1565-1572,
IEEE.

[7]1 Ali Makke, Yves Mahéo, and Nicolas Le Sommer, “Towards Oppor-
tunistic Service Provisioning in Intermittently Connected Hybrid Net-
works,” in 4th International Conference on Networking and Distributed
Computing (ICNDC 2013), Honk Kong, China, Dec. 2013, IEEE CS.

[8] Kurt Geihs, Paolo Barone, Frank Eliassen, Jacqueline Floch, Rolf Fricke,
Eli Gjorven, Svein Hallsteinsen, Geir Horn, Mohammad Ullah Khan,
Alessandro Mamelli, et al., “A comprehensive solution for application-
level adaptation,” Software: Practice and Experience, vol. 39, no. 4, pp.
385422, 2009.

[9] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen,
Ketil Lund, and Eli Gjorven, “Using architecture models for runtime
adaptability,” Software, IEEE, vol. 23, no. 2, pp. 62-70, 2006.

[10] Mounir Beggas, Lionel Médini, Frederique Laforest, and Mo-
hamed Tayeb Laskri, “Towards an ideal service qos in fuzzy logic-based
adaptation planning middleware,” Journal of Systems and Software, vol.
92, pp. 71-81, 2014.

[11] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde,
From the Internet of Things to the Web of Things: Resource Oriented
Architecture and Best Practices, chapter 5, pp. 97-129, Springer, New
York Dordrecht Heidelberg London, 2011.

[12] Dominique Guinard, Vlad Trifa, and Erik Wilde, “A resource oriented
architecture for the web of things,” in Proceedings of Internet of Things
2010 International Conference (IoT 2010), Tokyo, Japan, Nov. 2010.

[13] Matthias Kovatsch, Martin Lanter, and Simon Duquennoy, “Actinium: A
restful runtime container for scriptable internet of things applications,”
in 10T. 2012, pp. 135-142, IEEE.

[14] Feng Gao, Edward Curry, and Sami Bhiri, “Complex event service
provision and composition based on event pattern matchmaking,” in
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems. ACM, 2014, pp. 71-82.

[15] Amelie Gyrard, “A machine-to-machine architecture to merge semantic
sensor measurements,” in Proceedings of the 22nd international con-
ference on World Wide Web companion. International World Wide Web
Conferences Steering Committee, 2013, pp. 371-376.

