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Abstract

Due to the Lagrangian nature of SPH, treating inlet/outlet boundaries (that are
intrinsically Eulerian) is a challenging issue. An extension to the Unified Semi-
Analytical boundary conditions is presented to deal with unsteady open bound-
aries in confined and free-surface flows. The presented method uses Riemann
invariants to calculate flow properties near the open boundaries, thus allowing
the possibility to treat complex shapes. Furthermore, details are presented for
a parallel implementation of this method, including particle creation and dele-
tion, updating properties of vertices and segments, and additional constraints
on the time step. Simple validation cases are then displayed to illustrate the
performance of the proposed method as well as the ability to deal with complex
problems such as generation of water waves and free outlets.

Keywords: Smoothed Particle Hydrodynamics, open boundaries, unsteady
flows, confined flows, free-surface flows, Riemann invariants, inlet/outlet.

1. Introduction

The intrinsic computational cost of the meshless numerical method Smoothed
Particle Hydrodynamics (SPH) makes simulations where only part of a larger
problem domain is treated a natural extension of the technique. More gener-
ally, open boundaries are required in many fluid mechanics simulations. For this
kind of simulations, inlet/outlet conditions need to be developed. Efficient in-
let/outlet boundary treatment is also required when solving coupled problems,
especially when strong coupling algorithms are used, since the fields near the
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open boundaries are shared by the coupled models, and perturbations near the
shared boundary can lead to instabilities [1].

The simplest way to treat inlet/outlet in SPH is to use a buffer layer, where
the values of the fields at the boundary are imposed on several layers of particles
(“buffer particles”) that complete the kernel support of free particles close to the
open boundary [2, 3, 4]. In the inlet case, when entering the fluid domain a
buffer particle is marked as fluid particle and is then free to move. This sudden
modification can generate spurious shocks. Similarly, a fluid particle leaving the
fluid domain through an outlet is first marked as a buffer particle, and some
of its physical quantities are suddenly prescribed, generating shocks. In the
framework of Weakly Compressible SPH (WCSPH), using Riemann solvers can
partially solve this issue [5, 6], but modelling a complex boundary where the
flow can enter and/or leave the domain remains a difficult issue.

A slightly more complicated approach would be to use mirror particles at
open boundaries. This work is just starting and has been succesfully applied to
Dirichlet pressure boundaries by Kunz et al. [7].

The Unified Semi-Analytical strategy proposed by Ferrand et al. [8] has
shown promising results to treat both Dirichlet and Neumann conditions for
wall boundary treatment in SPH (see also Leroy et al. [9]). In this approach,
the boundaries are discretized using boundary elements hereafter referred to as
‘segments’, as well as ‘vertex’ particles at their intersections (see Figure 1). This
treatment of the boundaries will be extended here to open boundaries. For this
purpose, the main novelties are the following:

• Two additional terms in the SPH continuity equation will be introduced,
naturally derived from the Unified Semi-Analytical approach;

• The masses of vertex particles evolve over time according to the desired
ingoing/outgoing mass flux at the connected segments;

• The vertex particles are used to create or delete fluid particles which are
free to move according to the SPH momentum equation;

• The fields at the open boundaries are specified from the Riemann invari-
ants of the Euler equations.

All these changes allow the formulation to treat particles entering and exiting
the domain without perturbations of the fields for both confined and free-surface
flows.

The outline of the paper is as follows: first a short description of the Unified
Semi-Analytical boundary conditions for walls as proposed in Ferrand et al.
[8] is given in Section 2. These wall conditions will be extended to inlets and
outlets (Section 3). It will be followed by a method prescribing the fields of the
ingoing/outgoing particles from Riemann invariants. These developments will
the be tested in Section 4, where the ability of the present method to treat wall-
bounded and free-surface flows with complex open boundaries will be tested.

2



The work presented herein will use only the WCSPH approach (for more
details about this method, see Monaghan [10]). Developing similar open bound-
aries in an Incompressible SPH formulation is possible [11], however the equa-
tions in this case are elliptic, which will change the treatment of fields at the
open boundaries. This article will focus on treating the hyperbolic equations of
the WCSPH approach, and the treatment to impose compatible pressure and
velocity fields on the open boundaries. Treating the mass fluxes is equivalent
for both WCSPH and ISPH approaches.

Finally, this approach will be restricted to 2-D one-fluid flows.

2. Weakly compressible SPH with semi-analytical boundary condi-
tions
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Figure 1: Space discretization. Vertex particles are shown in green and segments in orange.

2.1. Space discretization
As illustrated in Figure 1, the weakly compressible fluid domain Ω is discre-

tised by a set of SPH fluid particles F denoted by the subscripts (.)a and (.)b,
while the boundaries ∂Ω are discretized by a set of vertex particles V denoted
by (.)v and connected to boundary segments S denoted by (.)s. Let P denote
the particle set that is the union of the sets F and V. Each element (particle
or segment) stores information such as mass ma, position center ra, particle
velocity va (i.e. the Lagrangian derivative of the position), fluid velocity ua
(i.e. the velocity field at position ra), density ρa, dynamic viscosity µa ≡ νρa,
pressure pa and volume Va = ma/ρa.

It is important to underline that two sets of velocities are needed here, since
the vertex particles and boundary segments at open boundaries are fixed in
space but carry an information on the fluid velocity, namely uv and us. In
other words, we have ua = va except for vertex particles and segments located
onto the open boundaries. On the other hand, this equality holds for wall
segments and vertex particles, thanks to the no-slip condition. Furthermore, in
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our model all particle masses ma are constant in time, with the exception of the
vertex particles of open boundaries, as detailed later.

Let ρ0 be the reference density of the considered fluid. In the Weakly Com-
pressible SPH approach used herein, the pressure field is deduced from the
density field using Tait’s equation of state [12], given as:

pa =
ρ0c

2
0

ξ

[(
ρa
ρ0

)ξ
− 1

]
, (1)

where c0 is the numerical speed of sound and ξ is taken to 7 for water.
The SPH interpolation is based on a weighted interpolation from a kernel

function w, generally compactly supported. Here we use the Wendland kernel
of order 5 [13]. In our notation, Ωa refers to the support of the kernel function
centred on ra. The subscripts (.)ab generally denotes the difference of a quantity
between the particles a and b (unless stated otherwise). For instance uab ≡
ua − ub and rab ≡ ra − rb. Some exceptions are made, including the following
notations: wab ≡ w (rab) and ∇wab ≡ ∇aw (rab). The symbol ∇a denotes the
gradient with respect to the position ra.

2.2. Boundary renormalization
Following the work of several authors, in particular Kulasegaram et al. [14]

and Ferrand et al. [8], an additional field denoted by γa is used to include
boundary terms. This field measures the part of the kernel support which is
inside the computational domain and is defined as:

γa ≡
∫

Ωa∩Ω

w (ra − r) dr. (2)

The field γa is computed from a dynamic governing equation (see Section
2.5). The discrete SPH operators presented in the next section also require the
computation of ∇γa, which is performed by a decomposition onto the boundary
segments. Each segment contribution ∇γas is defined as:

∇γas ≡
(∫

s

w (r) dS

)
ns, (3)

where ns is the inward unit normal to the boundary segment s. Now ∇γa is
written as:

∇γa =
∑

s∈S
∇γas. (4)

This gradient can be calculated analytically, see Ferrand et al. [8].
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2.3. Space differential corrected operators
In the present section, space discretized differential operators defined by

Ferrand et al. [8] will be used. These include Gγ,+
a {Ab} which is a boundary-

corrected gradient of the discrete scalar field {Ab},Dγ,−
a {Ab} which is a boundary-

corrected divergence of the discrete vector field {Ab}, and Lγa{Bb, Ab} which is
a boundary-corrected Laplacian of the discrete scalar (or vector) field {Ab}
with discrete diffusion field {Bb}. These operators are defined by the following
equations:

Gγ,+
a {Ab}≡

ρa
γa

∑

b∈P
mb

(
Aa
ρ2
a

+
Ab
ρ2
b

)
∇wab

−ρa
γa

∑

s∈S

(
Aa
ρ2
a

+
As
ρ2
s

)
ρs∇γas,

(5)

Dγ,−
a {ub}≡−

1

γaρa

∑

b∈P
mbuab ·∇wab

+
1

γa

∑

s∈S
uas ·∇γas,

(6)

Lγa{Bb, Ab}≡
1

γa

∑

b∈P
Vb2Bab

Aab
r2
ab

rab ·∇wab

− 1

γa

∑

s∈S
(Bs∇As +Ba∇Aa) ·∇γas.

(7)

The factor Bab is defined using a combination of Ba and Bb. In most of
the SPH literature, it is taken as their arithmetic mean. However, to ensure
continuity of shear flux, i.e. Ba∇Aa · rab = Bb∇Ab · rab, here it is their
harmonic mean:

Bab =
2BaBb
Ba +Bb

. (8)

Furthermore, as a first order approximation the two boundary terms of Equa-
tion 7 can be equalised, so that (Bs∇As +Ba∇Aa) ·∇γas ≈ 2 |∇γas|Bs∇As ·
ns. This is the flux at the boundary, therefore if a Neumann boundary con-
dition is imposed, then it will replace this term and if a Dirichlet condition is
imposed then it can be replaced by −2 |∇γas|BasAas/(ras · ns), as explained
by Ferrand et al. [8] and Leroy et al. [9].

2.4. Space discretized equations
The equations to be solved are the momentum equation, the equation of

motion, the governing equation for γa and the continuity equation:
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ρa
dua
dt

= −Gγ,+
a {pb}+ Lγa{µb,ub}+ ρag,

dra
dt

= va,

dγa
dt

= ∇γas · vas,
dρa
dt

= −ρaDγ,−
a {ub}.

(9)

It is important to underline that the particle velocity va is used to move the
particles and update γa, while the fluid velocity ua is used in viscous forces and
density evolution.

When time is considered as continuous and in the absence of open-boundaries,
the last two lines of Equations (9) are fully equivalent to [8]:

d (γaρa) = d

(∑

b∈P
mbwab

)
, (10)

This formulation allows exact integration with time, and thus will be preferred
in the following. However, in presence of inlets or outlets boundaries, the equiv-
alence between Equations (9) and Equation (10) needs to be modified. The
necessary developments are detailed in Section 3.1.

2.5. Time stepping without open boundaries
The time-stepping scheme used in Ferrand et al. [8] to solve the system of

equations (9) is recalled hereafter:

fna = Lγa{µnb ,unb } −Gγ,+
a {pnb }+ ρnag,

un+1
a =una +

∆t

ρna
fna ,

vn+1
a =un+1

a ,

rn+1
a = rna + ∆tvn+1

a ,

γn+1
a = γna + ∆t

∑

s∈S

1

2

(
∇γn+1

as + ∇γnas

)
· vn+1

as ,

ρn+1
a =

1

γn+1
a

[
γna ρ

n
a +

∑

b∈P
mb

(
wn+1
ab − wnab

)
]
,

(11)

where pn = p(ρn) using Equation (1).
Ferrand et al. [8] considered va = ua since they did not deal with open

boundaries, contrary to the present work.
In Section 3, this scheme will be adapted to account for ingoing or outgoing

mass fluxes at open boundaries.
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2.6. Volume diffusion correction
In the SPH operators used in Equations 9, the pressure and velocities are

collocated, i.e. stored at the same points (the particle positions), and therefore
require stabilization. Several authors have developed stabilization terms for
SPH in order to solve this issue. We will refer the reader to the work by Fatehi
and Manzari [15] or to the work by Ferrari et al. [16] whose work was adapted
to Semi-Analytical SPH boundaries by Mayrhofer et al. [17].

In the present work the stabilization factor is derived from the pressure-
velocity coupling available in the literature for finite elements mesh-based method,
namely Brezzi and Pitkäranta [18], which was adapted to Semi-Analytical SPH
boundaries by Ghaitanellis et al. [19]. The main principle behind this correction
is to develop the term in un+1

b in the continuity equation. In the absence of
viscosity, this gives:

ρn+1
a − ρna

∆t
= −ρnaDγ,−

a

{
unb −

∆t

ρna
Gγ,+a {pnb }+

∆t

ρna
ρnag

}

≈ −ρnaDγ,−
a {unb }

−ρnaDγ,−
a

{
−∆t

ρna
Gγ,+a {pnb }+ ∆tGγ,+a {g · rnb }

}
(12)

From this reasoning, a diffusion term ∆ can be defined as:

∆n = −ρna
(
−Lγa

{
∆t

ρnb
, pnb

}
+ Lγa {∆t, g · rnb }

)
(13)

Note that ∆ is not exactly equal to the second term of Equation (12) since
with SPH operators the Laplacian is not tantamount to the divergence of a gra-
dient. Following Brezzi and Pitkäranta [18] this diffusion term will be weighted
by an arbitrary factor Λ ∈ [0; 1], and it will be added to the continuity equation.
The last of Equations (11) will therefore be rewritten as:

ρ̃a =
1

γn+1
a

[
γna ρ

n
a +

∑

b∈F∪V
mb

(
wn+1
ab − wnab

)
]
,

ρn+1
a − ρ̃a

∆t
= Λρ̃a

(
Lγa

{
∆t

ρ̃b
, p̃b

}
− Lγa {∆t, g · rb}

)
,

(14)

where p̃b = p(ρ̃b), and Λ is usually set to 0.1. In addition, the Laplacian
operator in Equation (14) excludes the boundary elements. This correction is
similar to the one developed by Mayrhofer et al. [17], but it is still valid when
the density presents large variations.

2.7. Boundary conditions
Discretising the boundary in terms of segments and vertices gives a method

of dealing with the boundaries on the domain, however the method for imposing
boundary conditions is not trivial. The approach chosen by Ferrand et al. [8],
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and later extended in Leroy et al. [20], is that Dirichlet boundary conditions will
be imposed on the vertices and Neumann boundary conditions will be imposed
on the segments. An averaging is then used to find the corresponding values on
the segments or vertices.

For example, the shear stress on the walls (calculated either through the
no-slip condition or through a turbulence wall function) is set by imposing the
fluid velocity on the wall vertices, and the shear stress of the segments is then
found by averaging the velocity of the connected vertices.

3. Formulation for unified semi-analytical open boundary condition

3.1. Time integration of the continuity equation with Unified Semi-Analytical
open-boundary conditions

In this section, the continuity equation will be carefully integrated between
two successive iterations. The aim is to integrate exactly all the terms which
depend only on particle positions, in order to stop the imposed mass flux from
introducing errors on the density at each time step. Otherwise, these errors
would lead to density discontinuities for fluid particles near open boundaries,
which would in turn result in spurious shockwaves when particles are created or
deleted.

While integrating the continuity equation, new boundary terms will natu-
rally appear due to the presence of open boundaries. Their time integration
will be performed consistently with the time stepping scheme proposed in Sec-
tion 2.5, so that no artificial density perturbation is induced by the open bound-
aries.

As stated above, the time-dependent SPH continuity equation is the fourth
line of the system (9) involving the fluid velocity ub. Let us now rewrite this
equation as a total derivative so that the time integration will be exact. To
do so, the continuity equation is first rewritten using the divergence-operator
definition of Equation (6):

dρa =−ρaDγ,−
a {ub} dt

=
1

γa

∑

b∈P
mb∇wab · uabdt−

ρa
γa

∑

s∈S
∇γas · uasdt.

(15)

To transform the sums in Equation (15) into exact total derivatives, the fluid
velocity ub should be replaced by the particle velocity vb. This is possible for
all particles except for the sets of vertices and segments which belong to the
open boundaries (denoted by V i/o and S i/o, respectively), and thus the density
variation reads:
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dρa =
1

γa

∑

b∈P
mb∇wab · vabdt−

1

γa

∑

v∈Vi/o

mv∇wav · (uv − vv) dt

− ρa
γa

∑

s∈S
∇γas · vasdt+

ρa
γa

∑

s∈Si/o

∇γas · (us − vs) dt.

(16)

In order to compute the first and third terms of Equation (16), we use the
fact that in a Lagrangian frame dr = vdt, so that:

dwab = ∇wab · vabdt,

dγa =
∑

s∈S
∇γas · vasdt.

(17)

Therefore Equation (16) can be rewritten as:

d (γaρa) = γadρa + ρadγa = d

(∑

b∈P
mbwab

)
− γaδρi/o

a + ρaδγ
i/o
a , (18)

where δρi/o
a and δγi/o

a are defined by:

δρi/o
a ≡ 1

γa

∑

v∈Vi/o

mv∇wav · (uv − vv)dt, (19)

δγi/o
a ≡

∑

s∈Si/o

∇γas · (us − vs) dt. (20)

It should be noted that Equation (18) is a generalized version of Equation
(10). Furthermore the terms in Equations (19) and (20) are non-zero because
particle and fluid velocities do not coincide at open boundaries, as already men-
tioned. In addition, for Equation (18) to be valid, the particle masses should be
constant over the time integration of γaρa. Therefore, the particles masses mb

are kept constant on the time interval
]
tn; tn+1

[
equal to mn

b . Since the vertex
masses will vary in time (see Section 3.3), this implies that these variations will
occur after the time integration of the continuity equation.

Let us now integrate the continuity Equation (18) from time tn to tn+1 =
tn + ∆t, to have a consistent time marching scheme:

(γaρa)
n+1 − (γaρa)

n
=
∑

b∈Pn

(
mn
bw

n+1
ab −mn

bw
n
ab

)

−
∫ tn+1

tn
γaδρ

i/o
a +

∫ tn+1

tn
ρaδγ

i/o
a .

(21)
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Note that the summation is over the particles existing at time n, denoted
by Pn and the operator, dt, in the integrals is included in Equations (19) and
(20). The particle creation/deletion algorithm is described in Section 3.3.

The two time-integrated terms
∫ tn+1

tn
γaδρ

i/o
a and

∫ tn+1

tn
ρaδγ

i/o
a in Equation

(21) will be called virtual variation terms, and are the only modification of the
time-independent continuity equation proposed by Ferrand et al. [8] (last line
of Equation 11).

The key point in the time integration of the virtual variations is that they are
expected to maintain exactly a uniform flow field with a constant density. The
term γaδρ

i/o
a represents the variation experienced by

∑
vmvwav, with v ∈ V i/o,

if the vertex particles v were moved with the velocity (uv − vv) while the fluid
particle a is fixed. Similarly the term δγ

i/o
a represents the variation experienced

by γa if the segments s ∈ S i/o were moved with the velocity (us − vs) while
the fluid particle a is fixed.

Consequently the virtual displacement δri/o
a ≡ ∆t (una − vna ) is used to com-

pute the virtual variation terms. Thus the time-integration of δρi/o
a and δγi/o

a

can be computed consistently with the last two lines of Equation (11) as:

∫ tn+1

tn
γaδρ

i/o
a =

∑

v∈Vi/o

mn
v

[
w
(
rnav + δri/o

v

)
− w (rnav)

]
, (22)

and:

∫ tn+1

tn
ρaδγ

i/o
a =

ρna
2

∑

s∈Si/o

[
∇γas

(
rnas + δri/o

s

)
+ ∇γas (rnas)

]
· δri/o

s , (23)

where δri/o
s = ∆t(uns − vns ), the velocity of the segments are defined by us =

(uv1 + uv2)/2 and δri/o
v = ∆t(unv − vnv ). In the above notation, v1 and v2 are

the vertices connected to s.
Equation (23) is consistent with the way γ is calculated. If an analytical

formulation of γ is used (such as in Leroy et al. [9]) it should be computed as:

∫ tn+1

tn
ρaδγ

i/o
a = ρna

∑

s∈Si/o

[
γas

(
rnas + δri/o

s

)
− γas (rnas)

]
. (24)

The proposed continuity Equation (21) allows to take account of ingoing/out-
going mass flux through the last two terms, while other terms depend only on
particle positions; Equation (21) combined with Equations (22) and (23) gives:
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ρn+1
a =

1

γn+1
a

{
γna ρ

n
a +

∑

b∈Pn
mn
b

(
wn+1
ab − wnab

)

+
∑

v∈Vi/o

mn
v

[
wnav − w

(
rnav + δri/o

v

)]

+
ρna
2

∑

s∈Si/o

[
∇γas

(
rnas + δri/o

s

)
+ ∇γas (rnas)

]
· δri/o

s



 .

(25)

For simplicity the sumations in the right hand side of Equation (25) will be
noted as di/o

a , which gives:

ρn+1
a =

1

γn+1
a

(
γna ρ

n
a + di/o

a

)
. (26)

3.2. Time stepping with open boundaries
The time stepping scheme used in Equation (11) is therefore adapted to take

into account the open boundaries with a volume diffusion correction (section
2.6):

fna = Lγa{µnb ,unb } −Gγ,+
a {pnb }+ ρnag,

un+1
a = una +

∆t

ρna
fna ,

vn+1
a = un+1

a for a ∈ F/V,
rn+1
a = rna + ∆tvn+1

a ,

γn+1
a = γna + ∆t

∑

s∈S

1

2

(
∇γn+1

as + ∇γnas

)
· vn+1

as , (27)

ρ̃a =
1

γn+1
a

(
γna ρ

n
a + di/o

a

)
,

ρn+1
a − ρ̃a

∆t
= Λρ̃a

(
Lγa

{
∆t

ρ̃b
, p̃b

}
− Lγa {∆t, g · rb}

)
.

As a reminder di/o
a is defined through Equations (25) and (26). Furthermore,

the constraints on the time step ∆t are described in Section Appendix B.4.

3.3. Mass update of vertex particles
The method used to create or remove particle needs to be carefully developed

in order to keep a correct particle distribution near the open boundaries (this
process can be understood as re-meshing). The choice made is to make the
vertex particles grow (respectively decrease) over time on an inlet (respectively
outlet) boundary. Thus their masses and volumes are not constant. However,
the mass evolution should not create any perturbation neither on the density
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nor on the momentum. Therefore, as stated earlier a constant mass will be set
between tn and tn+1 in Equations (27). This is ensured by Equations (21), (22)
and (23). The masses will therefore be updated outside of the marching scheme.

Nonetheless, the total mass of the system should change smoothly in time.
To do so the masses of the vertex particles in v ∈ V i/o take into account the
desired mass flux through the open boundary ṁv. This mass flux is computed
as a weighted average of the mass fluxes through the segments s ∈ Nsv, where
Nsv is the set of all the segments connected to v (usually two segments in 2-D):

ṁv =
1

2

∑

s∈N i/osv

ρsSs(us − vs) · ns, ∀v ∈ V i/o, (28)

where Ss is the length of a segment. The flux ṁv is positive for an inlet and
negative for an outlet.

..

u⃗s

.
s

.

v

(a) t0.

.

(b) t1.

.

(c) t2.

.

(d) t3.

Figure 2: Mass evolution and particle creation for an inlet: the mass of vertex particles v is
growing due to a positive flux us · ns at the segment s (times t0 to t3). When the masses
of the inlet vertices reach the defined threshold of mref/2 (time t2), new fluid particles are
created and the mass of vertex particles is decreased.

The flux ṁv is used to update the vertex masses. Instinctively one would
assume that mn+1

v = mn
v + ∆tṁn

v . However, in the case of an inlet, new fluid
particles must be created near the open boundary when the fluid particles move
away from it (see Figure 2). For this purpose, each time the vertex particle
mass mv reaches a certain threshold θvmref, a fluid particle is created at the
same position with the reference mass mref and this mass is subtracted from
the vertex particle mass to prevent from any density shock. For the sake of
simplicity θv is the open angle of the vertex divided by 2π (i.e. θv = 0.5 for a
plane boundary) and mref is the mass of a fluid particle.

In the case of an outlet, particles are removed when they cross an open
boundary segment. In order to remain consistent the mass of an outgoing fluid
particle is redistributed over the open boundary vertices connected to this seg-
ment. Each of these vertices receives the mass βa,vma, where βa,v is a distribu-
tion (or weighing) factor.

The factor βa,v is constructed so that most of the mass is distributed to the
closest vertex. For a segment s with vertices v0 and v1, vector pi is defined as
the vector between vertex vi and the projection of the particle a on the segment,
i.e. pi = ravi−(ravi · n)n (see Figure 3). Assuming that the projection belongs
to the segment, then for v0 and v1 connected to s, βa,vi is defined as:
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Figure 3: Mass distribution process for an outgoing fluid particle a crossing a segment s
connecting vertices v0 and v1. The dark gray line represents the factor βa,v0 .

βa,v0 =
p1 · rv0v1
‖rv0v1‖2

,

βa,v1 =
p0 · rv1v0
‖rv1v0‖2

= 1− βa,v0 .
(29)

Otherwise, βa,v is set to zero.
Therefore, the masses of vertex particles are updated as follows:

mn+1
v = mn

v + ∆tṁn
v + δmn

v , ∀v ∈ V i/o, (30)

where δmn
v quantifies the mass variation due to particle creation/destruction,

i.e. −mref each time a fluid particle is created at position v, +βa,vma each
time a particle a crosses a segment connected to v. As stated above, the step
described by Equation (30) is added at the end of the time stepping scheme
(27).

In Equation (30) only the mass flux positiveness determines whether an
open boundary repulses or attracts fluid particles. As illustrated later in the
periodic wave test case, i.e. Figure 12, it is possible to prescribe time-dependent
velocities moving from negative to positive values. Henceforth, the proposed
strategy makes it straightforward to treat both inlet and outlet at the same
open boundary, depending on space and time.

Free-surface flows can also be treated that way. For example, for the periodic
wave shown in Figure 12 and later in section 4.3, the mass flux ṁv at the vertical
open boundaries oscillates consistently from positive values to negative values
as the velocity is prescribed according to fifth-order solution to Stokes wave
theory.

3.4. Imposing pressure and velocity
The Riemann problem formulation described in Appendix A is used to

define compatible pressure and velocity fields. The principle is to used a method
common in finite volumes, where characteristic waves (λ−1, λ0 and λ+1) model
discontinuities between the exterior state (the boundary conditions) and the
interior state (the fluid) through Generalized Riemann Invariants (GRI).
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3.4.1. Imposed velocity
When a velocity field is imposed on a boundary, for instance an incoming

free-surface wave velocity profile at an inlet, it is imposed on the open boundary
vertices (as it is a Dirichlet boundary condition). Since the imposed velocity
field is needed on the open boundary segments, its value will be averaged from
the neighbourghing vertices:

us =
1

|Nvs|
∑

v∈Nvs
uv. (31)

This value will then be the prescribed velocity field on the exterior state,
i.e. uext = us. In this case the linearised Riemann problem is used to compute
the value of the density (or pressure) fields at the exterior state, and therefore
at the boundary segment and vertices.

The GRI of wave λ+1 will therefore be used to calculate the external state
pressure pext from the internal state. However the type of discontinuity of the
wave λ+1 needs to be defined. It is known that since λ+1,ext = λ+1,2, then if
λ+1,ext > λ+1,int the wave is a shock, however since pext is unknown then cext
cannot be calculated. Therefore assumptions needs to be made regarding the
relationship λ+1,ext > λ+1,int. It will be assumed that this condition is verified
if un,ext > un,int, but this assumption will need to be verified once cext is known.
Therefore if:

1. If un,ext > un,int, the λ+1 wave is a shock wave. The Rankine-Hugoniot
relationships have to be used through the following equation:

pext = pint + ρintun,int (un,int − un,ext) . (32)

2. If un,ext ≤ un,int, the λ+1 wave is an expansion wave. The corresponding
Riemann invariant R+ must must be used (i.e. R+1,ext = R+1,int):

un,ext − ψ (ρext) = un,int − ψ (ρint) , (33)

where ψ is defined by Equation (A.8).

Once the pressures are known on the segments (since ps = pext), then the
pressure on the vertices are found by averaging the connected segments:

pv =
1

|Nsv|
∑

s∈Nsv
ps. (34)

The densities are once again calculated using Equation (1).
As mentioned earlier, if the imposed condition corresponds to an inlet then

the tangential velocity components need to be defined, otherwise they will be
defined from the interior state.
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3.4.2. Imposed pressure (or density)
When a pressure field is imposed on a boundary, for instance hydrostatic

pressure at an outlet, it is imposed on the vertices (as it is a Dirichlet boundary
condition). Since the imposed pressure field is needed on the open boundary
segments, to do so its value will be averaged from the neighbourghing vertices:

ps =
1

|Nvs|
∑

v∈Nvs
pv. (35)

This value will then be the prescribed velocity field on the exterior state, i.e.
pext = ps. In this case the linearised Riemann problem is used to compute the
value of the velocity fields at the exterior state, and therefore at the boundary
segment and vertices. The GRI of wave λ+1 will therefore be used to calculate
the normal velocity component from the internal state. However the type of
discontinuity of the wave λ+1 also needs to be defined. In this case it will be
assumed that this condition is verified if cext > cint, but this assumption will
need to be verified once un,ext is known. Therefore if:

1. If cext > cint, the λ+1 wave is a shock wave. The Rankine-Hugoniot
relationships have to be used through the following equation:

un,ext =
pint − pext
ρintun,int

+ un,int. (36)

Note that due to the presence of un,int in the denominator of Equation
(36), when the pressure is imposed on a boundary adjacent to still water
this formulation could pose difficulties. This is why, when un,int → 0 the
limit of Equation (36) should be considered, i.e.:

lim
un,int→0

un,ext = un,int. (37)

Practically, this condition will be imposed when un,ext > c0/10.
2. If cext ≤ cint, the λ+1 wave is an expansion wave. The corresponding

Riemann invariant R+ must be used (i.e. R+1,ext = R+1,int):

un,ext − ψ (ρext) = un,int − ψ (ρint) . (38)

Once the velocities are known on the segments (since us = uext), then the
velocities on the vertices are found by averaging the connected segments:

uv =
1

|Nsv|
∑

s∈Nsv
us. (39)

Again, if the imposed condition corresponds to an inlet then the tangential
velocity components need to be defined, otherwise they will be defined from the
interior state. Finally, the densities are still calculated using Equation (1).
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3.4.3. Imposed open boundary conditions algorithm
The linearised Riemann problem is used to calculate the open boundary

conditions before the time stepping is done. Therefore for an open boundary
problem, the calculation steps are listed below:

1. Calculation of the fields at the boundaries, using the method described
in Ferrand et al. [8] for wall boundaries, and the method described in
Section 3.4.1 and 3.4.2 for open boundaries.

2. Time stepping of the fluid particles in the domain using Equations (27).
3. Update the mass of the vertex particles using Equation (30), create par-

ticles if mv > θvmref and delete particles that have crossed an open
boundary.

The parallel implementation for this algorithm is described in Appendix B.

4. Numerical tests

For all the simulations, the quintic Wendland kernel with smoothing length
h = 2∆r will be used.

4.1. Non-orthogonal flux on inlet/outlet in a square
The first test case presented is that of a 2-D square fluid domain of size L with

only inlet/outlet boundary conditions (see Figure 4). The flow is at an angle
of π/4 to the normal to the boundaries; in other words, the velocity imposed
at all boundaries is u0 = |u0|/

√
2(1, 1)T . It illustrates one of the advantages of

present Semi-Analytical inlet/outlet boundary treatment: the absence of buffer
layer makes it possible to prescribe a non-orthogonal flow quite easily, regardless
of the open boundary shape.

The initial conditions are of constant velocity and density fields with the
same values as imposed at the boundary. Particles are initially distributed
onto a Cartesian grid, the inter-particle distance ∆r and segment size are non-
dimensionalized using the problem size, i.e. ∆r+ = ∆r/L for all different tests
performed (from 0.8k to 41.6k particles). Furthermore the speed of sound at
rest is set to c0 = 10|u0|. The fluid viscosity ν is set to 10−2 m2.s-1 and the
volumic diffusion factor Λ will be set to 0, so that the focus of this case is on
the open boundary conditions.

The evolution of the L2 errors for both density and velocity is computed as:

ερ =

√
1

NP

∑

a∈P

(ρa − ρ0)2

ρ2
0

and εu =

√
1

NP

∑

a∈P

|ua − u0|2
|u0|2

, (40)

where NP is the number of fluid and vertex particles.
As a first test the Riemann invariants will not be used and both the velocity

and density will be imposed as u0 and ρ0 respectively. The evolution of the er-
rors is displayed in Figure 5 with respect to non-dimensional time t+ = t|u0|/L.
It is therefore shown that the errors are very small; they are mainly linked to
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.

Figure 4: Non-orthogonal inlet/outlet in a square.

the round-off errors. Since the simulations presented are computed on single
precision GPU (Graphics Processing Units), the values observed are acceptable.

It should be emphasised that the additional terms in the continuity equation
(Equation 18) are essential, as the authors have observed that the simulations
that ran without those terms crashed immediately.
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Figure 5: Non-orthogonal inlet/outlet in a square. Evolution of the L2 error in density (left)
and velocity (right) for different discretizations without using Riemann invariants.

As a second test, the velocity are imposed on inlets and the pressure on the
outlets together with Riemann invariants. As shown by Figure 6, the errors
are slighlty larger than previously. This is because the previous case was over-
constrained. Futhermore, when using Riemann invariants at the open bound-
aries the error is almost independent of the particle size. However the error on
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Figure 6: Non-orthogonal inlet/outlet in a square. Evolution of the L2 error in density
(left) and velocity (right) for different discretizations using Riemann invariants with imposed
velocities on the inlets and imposed pressure on the outlets.

the velocity is of an order of magnitude higher than that of the density. This
can easily be explained by linearizing the Euler equations for the numerical
perturbations δρ et δu:

δu

τ
∼ c20

ρ0

δρ

λ
, (41)

δρ

τ
∼ ρ0

δu

λ
, (42)

where τ and λ are time and length scales corresponding to the perturbation
propagation.

The order of magnitude of the errors are ερ ∼ δρ/ρ0 and εu ∼ δu/|u0|.
Combining the last two equations in order to remove τ and λ yields εu ∼
(c0/|u0|) ερ. The error on the velocity is thus amplified by the numerical Mach
number, which is taken as 10 as explained above.

4.2. Rapidly expanding pipe
In this next test case, the flow from a small pipe (named pipe 1) will enter a

large pipe (named pipe 2), creating a sudden expansion of the flow. See Figure 7
for details on the geometry. Far from the expansion, the flow should follow the
Hagen-Poiseuille equations, which for a flow between two infinite plates is given
by:
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Figure 7: Configuration of the rapidly expanding pipe. The origin is placed at the beginning
of the second pipe, and on the central axis of the pipes.

ux = Umax

(
1− z2

W 2

)
, (43)

dP

dx
= −2ρ0νUmax

W 2
, (44)

where the origin of z lies on the central pipe axis, W is the half width of the
pipe and Umax is the maximum velocity. To ensure that the flow stays laminar,
this maximum velocity will be defined according to a Reynolds number Re:

Umax =
νRe
2W

. (45)

Equation (43) will therefore be used to impose a Poiseuille flow velocity
profile on the inlet, and a constant pressure will be imposed on the outlet.
The geometrical parameters are chosen to correspond to one of the experiments
presented by Hammad et al. [21]: W1 = 0.13 m, L1 = 3W1, W2 = 2W1 and
L2 = 4W2. The particle spacing ∆r = W1/26 and the physical parameters
chosen are ρ0 = 1190 kg.m-3, ν = 3.19 × 10−5 m2.s-1 and Re = 20.6. The
numerical parameters are c0 = 0.03 m.s-1 and Λ = 0.1. A background pressure
is used to help the flow stabilize.

Figure 8 shows the horizontal velocity and density profiles at the inlet and
outlet. As can be seen the velocity profile at the outlet is very close to the
Poiseuille flow. In addition, the density at the inlet is greater than at the outlet,
which is a necessary condition as the pressure is linked to the density through
the state Equation (1). Finally, integrating the profile in Figure 8 to calculate
the mass fluxes at the inlet and outlet we get the following time averaged values:
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Figure 8: Horizontal velocity and density profiles at the inlet and the outlet of the rapidly
expanding pipe. The dashed line shows the analytical solution for a Poiseuille flow, and the
solid line the simulation results.

• Mass flux in: 0.523 kg.m-1.s-1

• Mass flux out: 0.525 kg.m-1.s-1

• Analytical mass flux: 0.521 kg.m-1.s-1

The mass flux differences appear because even though the fluid particles
have fixed masses throughout the simulation, the open boundary vertices have
a variable mass. The mass variations are consistent with the boundary mass
flow, and the differences between the inlet and the outlet are a result of the com-
pressible medium which cannot achieve a perfect steady state. The normalised
error in the mass flux is therefore equal to 4×10−3, which is acceptable relative
to the spatial discretisation, and it does not have a significant impact on the
simulation.
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Figure 9: Streamlines in the rapidly expanding pipe from the SPH simulated flow (above),
experimental results by Hammad et al. [21] (middle) and simulation result using Code_Saturne
[22]. The values displayed at the streamlines are Ψ/Ψ(0, 0).
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Figure 10: The three regions in the rapidly expanding pipe that can be defined to claculate
the head loss from the simulated flow.

In Figure 9 the streamlines obtained from the stream function are compared
with the experimental results presented in Hammad et al. [21] and a finite
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volume solution using Code_Saturne [22]. The calculation of the stream function
Ψ from a velocity field can be performed using different methods and can provide
insight into sources of disagreement with the experimental values. To analyse
the simulation results the following equation was used:

Ψ(x, z) =





∫ r(x,z)

r(L2,W2)

(uxdz − uzdx) above the central axis
∫ r(x,z)

r(L2,−W2)

(uxdz − uzdx) below the central axis
(46)

Amongst the differences between the SPH simulation and the experimental
results, the stream line at Ψ = 0 does not cross the wall at the same distance
from the expansion, meaning that the recirculation zone is smaller in the sim-
ulations. This could be because in the state Equation (1) the value of ξ for
diethylene glycol (which was used in the experiment) is not readily available,
and therefore ξ = 7 was imposed, which is the value for water. This is also true
for the simulations using Code_Saturne, although the incompressible model used
in this case allows these results to be closer to the experimental values.

Nonetheless, at the outlet the streamlines of the simulations are close to
the experimental results. As a further check of the validity of the simulation,
the head loss will be modelled. Looking at the streamlines of the flow, plotted
in the flow can be separated into 3 regions: a Poiseuille flow inside pipe 1, a
recirculation zone created by the sudden expansion and a Poiseuille flow inside
pipe 2 (see Figure 10). One can estimate the head loss in each section by (see
Hammad et al. [23] for more details):





1

2

(
Û2

1 − Û2
1′

)
=

1

ρ2
(P1′ − P1) ,

1

2

(
Û2

1′ − Û2
2′

)
+

1

ρ2
(P1′ − P2′) =

1

2

(
Û1′ − Û2′

)2

,

1

2

(
Û2

2 − Û2
2′

)
=

1

ρ2
(P2′ − P2) ,

(47)

where the subscript represent the interface between different zones of the flow.
Subscript 1 denotes the interface between the inlet and pipe one, subscript 1′

the interface between the Poiseuille flow of pipe one and the recirculation area,
subscript 2′ the interface between the recirculation area and the Poiseuille flow
of pipe two and subscript 2 the interface between pipe two and the outlet (see
Figure 10). Furthermore Û2 = 1/(2W )

∫W
−W U2dz̃ and P = 1/(2W )

∫W
−W pdz̃.

These three equations can be combined to give:

1

2

(
Û2

1 − Û2
2

)
+

1

ρ2
(P1 − P2) =

1

2

(
Û1 − Û2

)2

+
1

ρ2
(P1 − P1′)

+
1

ρ2
(P2′ − P2) +O

(
νÛ1

W2

)
. (48)

Defining the head of the flow by:
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H =
Û2

2g
+

P

gρ2
. (49)

The theoretical head loss between the inlet and the outlet is thus equal to
(neglecting the last term in Equation 48):

H1 −H2 =
1

2g

(
Û1 − Û2

)2

+
1

gρ2
(P1 − P1′) +

1

gρ2
(P2 − P2′) (50)

−
ν 2

R
e/(gH

1W
31 )

−ν2Re/(gH1W 3
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Figure 11: Head profile plotted along the x-axis of the rapidly expanding pipe. The blue line
is the computed head, the dashed lines show the theoretical head gradient of the Poisseuille
flows (from Equations 44 and 45) and the arrows around the dotted line shows the head loss
from the Borda-Carnot equation.

The expected head loss is therefore equal to the sum of head loss of the
Poiseuille flows, and Borda-Carnot head loss in the recirculation zone. Fig-
ure 11 shows the head along the x-axis. Extracting the simulated head loss and
calculating the theoretical head loss gives:

• Head loss from simulations = 5.04× 10−7 m

• Theoretical head loss = 5.00× 10−7 m

Therefore, the simulated head loss has less than a 1% difference with the
theoretical head loss.

4.3. 2-D periodic free-surface water wave
The next test case shows that these new open boundary conditions can be

used for both inflows and outflows, and that open boundaries can alternate
between the two without any difficulties, even with a free-surface. To do so
periodic water waves propagating on a flat bed will be imposed. The waves
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imposed are calculated from the fifth-order solution to Stokes wave theory given
by Fenton [24]:

kη(x, t) =

5∑

i=1

εi
i∑

j=i

Bij cos
[
jk
(
x− ct+ θ

k

)]
(51)

U
(
k
g

)1/2

= C0 + ε2C2 + ε4C4 (52)

c = U c + U (53)
ux(x, z, t) =

(
c− U

)
+

C0

(
g
k3

)1/2 5∑

i=1

εi
i∑

j=1

Aij cosh (jkz) jk cos
[
jk
(
x− ct+ θ

k

)]
(54)

uz(x, z, t) = C0

(
g
k3

)1/2 5∑

i=1

εi
i∑

j=1

Aijjk sinh (jkz) sin
[
jk
(
x− ct+ θ

k

)]
(55)

Rk
g = 1

2C
2
0 + kD + ε2E2 + ε4E4 (56)

p(x,z,t)
ρ0

= R− gz − 1
2

[
(ux − c)2

+ u2
z

]
(57)

where η is the free-surface elevation (with the water depth h = D + η), A is
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Figure 12: Propagation of a regular waves on a flat bottom with open boundaries given at 2
instances. A time varying velocity profile is prescribed on both vertical boundaries so they
alternate between inlets and outlets.

the wave amplitude (i.e. half of the wave height), D is the mean water depth, g
is the acceleration due to gravity, k is the wave number (defined as k = 2π/L,
where L is the wave length), c is the wave velocity, U c is the mean current
velocity, U is the mean horizontal velocity, θ is a phase constant and R is the
Bernouilli constant. The wave period T can be calculated from the wave number
and wave velocity, i.e. T = 2π/(kc). Furthermore the z-axis has its origin at
the bed. The constants are given in table 1.

For the present test case a depth of 0.5 m, an amplitude of 0.05 m and a
wave length of 2.5 m have been chosen. Furthermore there will be no mean
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Table 1: Constants for the fifth-order solution to Stokes wave theory given by Fenton [24] and
used in equations (51) - (57).

A11 = 1/ sinh (kD)

A22 = 3S2/[2(1− S)2]

A31 = (−4− 20S + 10S2 − 13S3)/[8 sinh(kD)(1− s)3]

A33 = (−2S2 + 11S3)/[8 sinh(kD)(1− s)3]

A42 = (12S − 14S2 − 264S3 − 45S4 − 13S5)/[24(1− S)5]

A44 = (10S3 − 174S4 + 291S5 + 278S6)/[48(3 + 2S)(1− S)5]

A51 = (−1184 + 32S + 13232S2 + 21712S3 + 20940S4 + 12554S5 − 500S6

−3341S7 − 670S8)/[64 sinh(kD)(3 + 2S)(4 + S)(1− S)6]

A53 = (4S + 105S2 + 198S3 − 1376S4 − 1302S5 − 117S6 + 58S7)

/[32 sinh(kD)(3 + 2S)(1− S)6]

A55 = (−6S3 + 272S4 − 1552S5 + 852S6 + 2029S7 + 430S8)

/[64 sinh(kD)(3 + 2S)(4 + S)(1− S)6]

B11 = 1

B22 = coth(kd)(1 + 2S)/[2(1− S)]

B31 = −3(1 + 3S + 3S2 + 2S3)/[8(1− S)3]

B33 = −B31

B42 = coth(kd)(6− 26S − 182S2 − 204S3 − 25S4 + 26S5/[6(3 + 2S)(1− S)4])

B44 = coth(kd)(24 + 92S + 122S2 + 66S3 + 67S4 + 34S5)/[24(3 + 2S)(1− S)4]

B51 = −(B53 + B55)

B53 = 9(132 + 17S − 2216S2 − 5897S3 − 6292S4 − 2687S5 + 194S6 + 467S7

+82S8)/[128(3 + 2S)(4 + S)(1− S)6]

B55 = 5(300 + 1579S + 3176S2 + 2949S3 + 1188S4 + 675S5 + 1326S6 + 827S7

+130S8)/[384(3 + 2S)(4 + S)(1− S)6]

C0 = [tanh(kD)]1/2

C2 = [tanh(kD)]1/2(2 + 7S2)/[4(1− S)2]

C4 = [tanh(kD)]1/2(4 + 32S − 116S2 − 400S3 − 71S4 + 146S5)/[32(1− S)5]

E2 = tanh(kD)(2 + 2S + 5S2)/[4(1− S)2]

E4 = tanh(kD)(8 + 12S − 152S2 − 308S3 − 42S4 + 77S5)/[32(1− S)5]

Where S = sech (2kD).

current in the flow. The Ursell number for this case is 2AL2/d3 = 5� 32π2/3,
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which would mean that linear wave theory is applicable. However, a higher
order solution is used, as phase difference can occur after several time periods.
Finally, in the simulation the fluid viscosity ν is set to 10−6 m2s-1, the particle
spacing ∆r is set to one tenth of the amplitude and the numerical parameters
are c0 = 20 m.s-1 and Λ = 0.1. An illustration of this test case can be found in
Figure 12 where it is shown that the open boundaries alternate between inlets
and outlets.

A simulation will be run where the fluid velocities calculated from the an-
alytical solution (Equations 51 - 57) will be imposed along the normal of the
open boundaries, and Riemann invariants will be used to calculate the pressure.
This will be compared to the analytical solution and a simulation with periodic
conditions. Periodic conditions mean that particles exiting the domain on one
side will enter the domain on the other side, but more importantly particles on
one side will have as neighbours particles close to the other side, acting as if
the domain was truly infinite. This will therefore serve as a reference, because
ideal open boundary conditions would give the same values as an extension of
the domain filled with fluid and wall particles. Furthermore, it should be noted
that if both the pressure and the velocities would be imposed, then the problem
would be overconstrained and particles would exit the domain.

Plots of the free-surface are then presented in Figure 13. The first conclusion
is that even after several wave periods the free-surface stays very close to the
analytical solution for all type of boundaries. Secondly, because of its nature,
the simulation that uses periodic conditions needs the domain to be a multiple of
the wave length. This is not the case with open boundary conditions (as can be
seen from the fact that the green free-surface particles extend over a longer range
than the blue free-surface particles). Finally, the waves propagating through a
periodic domain are slightly slower than the analytical solution, which is not
true for simulations with open boundary conditions as the analytical solution is
imposed on the velocities.

Furthermore, let us define the error for the free-surface location using the
following equation:

εη =

√
1

NFS

∑

a∈FS

(ηsim − η)2

A2
, (58)

where FS represents the free-surface particles, NFS is the number of free-surface
particles, ηsim is the free-surface elevation of the simulations and η is the ana-
lytical solution given in Equation (51).

These errors are plotted over time in Figure 14, which shows that for these
discretisation the error (the solid line) is of the order of the particle spacing
(the dashed line). Unfortunatly, this is not the case for particle size smaller
than shown in Figure 14 as an unstability develops, increasing the error. These
instabilities appear as a checkerboarding effect close to the inlets, and work
on the volume diffusion term close to open boundaries will be necessary in the
future to reduce those errors for very refined simulations.
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Figure 13: Free-surface particles for simulations using different boundary conditions compared
to the analytical solution of equations (51) - (57).

In all cases the open boundary conditions seem to model properly the prop-
agating waves, and no discrepancies appear between the fluid and imposed free-
surfaces even after seven wave periods.

4.4. 2D solitary wave
The Riemann invariants become particularly useful when the boundary con-

ditions are not well known, or not easy to predict. To illustrate this concept, a
test case for the propagation of a solitary wave on a bed with a step, that will
cause it to break will be presented. See Figure 15.

At the inlet the solitary wave will be imposed from the Korteveg-De Vries
solitary wave equation [25]:
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Figure 15: Configuration of the 2D solitary wave on a sloped domain.

η(t) = A sech2 (k(ct− x0)) , (59)
h(t) = D + η(t), (60)

p(z, t) = ρg(z − h(t)), (61)

ux(z, t) = c
η(t)

h(t)
, (62)

uz(z, t) =
z

h(t)

∂η

∂t
(t). (63)
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η(x, t) = A sech2 (k(x− ct− x0)) , (64)

where A is the amplitude and x0 is wave shifting length. The wave number and
celerity are computed as k =

√
3A/4D3, c =

√
g(A+D).

At the outlet a hydrostatic pressure corresponding to the reference level D
will be imposed and the velocities will be calculated using Riemann invariants.

The geometry chosen for the test case illustrated in Figure 15 is a the ref-
erence depth D = 0.6m, wave amplitude A = D/2 and characteristic length
L = 2.5D. The wave shifting length is set to ensure that the waves are not in
the domain at the initialisation, i.e. x0 = −4k.

The fluid viscosity ν is set to 10−6 m2s-1, the particle spacing will be set to
one thirtieth of the amplitude (∆r = A/30) and the numerical parameters are
c0 = 20 m.s-1 and Λ = 0.1.

The evolution of the solitary wave within the domain at different instances
is shown in Figure 16. It shows that the step causes the wave to break, creating
a highly disturbed flow to exit the domain. Nonetheless, imposing a hydrostatic
pressure and using Riemann invariants is sufficient for the wave to exit the
domain without any visible reflection in WCSPH. This shows the high flexibility
of these new open boundary conditions.

Finally, it should be noted that the small peak that appears in the last frame
of Figure 16 appears because when the wave goes over the step, a portion of its
energy is reflected back to the inlet, which in turn reflects it back towards the
step. This last reflection occurs because after the wave has entered the domain
the velocity is imposed as zero, making it essentially a wall.

5. Conclusion

The Unified Semi-Analytical boundary condition have been extended to treat
complex inlets and outlets without spurious shocks. This was achieved by allow-
ing the mass of the vertices to vary according to the imposed flow rate, and then
creating or deleting particles accordingly. Furthermore, it was necessary to take
into account the imposed Eulerian velocity field in order to integrate properly
in time the continuity equation, and thus avoid artificial density pertubations
near the boundary. Using Riemann invariants it is possible to impose compat-
ible density and velocity fields that can support both Neumann and Dirichlet
boundary condition.

These new boundary conditions have been tested on several test case. Firstly
a simple flow entering and leaving the domain in a non-orthogonal way, on peri-
odic waves where the open boundaries were used as both inlets and outlets and
on a solitary waves for which the outlet boundary conditions were unknown.
In all cases this formulation of open boundaries in a Smoothed Particle Hy-
drodynamics framework has proved to be appropriate to complex confined and
free-surface flows.

Finally, the extension to 3-D should be straightforward, but since the bound-
ary elements will be more complex greater care will be needed to allow fluid
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Figure 16: Propagation of a solitary wave on a bed with a step. As a reminder, the wave
period T = 2π/(kc).
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particles to enter and leave the domain without creating any artifical pertuba-
tions.
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Appendix A. The Riemann problem formulation

In the present approach, the mass flux through an open boundary is calcu-
lated at the position of the segments (although it is applied to the connected
vertices), therefore the values of the pressure and velocity fields on those seg-
ments are required. Since the WSPH method is used, the boundary conditions
can be derived using a linearised Riemann problem. This methodology is widely
used in the literature for finite volumes, but it is not as common for SPH prob-
lems. The approach chosen here follows the work of Blondel et al. [26], with
simplifying assumptions of barotropic fluid and subsonic flow. The latter as-
sumption is justified by the fact that weakly compressible SPH assumes the
speed of sound to be significantly larger than the flow velocity.

Let us consider a segment s on an open boundary and work in the local
reference frame of space dimension d relative to s, denoted by (n, t1, · · · , td−1),
n being the local normal unit vector and tk the tangential unit vectors. In this
section, for simplicity we will drop the label s relative to all fields. The linearised
Riemann problem (LRP) can now be written as:

∂Y

∂t
+ B (Y )

∂Y

∂n
= 0, (A.1)

where the unknown vector is defined as:

Y ≡




ρ

un

ut1

...

utd−1




=




ρ

u · n

u · t1

...

u · td−1




, (A.2)
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and the matrix B as:

B (Y ) ≡




un ρ 0 · · · 0

c2

ρ
un 0 · · · 0

0 0 un 0 · · ·
...

... 0
. . . 0

0 0 · · · 0 un




. (A.3)

Furthermore the speed of sound c is defined from the state Equation (1) as:

c ≡
√
∂p

∂ρ
= c0

(
ρ

ρ0

) ξ−1
2

. (A.4)

The eigenvalues of B are λ−1 ≡ un − c, λ0 ≡ un (with a multiplicity d− 1)
and λ+1 ≡ un + c.
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Figure A.17: Sketches of the Riemann problems.

Along the open boundary there is a discontinuity between the exterior state
(upon which we want to impose our values) and the interior state (i.e. the
fluid domain). The eigenvalues of the problem, λi, represent the slope of the
characteristic curves of the Riemann problem (see Figure A.17), which are dis-
continuities between the states on their right and left sides (for example the
wave λ0 is a discontinuity between the data state Y1 and Y2). The characteris-
tic waves can therefore be used to link the exterior state and the interior state.
To go from one state to another the Generalized Riemann Invariants (GRI) will
be used, as these define relations that hold true, for certain waves, across the
wave structure. These are calculated from the relations defined by Jeffrey [27]:
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dY1

V λr,1
=
dY2

V λr,2
= ... =

dYd
V λr,d

, (A.5)

where Yi is a components of vector Y and V λr,i is a components of the right
eigenvector of B associated to the eigenvalue λ.

The GRI corresponding to the celerities λ−1 and λ+1 are respectively de-
noted by R−1 and R+1:

R−1 ≡ un + ψ, (A.6)
R+1 ≡ un − ψ, (A.7)

where:

ψ ≡
∫ ρ

ρ0

c

ρ̃
dρ̃, (A.8)

i.e. ψ =
2c0
ξ − 1

(
ρ

ρ0

) ξ−1
2

if ξ > 1, ψ = c0 ln
ρ

ρ0
if ξ = 1.

As displayed in Figure A.17, the state of the segment value Ys is either
defined by the first state (see Figure A.17a) or by the second state (see Fig-
ure A.17b) which respectively correspond to λ0 = un ≥ 0 (ingoing mass flux)
and λ0 = un < 0 (outgoing mass flux). One should bear in mind that λ−1 is
supposed to be always negative and λ+1 always positive as the flow is to be
subsonic.

Therefore to link the exterior state a first assumption is made, that the wave
λ−1 is a “ghost” wave, as it is outside of the domain. This means that the data
Yext of the exterior state is assumed equal to the data Y1 of state 1.

Wave λ0 is known as a contact discontinuity, i.e. λ0,1 = λ0,2 [28]. This
implies that un,1 = un,2, which is consistent with the GRI relations. Through
these relations it is also considered that dρ = 0 across λ0. Therefore ρ1 = ρ2,
but also p1 = p2 as the pressure is defined by Equation (1).

Therefore to link the fluid velocity along the normal of the segment and
the pressure, one needs only to find a relation between state 2 and the interior
state; i.e. across the characteristc wave λ+1 (the tangential velocities willd-
iscussed later). In terms of notation, a distinction will be made between this
characteristic wave within state 2, λ+1,2, and its value within the interior state,
λ+1,int. As defined in Toro [28] the characteristic wave λ+1 can belong to three
possible type of discontinuity:

1. Contact wave
In this case the characteristics are parallel in both states, this means that
the following condition is true:

λ+1,2 = λ+1,int, (A.9)

and the GRI relations hold across the characteristic wave:

R+1,2 = R+1,int. (A.10)
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2. Expansion (or rarefaction) wave
In this case the characteristics are diverging, and the two data states
are connected through a smooth transition. This case is defined by the
following condition:

λ+1,2 < λ+1,int, (A.11)

and the GRI relations hold across the characteristic wave:

R+1,2 = R+1,int. (A.12)

3. Shock wave
In this case the characteristics are converging towards the wave λ+1, mean-
ing that this case is defined by the following condition:

λ+1,2 > λ+1,int. (A.13)

In this case the GRI relations do not hold across the characteristic wave,
and therefore the Rankine-Hugoniot relationships have to be used:

Conservation of mass: ρ2un,2 = ρintun,int,

Conservation of momentum: p2 + ρ2u
2
n,2 = pint + ρintu

2
n,int.

(A.14)

For the case of the tangential velocities the Riemann invariants relations
make it possible to write dut1 = ... = dutd−1

= 0 across the wave λ+1 (we will
assume these relations still hold in the case of a shock). Therefore the tangential
velocities are equal between state 2 and the interior state. However, the wave
λ0 acts as a discontinuity.

Therefore if the problem is that of an inlet then the discontinuity prevents
a relationship between state 2 and state 1 to be defined for these velocities,
all that is known is that dut1 = ... = dutd−1

= Const. This means that these
velocities need to be defined by the user for inlet open boundaries. However
for the case of an outlet then the λ0 will be assumed to be a “ghost” wave and
the exterior tangential velocities will be assumed to be equal to the tangential
velocities of state 1 and 2, and therefore equal to the velocities of the interior
state.

In mesh-based methods, such as finite volumes, knowing the interior state
data is simple as boundary segments are only connected to one element. However
in the SPH formulation there is more than one fluid particle connected to a
boundary segment. Therefore defining the interior state is non-trivial. The
method chosen is to use the SPH interpolations as defined by Ferrand et al. [8]:

ps,int =
1

αs

∑

b∈F
Vbpbwbs, (A.15)

where, as a reminder, F contains only fluid particles and αs is the Shepard filter
defined for a segment s by:
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αs =
∑

b∈F
Vbwbs. (A.16)

Similarly, the interior velocity is defined as:

us,int =
1

αs

∑

b∈F
Vbubwbs. (A.17)

Finally, the density will be calculated using Equation (1).

Appendix B. Handling varying number of particle in a parallel im-
plementation

Handling a varying number of particles in a parallel implementation can
be difficult. To allow the algorythm presented here to be easily implemented,
several key numerical considerations will be described in the following sections.

Appendix B.1. Creating and deleting particles
As mentioned earlier this algorithm has been implemented in a parallel

framework, and therefore particle creation/deletion can be non-trivial. Namely,
adding an extra particle needs to be an atomic operation (i.e. an operation that
will be done sequentially on all processors). The same is true when deleting
particles and the mass of the concerned vertex particles.

The implementation tested is based on a branch of the GPUSPH software [29,
30], and therefore most of the memory is handled in the same manner. In
addition to the aforementioned problem, all the arrays are of a fixed size at the
initialization. As such, changing the size of any array when a particle is removed
or added can be quite expensive, especially when it happens at each iteration.
Thus it is suggested to allocate larger arrays. The user has to evaluate the total
number of particles that will be added during the simulation time. Regardless
of this number, the loops are only done on the current number of particles at
each iteration.

Furthermore it is very important that the masses of the open boundary
vertices is kept constant during the stepping algorithm, so that the condition
mb = mn

b during the open time interval ]tn, tn+1[ is maintained (i.e. excluding
both tn and tn+1). The same is true for the set of particles, i.e. during the
continuity equation step, the particles that have crossed an open boundary are
considered, but not the particles that will be created.

Appendix B.2. Updating vertices and segments
When dealing with the semi-analytical boundary conditions, it has been

established that Dirichlet boundary conditions will be imposed on the vertices,
and Neumann bounday conditions on the segments [20]. This implies that for
walls the velocity will be imposed on the vertices, and that velocity on the
segments will be the average of the connected vertices. For the pressure the
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condition ∂p/∂n = 0 will be used to calculate the pressure on the segments, and
on the vertices it will be the average of the connected segments.

When dealing with an open boundary, either the velocity or the pressure will
be imposed on the vertices and Riemann conditions will be used to calculate
the corresponding pressure or velocity on the segments. In all cases the missing
values on the segments and vertices will be calculated from the connected ver-
tices or segments (see Sections 3.4.1 and 3.4.2). Furthermore the mass flux will
only affect the masses of vertices, even though it uses the densities, velocities
and lengths of the connected segments.

Imposed Velocity

Du

Du

Np

Np

Wall

Du Du Du

Np Np Np

Imposed Pressure

DuDp

Dp

Dp

Nu

Nu

Fluid

Figure B.18: Illustration of the different boundary conditions that can be imposed on vertices
and segments. The symbol D represents a Dirichlet boundary condition and the symbol
N represents a Neumann boundary condition. The superscripts show if this conditions are
imposed on the velocity u or on the pressure p.

However, as illustrated by Figure B.18, dealing with the vertices that are
in between a wall and an open boundary segments is not trivial. For the ver-
tices that are in-between a segment with an imposed velocity and a wall, it
is recommended to impose the wall velocity, and to deduce the pressure from
the connected segments. For the vertices that are in between a segment with
imposed pressure and a wall, it is recommended to impose the wall velocity
and the open boundary pressure. Furthermore, it is recommened to keep the
masses of the vertices that are inbetween wall segments and open boundaries
constant. Therefore, even though these particles will be used to calculate the
mass repartion factor β their masses will not evolve. This implies that the open
boundary vertices can be considered as an interpolation of the Eularian fields
imposed.

This means that in the implementation 4 loops would be necessary:

1. Calculate the values that are imposed
2. Update the vertices and segments according to the connected segments or

vertices
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3. Apply the time marching scheme on the fluid particles
4. update the masses of the open boundary vertices

Furthermore, it is good practice to impose the velocities on the inlets and
to impose the pressure on the outlets.

Appendix B.3. Mass of the vertices
For open boundaries segments it is strongly recommended that their masses

stay between ±mref . For the vertices that are slightly above the free-surface
or near walls, the SPH interpolation can create mass fluxes that will break the
condition −m0/2 < mv < m0/2. This is particularly critical at the outlets, and
therefore it is recommended to clip the masses and for open boundaries with
imposed pressures, the mass flux above the free-surface is only allowed to be
negative. Finally, above the free-surface the mass is initialised at 0.

Appendix B.4. Constraints on the time-step
The time marching scheme uses an adaptive time-stepping, where the time-

step is calculated using the following condition:

∆t ≤ 0.4h

c0
, (B.1)

where the speed of sound c0 is chosen such that the following condition is always
satisfied:

c0 ≥ 10max
(
|umax| ,

√
gD
)
, (B.2)

h is the smoothing length of the kernel w, D is the water depth (in case of
free-surface flows) and |umax| is the norm of the maximum fluid velocity in the
domain (i.e. for the fluid particles, but also for the open boundaries).

In addition, since γa is calculated through its gradient (see the marching
scheme presented in Equations 27), this gives an additional constraint on the
time step:

∆t ≤ 0.004
1

max
a∈F

{
max
s∈S

[|∇γas · (uas − vas)|]
} (B.3)

Additional details about the numerical stability of WCSPH are available in
Violeau and Leroy [31].
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