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Introduction

The interest for coupled Ordinary Differential Equations-Partial Differential Equations (ODE-PDE) systems has first emerged when considering delays in the actuating and sensing paths of ODE. Delays can be seen as first-order hyperbolic PDEs. There are many approaches to deal with input or measurement delays, usually divided into two categories: memoryless controllers, which extend standard control techniques without explicitly accounting for the delay in the control design [START_REF] Michiels | Stability and stabilization of timedelay systems. An eigenvalue based approach[END_REF][START_REF] Yue | Delayed feedback control of uncertain systems with time-varying input delay[END_REF][START_REF] Fridman | H-∞ control of linear state-delay descriptor systems: an LMI approach[END_REF]; and prediction-based controllers aiming at explicitly compensating the delay [START_REF] Smith | A controller to overcome dead time[END_REF][START_REF] Bresch-Pietri | Robust control of variable time delay systems[END_REF][START_REF] Bekiaris-Liberis | Nonlinear Control Under Nonconstant Delays[END_REF].

The use of Lyapunov and backstepping methods enabled dealing with more involved PDEs in the actuating and sensing paths. In [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion pdes[END_REF], an output feedback control law is derived for an ODE having a heat equation in the actuating and sensing paths. The coupled PDE-ODE system is stabilized using an observer-controller structure relying on a backstepping approach. The same approach has been used to deal with ODEs coupled (rather than cascaded) with parabolic PDEs [START_REF] Tang | State and output feedback boundary control for a coupled pde-ode system[END_REF], uncertain parabolic PDEs [START_REF] Li | Adaptive control of the ode systems with uncertain diffusion-dominated actuator dynamics[END_REF], or ODE-Schrödinger cascades [START_REF] Ren | Stabilization of an odeschrödinger cascade[END_REF]. Lyapunov methods Email addresses: florent.di meglio@mines-paristech.fr (Florent Di Meglio), federico.bribiesca@insa-lyon.fr (Federico Bribiesca Argomedo), longhu@ipm6.fr (Long Hu), krstic@ucsd.edu (Miroslav Krstic).

enable the design of static output feedback controllers for nonlinear ODE-parabolic PDE cascades, as in [START_REF] Wu | Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion pde-governed sensor dynamics[END_REF].

The first application of the backstepping approach to deal with hyperbolic PDE-ODE couplings is [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF] where actuator and sensor delays are explicitly compensated. While this problem had already been tackled by, e.g., the Smith predictor [START_REF] Smith | A controller to overcome dead time[END_REF], the reformulation of the delay as a linear ODE enabled numerous related problem to be tackled, most notably non-constant and uncertain delays [START_REF] Bekiaris-Liberis | Nonlinear Control Under Nonconstant Delays[END_REF][START_REF] Bresch-Pietri | Robust control of variable time delay systems[END_REF]. In [START_REF] Tsubakino | predictor-feedback for multi-input lti systems with distinct delays[END_REF], the problem of stabilizing a multi-input ODE with distinct delays is tackled using a backstepping approach. In [START_REF] Castillo Buenaventura | Dynamic Boundary Stabilization of Hyperbolic Systems[END_REF], an observer is designed for an ODE having a homodirectional 1 hyperbolic PDE in the sensing path, relying on a Lyapunov analysis requiring to solve Linear Matrix Inequalities (LMI). As will appear, the systems of [START_REF] Tsubakino | predictor-feedback for multi-input lti systems with distinct delays[END_REF] are particular cases of the system considered here, although the control design approaches are different.

Here, we solve the problem of stabilizing an ODE with a system of first-order linear hyperbolic PDEs in the sensing 1 i.e. where all the states transport in the same direction Fig. 1. Schematic view of the ODE-PDE coupling structure and actuating paths, i.e. we consider the following system

Ẋ(t) = AX(t) + Bv(t, 0) (1) u t (t, x) = -Λ + u x (t, x) + Σ ++ u(t, x) + Σ +-v(t, x) (2) v t (t, x) = Λ -v x (t, x) + Σ -+ u(t, x) + Σ --v(t, x) (3) u(t, 0) = Q 0 v(t, 0) + CX(t) (4) v(t, 1) = R 1 u(t, 1) + U(t) (5) 
where t > 0 and x ∈ [0, 1] are respectively the time and space variables, X ∈ R p is the ODE state, u(t, x) ∈ R n and v(t, x) ∈ R m are the PDE states and U(t) is the control input. The matrices Λ + and Λ -are such that

Λ + = diag (λ 1 , . . . , λ n ), Λ -= diag (µ 1 , . . . , µ m ) (6) with -µ 1 < • • • < -µ m < 0 < λ 1 < • • • < λ n (7) 
The system naturally features several feedback loops or couplings that can be sources of instabilities:

• Inside the ODE itself (the A matrix in Equation ( 1))

• Coupling between hyperbolic states inside the spatial domain (the Σ •• matrices in (2),( 3)) • Coupling between hyperbolic states at the boundary (the Q 0 and R 1 matrices in (4),( 5)) • Coupling between the PDE and the ODE (the B and C matrices in (1),( 4)) • A combination of all the above. This structure is schematically depicted on Figure 1. This problem is motivated by applications in the drilling industry, more precisely the suppression of mechanical vibrations. Drilling systems are composed of long flexible strings subject to axial and torsional vibrations that propagate upwards and downwards. At the bottom end, the so-called drill bit crushes rock to create the borehole and is subject to friction and cutting forces. The ODE state X then corresponds to the drill bit axial and torsional positions while the PDE states represent the propagation of torsional and axial waves from and to the drill bit.

When damping of the vibrations along the drillstring is neglected and the axial and torsional vibrations are coupled, the PDE reduces to two delay equations. Several contributions have taken advantage of this simplification and designed stabilizing feedback laws, e.g. relying on neutral system approaches [START_REF] Saldivar | Stick-Slip Oscillations in Oillwell Drillstrings: Distributed Parameter and Neutral Type Retarded Model Approaches[END_REF], flatness approaches [START_REF] Sagert | Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling[END_REF] or predictor-based approaches [START_REF] Bekiaris-Liberis | Compensation of wave actuator dynamics for nonlinear systems[END_REF][START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave pde with boundary anti-damping[END_REF]. However, no existing solution simultaneously allows stabilization

• taking into account damping inside the PDE domain • for a model of both axial and torsional vibrations, yielding 4 coupled PDE states rather than two delay equations [START_REF] Meglio | A distributed parameter systems view of control problems in drilling[END_REF][START_REF] Germay | Multiple mode analysis of the self-excited vibrations of rotary drilling systems[END_REF].

Here, we solve these problems within the general setting of Equations ( 1)- [START_REF] Bresch-Pietri | Output-feedback adaptive control of a wave pde with boundary anti-damping[END_REF]. The system is mapped to an exponentially stable target system using a Volterra transformation. The target system has a cascade structure ensuring its convergence to the zero equilibrium. The design is based on a recent result on heterodirectional systems of hyperbolic PDEs [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic pdes[END_REF].

The paper is organized as follows. In Section 2 we present the backstepping control design. In Section 3 we present a general well-posedness result for a class of hyperbolic PDEs on a triangular domain. In Section 4 we apply these results to the considered problem and state the main result. We conclude in Section 5 with perspectives for future work.

Control design

The control design is based on a Volterra transformation mapping the state (X, u, v) to a target system (X, α, β) with desirable properties. The target system equations are described in the next section.

Target system

We design the target system as follows

Ẋ(t) =(A + BK)X(t) + Bβ(t, 0) (8) α t (t, x) = -Λ + α x (t, x) + Σ ++ α(t, x) + Σ +-β(t, x) + D(x)X(t) + x 0 C + (x, y)α(t, y)dy + x 0 C -(x, y)β(t, y)dy (9) β t (t, x) =Λ -β x (t, x) + G(x)β(t, 0) + Σβ(t, x) (10) α(t, 0) =Q 0 β(t, 0) + C 0 X(t) (11) β(t, 1) =0 (12) 
where C 0 , C + , C -and D have yet to be defined and G(•) and Σ are defined as The target system has a cascade structure schematically depicted on Figure 2. Its stability properties are assessed in the following Lemma.

G(x) =                          0 • • • • • • 0 g 2,
Lemma 1 Denote T = {0 ≤ y ≤ x ≤ 1}. Under the following assumptions

(i) A + BK is Hurwitz (ii) C + , C -∈ L ∞ (T ) (iii) G, D ∈ L ∞ ([0, 1])
the zero equilibrium of System (8)-( 12) is exponentially stable in the L 2 sense.

Proof Consider the following Lyapunov functional

V(t) = 1 0 e -δx α(t, x) Λ + -1 α(t, x)dx + 1 0
e δx β(t, x) Λ --1 Rβ(t, x)dx + X(t) PX(t) [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF] where the symmetric definite positive matrix P, the diagonal matrix R = diag(r 1 , ..., r m ) and the design parameter δ > 0 are yet to be determined. Differentiating with respect to time and integrating by parts yields V(t) = -e -δx α(t, x) α(t, x) + e δx β(t, x) Rβ(t, x)

1 0 - 1 0 δe -δx α(t, x) α(t, x)dx - 1 0 δe δx β(t, x) Rβ(, x)dx + 2 1 0 e -δx α(t, x) Λ + -1 Σ ++ α(t, x) + Σ +-β(t, x) + D(x)X(t) + x 0 C + (x, y)α(t, y)dy + x 0 C -(x, y)β(t, y)dy dx + 2 1 0 e δx β(t, x) Λ --1 R G(x)β(t, 0) + Σβ(t, x) dx + X(t) P(A + BK) + (A + BK) P X(t) + X(t) PB + B P β(t, 0) (15) 
Using Young's inequality yields the existence of M, γ > 0 such that

2 1 0 e -δx α(t, x) Λ + -1 Σ ++ α(t, x)dx ≤ M 1 0 e -δx α(t, x) Λ + -1 α(t, x)dx (16) 2 1 0 e -δx α(t, x) Λ + -1 Σ +-β(t, x)dx ≤ M 1 0 e -δx α(t, x) R -1 α(t, x)dx + 1 0 e δx β(t, x) Rβ(t, x)dx (17) 2 1 0 x 0 e -δx α(t, x) Λ + -1 C + (x, y)α(t, y)dxdy ≤ M δ 1 0 e -δx α(t, x) Λ + -1 α(t, x)dx (18) 2 1 0 x 0 e -δx α(t, x) Λ + -1 C -(x, y)β(t, y)dxdy ≤ M δ 1 0 e -δx α(t, x) R -1 α(t, x)dx + 1 0 e δx β(t, x) Rβ(t, x)dx (19) 1 0 e -δx α(t, x) Λ + -1 D(x)X(t)dx ≤ M 1 γ |X(t)| + γ 1 0 e -δx α(t, x) Λ + -1 α(t, x)dx (20) X(t) PB + B P β(t, 0) ≤ M 1 γ |X(t)| + γβ(t, 0) β(t, 0) (21) 
where γ > 0 is a design parameter to be defined. Further, given the structure of the G matrix given by ( 13), there exists M > 0 such that

1 0 e δx β(t, x) Λ --1 RG(x)β(t, 0)dx ≤ M 1 0 e δx β(t, x) Rβ(t, x)dx + e δ β(t, 0) Cβ(t, 0) (22) 3 
where

C = diag (c 1 , • • • , c m ), c i = m j=i+1 r j , 1 ≤ i ≤ m -1 0, i = m (23) 
Besides, let S = diag (s 1 , ..., s m ) such that

Q 0 Q 0 -S ≺ 0 (24) 
Finally, plugging ( 8),( 11),( 12) into ( 15) and denoting Q =

-P(A + BK) + (A + BK) P > 0 yields V(t) ≤ -β(t, 0) R -MCe δ -γMI m×m -S β(t, 0) -X(t) Q - 2 γ I p×p X(t) - x 0 e -δx α(t, x) (δ -γ)I n×n -M 1 + 1 δ I n×n + R -1 α(t, x)dx -δ -M 2 + 1 δ 1 0 e δx β(t, x) Rβ(t, x)dx (25) thus, picking γ, R such that Q - 2 γ I p×p ≺ 0 (26) ∀i = 1, ..., m -1 r i > Me δ m j=i+1 r j + γM + s i (27) 
r m > γM + s m (28) 
and δ large enough concludes the proof.

Volterra Transform

To map the original system (1)-( 5) to the target system ( 8)-( 12), we use the following Volterra transformation

α(t, x) ≡u(t, x) (29) 
β(t, x) =v(t, x) - x 0 K(x, y)u(t, y)dy - x 0 L(x, y)v(t, y)dy -γ(x)X(t) (30) 
where the kernels K, L and γ have yet to be defined. Differentiating (30) w.r.t. space and time yields the following kernel equations

for 1 ≤ i ≤ m, 1 ≤ j ≤ n µ i ∂ x K i j (x, y) -λ j ∂ y K i j (x, y) = -σ -- ii K i j (x, y) + n k=1 σ ++ k j K ik (x, y) + m k=1 σ -+ k j L ik (x, y) (31) for 1 ≤ i ≤ m, 1 ≤ j ≤ m µ i ∂ x L i j (x, y) + µ j ∂ y L i j (x, y) = -σ -- ii L i j (x, y) + m k=1 σ -- k j L ik (x, y) + n k=1 σ +- k j K ik (x, y) (32)
along with the following set of boundary conditions, for i = 1, ..., m

∀ j, K i j (x, x) = - σ -+ i j µ i + λ j (33) ∀ j i, L i j (x, x) = - σ -- i j µ i -µ j ∆ = l i j (34) ∀ j ≥ i µ j L i j (x, 0) = n k=1 λ k K ik (x, 0)q k, j + p k=1 b k j γ ik (x) (35) 
where the q k, j in (35) are the elements of Q 0 . Besides, γ satisfies the following ODE

∀ j, µ i γ i j (x) = p k=1             a k j + m l=1 l<i b kl κ l j             γ ik (x) -σ -- ii γ i j (x) - m k=1 k<i µ k L ik (x, 0)κ k j + n k=1 λ k             c k j + m l=1 l<i q kl κ l j             K ik (x, 0) (36)
with initial condition

∀ j, γ i j (0) = κ i j ( 37 
)
where the κ i j are the entries of the control matrix gain K. To ensure well-posedness of the system, we add the following arbitrary boundary conditions

∀ j < i, L i j (1, x) = l i j (x) (38) 
These are degrees of freedom in the control design. However, their effect on the closed-loop performances are still unclear, thus, to study well-posedness, which we do in the next section, we only impose l i j ∈ L ∞ ([0, 1]). Besides, provided the K and L kernels are well-posed, the coefficients of G, C 0 C + , C -and D are given by

∀ j < i, g i j (x) = µ j L i j (x, 0) - n k=1 λ k K ik (x, 0)q k, j - p k=1 b k j γ ik (x) (39) C + (x, y) = Σ +-K(x, y) + x y C -(x, s)K(s, y)ds (40) C -(x, y) = Σ +-L(x, y) + x y C -(x, s)L(s, y)ds (41) D(x) = Σ +-γ(x) + x 0 D(y)γ(y)dy (42) 
C 0 = C + Q 0 K (43) 
We prove well-posedness of the kernel equations over the next two sections. First, we study a relatively general class of hyperbolic PDEs on a triangular domain.

3 A general class of kernel equations

Problem setup

We consider the following class of equations on a triangular domain

i (x)∂ x F i (x, y) + ν i (y)∂ y F i (x, y) = Σ i (x, y)F(x, y) (44) 
where

F = F 1 • • • F n T . Each unknown F i satisfies bound- ary conditions on a subset Ω i ⊂ ∂T of the following form ∀i = 1, ..., n F i | Ω i = f i + n j=1 Γ i j (•)F j | Ω i (45) 
where f i and Γ i j are defined on Ω i . The functions Γ i j , defined on the boundaries of the triangular domain T , are boundary couplings between the different kernels F i . The well-posedness of (44),(45) depends on the sparsity of the matrix Γ = (Γ i j ). More precisely, consider the following definition.

Definition 3.1 Let G be the directed graph whose vertices are the F i and whose edges are defined by the matrix Γ i j ∞ . In other words, there is an edge between nodes i and j iff Γ i j ∞ 0. Thus, a valid path of length p in the graph is a p-uplet a = (a 1 , ..., a p ) such that

p-1 k=1 Γ a k ,a k+1 ∞ 0 (46)
By convention, a path (a 1 ) of length p = 1 is the single node F a 1 .

The following Theorem gives a sufficient condition on the structure of G for the system to be well-posed.

Theorem 3.2 Consider system (44) with boundary conditions (45). Assume (i) that the uncoupled system, obtained by taking Σ(x, y) ≡ 0 in (44) and Γ i j = 0, ∀i, j in (45), is well-posed;

(ii) that there exists α > 1 such that, for all i = 1, ..., n, the following inequality holds

∀(x, y) ∈ T α i (x) -ν i (y) > δ > 0 (47) (iii)
The graph G is acyclic, i.e. is does not contain any cycles.

Then there is a unique solution F ∈ L ∞ (T ).

Remark 1 A necessary and sufficient condition for Assumption (i) to be satisfied is that, for every i = 1, ..., n the characteristics defined by the i , ν i connect each point of T to Ω i .

Remark 2 Assumption (ii) is a simple geometric condition for the well-posedness of the system: the tangent vector ( i (x), µ i (y)) to all the characteristics, at all points (x, y) ∈ T must lie in the half-space such that the scalar product with (α, -1) T is negative. In other words, the characteristics leaving the boundaries where (45) are defined must always "point away" from a certain line y = αx, with α > 1. Examples of such characteristics are pictured on Figure 3. The proof of Theorem 3.2 is quite involved and spans over the next few sections. It relies on the transformation of (44),(45) into integral equations. For this, we define in the next section the characteristic curves.

Transformation into integral equations

Assumption (i) of Theorem 3.2 yields the existence and uniqueness of characteristic curves, defined as follows Definition 3.3 For each i = 1, ..., n and any (x, y) ∈ T there exists (χ 0 i (x, y), ξ 0 i (x, y)) ∈ Ω i and s

F i (x, y) ∈ R + such that                dχ i (s; x, y) ds = i (χ i (s; x, y)) χ i (0; x, y) = χ 0 i (x, y) ∈ Ω i χ i (s F i (x, y); x, y) = x (48)                dξ i (s; x, y) ds = ν i (ξ i (s; x, y)) ξ i (0; x, y) = ξ 0 i (x, y) ∈ Ω i ξ i (s F i (x, y); x, y) = y (49) 
The curves (χ i (s), ξ i (s)) are the characteristic curves associated with F i . For any two points (M 1 , M 2 ) ∈ T , we denote

C i (M 1 , M 2 ) the characteristic curve associated with F i start- ing in M 1 = (x 1 , y 1 )
and ending in M 2 = (x 2 , y 2 ), if such a curve exists, i.e. if

χ i (s F (x 1 , y 1 ); x 1 , y 1 ) = x 2 , ξ i (s F (x 1 , y 1 ); x 1 , y 1 ) = y 2 (50)
In the absence of the boundary couplings Γ i j , the proof of well-posedness would consist in integrating (44) along ( 48),(49) and using a method of successive approximations. Here, this yields

F (x, y) = f i (χ 0 i (x, y), ξ 0 i (x, y)) + n j=1 Γ i j (χ 0 i (x, y), ξ 0 i (x, y))F j (χ 0 i (x, y), ξ 0 i (x, y)) + s F i (x,y) 0 Σ i (χ i (s;
x, y), ξ i (s; x, y))F(χ i (s; x, y), ξ i (s; x, y))ds

The second term still contains unknowns, and the method of successive approximations does not straightforwardly apply. Rather, the second term must, again, be integrated along the characteristics of the F j 's for which Γ i j is non-zero. This situation is depicted on Figure 3.2 for an example.

To avoid this situation repeating infinitely (infinitely many "rebounds"), we use the following basic results from Graph Theory.

Basic results from Graph Theory

The following Definitions and Lemmas are classical results, see e.g. [START_REF] Brent | Introduction to graph theory[END_REF]. This allows us to add the following two definitions Definition 3.4 For any node F i , we define its depth d i as the length of the longest valid path to a terminal node. We also define d max as the maximum length of any path d max = max i=1,...,n d i .

Definition 3.5 Let a = (a 1 , ..., a p ) be a (not necessarily valid) path. Then, we recursively define the sequence of points M a k (x, y) ∈ T , k = 0, ..., p such that M a 0 (x, y) = (x, y) (53)

M a k (x, y) = χ 0 a k (M a k-1 ), ξ 0 a k (M a k-1 ) ∈ Ω a k ( 54 
)
where χ 0 a k (•) and ξ 0 a k (•) are defined by (48),(49). In other words, M a k is the point on the boundary of T such that the characteristic curve C a k (M a k , M a k-1 ) exists. 

where (b, a) denotes the concatenation of the two paths.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2

Proof Classically, the proof consists in transformation the PDEs into integral equations and using a method of successive approximations.

Transformation into integral equations

The proof relies on the following transformation of ( 44),(45) into integral equations. For any i = 1, ..., n, any M = (x, y) ∈ T , one has 56) can be rewritten as

F i (x, y) = d i p=1 a=(a 1 ,...ap ) a 1 =i         p-1 k=1 Γ a k ,a k+1 M a k (x, y)         •        f a p M a p (x, y) + C ap (M a p (x,y),M a p-1 (x,y)) Σ a p F        ( 
F i (x, y) = 1 p=1 a=(a 1 ) a 1 =i f a 1 (M a 1 (x, y)) + C a 1 (M a 1 (x,y),M a 0 (x,y)) Σ a 1 F = f i (M a 1 (x, y)) + C i (M a 1 (x,y),M a 0 (x,y)) Σ i F (58) 
Which exactly corresponds to integrating (44) along the characteristics associated to F i since for all j = 1, ..., n, Γ i j = 0 for a terminal node (see (51) with Γ i j = 0). 56) is true for all nodes of depth less or equal to d, for some d ∈ {1, ..., d max }. Consider now F i of depth d + 1. Integrating (44) along the characteristics and plugging in the boundary conditions (45) yields

d → d + 1. Assume now that (
F i (x, y) = f i (M (i) 1 (x, y)) + n j=1 Γ i j (M (i) 1 (x, y))F j (M (i) 1 (x, y)) + C i (M (i) 1 (x,y),M (i) 0 (x,y)) Σ i F (59)
Notice that all the F j for which Γ i j 0 are of depth d j ≤ d.

Applying equation (56) to them yields

F i (x, y) = f i (M (i) 1 (x, y)) + C i (M (i) 1 (x,y),M (i) 0 (x,y)) Σ i F + n j=1 d p=1 a=(a 1 ,...ap ) a 1 = j Γ i j M (i) 1 (x, y)         p-1 k=1 Γ a k ,a k+1 M a k M (i) 1         •        f a p (M a p M (i) 1 ) + C ap M a p M (i) 1 ,M a p-1 M (i) 1 Σ a p F        (60)
which yields

F i (x, y) = f i (M (i) 1 (x, y)) + C i (M (i) 1 (x,y),M (i) 0 (x,y)) Σ i F + d p=1 n j=1 a=(a 1 ,...ap ) a 1 = j         Γ i j (M (i) 1 (x, y)) p-1 k=1 Γ a k ,a k+1 M a k M (i) 1         •        f a p (M a p M (i) 1 ) + C ap M a p M (i) 1 ,M a p-1 M (i) 1 Σ a p F        (61) 
i.e.

F i (x, y) = f i (M (i) 1 (x, y)) + C i (M (i) 1 (x,y),M (i) 0 (x,y)) 
Σ i F + d p=1 n j=1 a=(a 1 ,...ap ,a p+1 ) a 2 = j, a 1 =i        p k=1 Γ a k ,a k+1 M a k (x, y)        •        f a p+1 (M a p+1 (x, y)) + C a p+1 M a p+1 (x,y),M a p (x,y) Σ a p+1 F        (62) 
i.e.

F i (x, y) = f i (M (i) 1 (x, y)) + C i (M (i) 1 (x,y),M (i) 0 (x,y)) Σ i F + d p=1 a=(a 1 ,...,a p+1 ) a 1 =i        p k=1 Γ a k ,a k+1 M a k+1 (x, y)        •        f a p+1 (M a p+1 (x, y)) + C a p+1 M a p+1 (x,y),M a p (x,y) Σ a p+1 F        (63) 
i.e.

F i (x, y) = f i (M (i) 1 (x, y)) + C i (M (i) 1 (x,y),M (i) 0 (x,y)) Σ i F + d+1 p=2 a=(a 1 ,...,ap ) a 1 =i         p-1 k=1 Γ a k ,a k+1 M a k+1 (x, y)         •        f a p (M a p (x, y)) + C ap M a p (x,y),M a p-1 (x,y) Σ a p F        (64) 
i.e., using (57)

F i (x, y) = d i p=1 a=(a 1 ,...,ap) a 1 =i         p-1 k=1 Γ a k ,a k+1 M a k+1 (x, y)         •        f a p (M a p (x, y)) + C ap M a p (x,y),M a p-1 (x,y) Σ a p F        (65) 
which concludes the proof by induction since d i = d + 1.

Method of successive approximations

The end of the proof follows the classical successive approximations method, applied to (56). More precisely, we define the following operators

Φ = Φ 1 • • • Φ n Φ i [F](x, y) = d i p=1 a=(a 1 ,...ap ) a 1 =i         p-1 k=1 Γ a k ,a k+1 M a k (x, y)         C ap (M a p (x,y),M a p-1 (x,y)) Σ a p F (66) 
As well as the following vector

φ = φ 1 • • • φ n φ i (x, y) = d i p=1 a=(a 1 ,...ap ) a 1 =i         p-1 k=1 Γ a k ,a k+1 M a k (x, y)         f a p M a p (x, y) (67) 
Define now the following sequence for q ∈ N F 0 (x, y) =0 (68)

F q+1 (x, y) =φ(x, y) + Φ[F q ](x, y) (69) 
= φ 1 (x, y) • • • φ n (x, y) + Φ 1 [F q ](x, y) • • • Φ n [F q ](x, y) (70) 
Finally, define the following sequence for q ≥ 1

∆F q = F q -F q-1 (71) 
Provided the limit exists, then

F = lim q →+∞ F q = +∞ q=1 ∆F q (72)
is a solution to (56). To prove that the series is convergent, we rely on the following lemmas Lemma 3 Assume inequality (47) holds. Then for all i = 1, ..., n, (x, y) ∈ T , the following function

ψ i (x,y) : s ∈ [0, s F i (x, y)] → αχ i (s; x, y) -ξ i (s; x, y) (73)
is strictly increasing. In particular, the following inequality holds

ψ i (x,y) (s F i (x, y)) = αx -y > αχ 0 i (x, y) -ξ 0 i (x, y) = ψ i (x,y) (0) (74) 
Thus, ψ i (x,y) defines a diffeomorphism of [0, s F i (x, y)] onto its image αχ 0 i (x, y) -ξ 0 i (x, y), αxy .

Proof The proof is trivial since for i = 1, ..., n and (x, y) ∈ T , one has

dψ i (x,y) ds (s) = α i (χ i (s; x, y)) -ν i (ξ i (s; x, y)) (75) 
and recalling (47).

Corollary 3.7 For any path a = (a 1 , ..., a p ) of length p ≥ 0 and any k = 0, ..., p, denote M a k (x, y) = (x k , y k ). Then one has

αx k -y k ≤ αx -y (76) 
Proof We prove the result by induction. For k = 0, given the definition of the M a k (Equation ( 53)), one has

αx 0 -y 0 = αx -y (77) 
Assume now that (76) is satisfied for some k = 1, ..., p -1, then, by definition of the M a k (•, •), one has

αx k+1 -y k+1 = αχ 0 a k (x k , y k ) -ξ 0 a 1 (x k , y k ) (78) 
Using Lemma 3 for i = a k+1 , this yields

αx k+1 -y k+1 < αx k -y k (79) 
Then, using the induction assumption, this concludes the proof.

Lemma 4 For any i = 1, ..., n and any (x, y) ∈ T , one has

s F i (x,y) 0 αχ i (s; x, y) -ξ i (s; x, y) q ds ≤ 1 δ αx -y q+1 q + 1 ( 80 
)
where α and δ are defined by (47).

Proof Consider the following change of variables

τ = ψ i (x,y) (s) (81) 
where ψ i (x,y) (•) is defined by (73). It yields s F i (x,y) 0 αχ i (s; x, y) -ξ i (s; x, y) q ds = αx-y αχ 0 i (x,y)-ξ 0 i (x,y) τ p dτ α i ( χi (τ; x, y)) -ν i ( ξi (τ; x, y))

(82)

where we have abusively denoted χi (τ; x, y) = χ i ((ψ i (x,y) ) -1 (τ); x, y) (resp. ξi (τ; x, y) = ξ i ((ψ i (x,y) ) -1 (τ); x, y)). Using (47) this yields

s F i (x,y) 0 αχ i (s; x, y) -ξ i (s; x, y) q ds < 1 δ αx -y q+1 -αχ 0 i (x, y) -ξ 0 i (x, y) q+1 q + 1 (83) 
Since (χ 0 i (x, y), ξ 0 i (x, y)) ∈ T and α > 1, one has αχ 0 i (x, y)ξ 0 i (x, y) > 0 which yields the result.

Lemma 5 For any path a = (a 1 , ..., a p ) of length p ≥ 0 and any k = 1, ..., p, one has

C a k (M a k (x,y),M a k-1 (x,y)) αχ a k (•) -ξ a k (•) q ≤ 1 δ αx -y q+1 q + 1 (84) 
Proof Denoting M a k (x, y) = (x k , y k ), one has from Lemma 4

C a k (M a k (x,y),M a k-1 (x,y)) αχ a k (•) -ξ a k (•) q ≤ 1 δ αx k-1 -y k-1 q+1 q + 1 (85) 
Applying Corollary 3.7 yields the results.

Lemma 6 Define φ = max i=1,...,n φ i (•, •) L ∞ (T ) , Γ = max i, j∈{1,2,...,n} Γ i j ∞ (86) Σ = max (x,y)∈T , i=1,...,n | | |Σ i (x, y)| | | (87) M = d max δ         d max k=0 (n -k)         Γd max -1 Σ (88) 
Assume that for some q ≥ 1, one has, for all (x, y) ∈ T ∀i = 1, ..., n ∆F q i (x, y) ≤ φ M q (αxy) q q! (89)

Then, one has

∀i = 1, ..., n ∆F q+1 i (x, y) ≤ φ M q+1 (αx -y) q+1 (q + 1)! (90) 
Assume that (89) holds for some fixed q ≥ 1. Then, one has, for all i = 1, ..., n

∆F q+1 i (x, y) (91) = |Φ i [∆F q ](x, y)| (92) ≤ d i p=1 a=(a 1 ,...ap ) a 1 =i
Γp-1

C ap (M a p (x,y),M a p-1 (x,y))

Σ a p ∆F q (93)

Using (89) yields

≤ d i p=1 a=(a 1 ,...ap ) a 1 =i Γp-1 Σ C ap (M a p (x,y),M a p-1 (x,y)) φ M q αχ a p (•) -ξ a p (•) q q! (94) 
Using Lemma 5 yields

≤ d i p=1 a=(a 1 ,...ap ) a 1 =i Γp-1 Σ φ M q (αx -y) q+1 (q + 1)! (95) 
Noticing that there cannot be more than p k=1

(nk) paths of length p from a given node i, this yields

≤ d max i          d max i k=1 (n -k)          Γd max i -1 Σ φ M q (αx -y) q+1 (q + 1)! (96)
which, in turn, yields the result given the definition of M (Equation (88)). Finally, Lemma 6 ensures that the series (71) is uniformly convergent, thus the kernel equations (44) with boundary conditions (45) are well-posed (see, e.g. [START_REF] Di Meglio | Stabilization of a system of n+1 coupled first-order hyperbolic linear pdes with a single boundary input[END_REF] for a detailed proof). In the next section, we apply Theorem 3.2 to prove well-posedness of (31)-(38).

4 Well-posedness of (31)-( 38) and control law

In this section, we apply the results of Section 3 to prove the well-posedness of the kernel equations. The following theorem assesses the well-posedness of the kernel equations. Proof We prove the result by induction on i = 1, ..., n. i = 1. For i = 1, the equations rewrite as follows for 1 ≤ j ≤ n

µ 1 ∂ x K 1 j (x, y) -λ j ∂ ξ K 1 j (x, y) = -σ -- 11 K 1 j (x, y) + n k=1 σ ++ k j K 1k (x, y) + m p=1 σ -+ p j L 1p (x, y) (97) for 1 ≤ j ≤ m µ 1 ∂ x L 1 j (x, y) + µ j ∂ ξ L 1 j (x, y) = -σ -- 11 L 1 j (x, y) + m p=1 σ -- p j L 1p (x, y) + n k=1 σ +- k j K 1k (x, y) (98) ∀ j, K 1 j (x, x) = - σ -+ 1 j µ 1 + λ j ∆ = k 1 j (99) ∀ j 1, L 1 j (x, x) = - σ -- 1 j µ 1 -µ j ∆ = l 1 j (100) ∀ j ≥ 1 µ j L 1 j (x, 0) = n k=1 λ k K 1k (x, 0)q k, j + p k=1 b k j γ 1k (x) (101) ∀ j, µ 1 γ 1 j (x) = p k=1 a k j γ 1k (x) -σ -- 11 γ 1 j (x) (102) 
+ n k=1 λ k c k j K 1k (x, 0) (103) ∀ j, γ 1 j (0) = κ 1 j (104) 
One can readily check that (97)-(98) are of the form (44). Besides, the ODE (103) can also be put under the form (44) by "embedding" it into T . More precisely, denoting

1 {y=0} (x, y) = 1 if y = 0 0 otherwise (105) 
one can define γ j such that ∀(x, y) ∈ T γ j (x, y) = 1 {y=0} (x, y)γ 1 j (x) (106) or, equivalently, the γ j satisfy the following PDEs of the form (44)

µ 1 ∂ x γ j (x, y) = 1 {y=0} (x, y)        n k=1
a k j γk (x, y) -σ -- 11 γ j (x, y)

+ n k=1 K 1k (x, y)λ k c k j        (107) 
with boundary conditions γ j (x, x) = 1 {y=0} (x, x)κ 1 j (108)

Besides, boundary conditions (99)-( 101),(108) are of the form (45), with the boundary coupling coefficients Γ i j being zero for every kernel except the L i j on the y = 0 boundary. Therefore, the graph defined by Γ i j is acyclic, and Theorem 3.2 applies to (97)-(104) which is well-posed, i.e. has a unique solution with K 1 j , L 1 j ∈ L ∞ (T ) and γ 1 j ∈ L ∞ ([0, 1]).

{1, ..., i -1} → i. Let i ∈ {2, ..., m} be fixed and assume that for k = 1, ..., i -1 there exist K k j , L k j ∈ L ∞ (T ) and γ k j ∈ L ∞ ([0, 1]), for all j. Then, Equations (31)-(38) are of the form (44),(45) with coefficients in L ∞ since they are linear in the K i j , L i j and γ i j variables with coefficients that depend on the K k j , L k j and γ k j for k < j. Thus, Theorem 3.2 applies again and the equations are well-posed.

This yields the main result of the paper, stated in the following theorem. where K, L and γ are defined by (31)-(38). Then, the zero equilibrium is exponentially stable in the L 2 sense.

Proof Theorem 4.1 ensures the existence of K, L ∈ L ∞ (T ), γ ∈ L ∞ ([0, 1]) such that (29),(30) holds and (α, β) satisfies ( 8), [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic pdes[END_REF]. Lemma 1 and the invertibility of the Volterra transformation yields the result.

Conclusion and perspectives

We have presented a control design for ODEs with a system of hyperbolic PDEs in the actuating path. The design results in a full-state feedback law needing measurements of the distributed actuator states along the spatial domain. This is not realistic in practice and future contributions will focus on the design of an observer solely relying on (collocated) boundary measurements.

Besides, the result opens the door to control design for other systems involving cascaded hyperbolic PDEs. In particular, networks of systems of hyperbolic balance laws are instrumental in modeling, e.g. oil production systems, networks of open channels [START_REF] Bastin | On lyapunov stability of linearised saint-venant equations for a sloping channel[END_REF] or power transmission lines [START_REF] Günther | A pdae model for interconnected linear rlc networks[END_REF].
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  paths of length p starting from the node F i . However, a large number of the terms of this sum is zero due to the product of Γ a k ,a k+1 inside this sum.
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d = 1. Consider a node F i such that d i = 1, i.e. F i is a terminal node.

Assuming by convention that, the empty product is equal to 1, i.e.