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Abstract

We solve the problem of stabilizing a linear ODE having a system of a linearly coupled hyperbolic PDEs in the actuating and sensing
paths. The system is exponentially stabilized by mapping it to a target system with a cascade structure using a Volterra transformation.
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1 Introduction

The interest for coupled Ordinary Differential Equations–
Partial Differential Equations (ODE–PDE) systems has first
emerged when considering delays in the actuating and sens-
ing paths of ODE. Delays can be seen as first-order hyper-
bolic PDEs. There are many approaches to deal with input
or measurement delays, usually divided into two categories:
memoryless controllers, which extend standard control tech-
niques without explicitly accounting for the delay in the con-
trol design [16,25,9]; and prediction-based controllers aim-
ing at explicitly compensating the delay [20,4,2].

The use of Lyapunov and backstepping methods enabled
dealing with more involved PDEs in the actuating and
sensing paths. In [13], an output feedback control law is
derived for an ODE having a heat equation in the actu-
ating and sensing paths. The coupled PDE-ODE system
is stabilized using an observer-controller structure relying
on a backstepping approach. The same approach has been
used to deal with ODEs coupled (rather than cascaded)
with parabolic PDEs [21], uncertain parabolic PDEs [15],
or ODE–Schrödinger cascades [17]. Lyapunov methods
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enable the design of static output feedback controllers for
nonlinear ODE–parabolic PDE cascades, as in [24].

The first application of the backstepping approach to deal
with hyperbolic PDE–ODE couplings is [14] where actua-
tor and sensor delays are explicitly compensated. While this
problem had already been tackled by, e.g., the Smith predic-
tor [20], the reformulation of the delay as a linear ODE en-
abled numerous related problem to be tackled, most notably
non-constant and uncertain delays [2,4]. In [22], the prob-
lem of stabilizing a multi-input ODE with distinct delays is
tackled using a backstepping approach. In [6], an observer is
designed for an ODE having a homodirectional 1 hyperbolic
PDE in the sensing path, relying on a Lyapunov analysis re-
quiring to solve Linear Matrix Inequalities (LMI). As will
appear, the systems of [22] are particular cases of the system
considered here, although the control design approaches are
different.

Here, we solve the problem of stabilizing an ODE with a
system of first-order linear hyperbolic PDEs in the sensing

1 i.e. where all the states transport in the same direction
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Fig. 1. Schematic view of the ODE-PDE coupling structure

and actuating paths, i.e. we consider the following system

Ẋ(t) = AX(t) + Bv(t, 0) (1)
ut(t, x) = −Λ+ux(t, x) + Σ++u(t, x) + Σ+−v(t, x) (2)
vt(t, x) = Λ−vx(t, x) + Σ−+u(t, x) + Σ−−v(t, x) (3)
u(t, 0) = Q0v(t, 0) + CX(t) (4)
v(t, 1) = R1u(t, 1) + U(t) (5)

where t > 0 and x ∈ [0, 1] are respectively the time and
space variables, X ∈ Rp is the ODE state, u(t, x) ∈ Rm

and v(t, x) ∈ Rn are the PDE states and U(t) is the control
input. The matrices Λ+ and Λ− are such that

Λ+ = diag (λ1, . . . , λn), Λ− = diag (µ1, . . . , µm) (6)

with

−µ1 < · · · < −µm < 0 < λ1 < · · · < λn (7)

The system naturally features several feedback loops or cou-
plings that can be sources of instabilities:

• Inside the ODE itself (the A matrix in Equation (1))
• Coupling between hyperbolic states inside the spatial do-

main (the Σ·· matrices in (2),(3))
• Coupling between hyperbolic states at the boundary

(the Q0 and R1 matrices in (4),(5))
• Coupling between the PDE and the ODE (the B and C

matrices in (1),(4))
• A combination of all the above.

This structure is schematically depicted on Figure 1. This
problem is motivated by applications in the drilling indus-
try, more precisely the suppression of mechanical vibrations.
Drilling systems are composed of long flexible strings sub-
ject to axial and torsional vibrations that propagate upwards
and downwards. At the bottom end, the so-called drill bit
crushes rock to create the borehole and is subject to friction
and cutting forces. The ODE state X then corresponds to the
drill bit axial and torsional positions while the PDE states
represent the propagation of torsional and axial waves from
and to the drill bit.

When damping of the vibrations along the drillstring is ne-
glected and the axial and torsional vibrations are coupled, the
PDE reduces to two delay equations. Several contributions

have taken advantage of this simplification and designed sta-
bilizing feedback laws, e.g. relying on neutral system ap-
proaches [19], flatness approaches [18] or predictor-based
approaches [3,5]. However, no existing solution simultane-
ously allows stabilization

• taking into account damping inside the PDE domain
• for a model of both axial and torsional vibrations, yield-

ing 4 coupled PDE states rather than two delay equa-
tions [7,10].

Here, we solve these problems within the general setting of
Equations (1)–(5). The system is mapped to an exponentially
stable target system using a Volterra transformation. The tar-
get system has a cascade structure ensuring its convergence
to the zero equilibrium. The design is based on a recent re-
sult on heterodirectional systems of hyperbolic PDEs [12].

The paper is organized as follows. In Section 2 we present
the backstepping control design. In Section 3 we present a
general well-posedness result for a class of hyperbolic PDEs
on a triangular domain. In Section 4 we apply these results
to the considered problem and state the main result. We
conclude in Section 5 with perspectives for future work.

2 Control design

The control design is based on a Volterra transformation
mapping the state (X, u, v) to a target system (X, α, β) with
desirable properties. The target system equations are de-
scribed in the next section.

2.1 Target system

We design the target system as follows

Ẋ(t) =(A + BK)X(t) + Bβ(t, 0) (8)
αt(t, x) = − Λ+αx(t, x) + Σ++α(t, x) + Σ+−β(t, x) + D(x)X(t)

+

∫ x

0
C+(x, y)α(t, y)dy +

∫ x

0
C−(x, y)β(t, y)dy

(9)
βt(t, x) =Λ−βx(t, x) + G(x)β(t, 0) + Σ̄β(t, x) (10)
α(t, 0) =Q0β(t, 0) + CX(t) (11)
β(t, 1) =0 (12)

where G(·) and Σ̄ are defined as

G(x) =



0 · · · · · · 0

g2,1(x)
. . .

. . .
...

...
. . .

. . .
...

gn,1(x) · · · gn,n−1 0


, Σ̄ = diag(Σ−−) (13)

The target system has a cascade structure schematically de-
picted on Figure 2. Its stability properties are assessed in the
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Fig. 2. Schematic view of the cascade structure of the target system.

following Lemma.

Lemma 1 Denote T = {0 ≤ y ≤ x ≤ 1}. Under the follow-
ing assumptions

(i) A + BK is Hurwitz
(ii) C+, C− ∈ L∞(T )

(iii) G ∈ L∞([0, 1])

the zero equilibrium of System (8)–(12) is exponentially sta-
ble in the L2 sense.

Proof Consider the following Lyapunov functional

V(t) =

∫ 1

0
e−δxα(t, x)>

(
Λ+)−1

α(t, x)dx

+

∫ 1

0
eδxβ(t, x)>

(
Λ−

)−1 Rβ(t, x)dx + X(t)>PX(t) (14)

where the symmetric definite positive matrix P, the diagonal
matrix R = diag(r1, ..., rm) and the design parameter δ > 0
are yet to be determined. Differentiating with respect to time
and integrating by parts yields

V̇(t) =
[
−e−δxα(t, x)>α(t, x) + eδxβ(t, x)>Rβ(t, x)

]1

0

−

∫ 1

0
δe−δxα(t, x)>α(t, x)dx −

∫ 1

0
δeδxβ(t, x)>Rβ(, x)dx

+ 2
∫ 1

0
e−δxα(t, x)>

(
Λ+)−1 [

Σ++α(t, x) + Σ+−β(t, x)

+2
∫ x

0
C+(x, y)α(t, y)dy +

∫ x

0
C−(x, y)β(t, y)dy

]
dx

+ 2
∫ 1

0
eδxβ(t, x)>

(
Λ−

)−1 R
[
G(x)β(t, 0) + Σ̄β(t, x)

]
dx

+ X(t)>
[
P(A + BK) + (A + BK)>P

]
X(t)

+ X(t)>
(
PB + B>P

)
β(t, 0) (15)

Using Young’s inequality yields the existence of M, γ > 0
such that

2
∫ 1

0
e−δxα(t, x)>

(
Λ+)−1

Σ++α(t, x)dx

≤ M
∫ 1

0
e−δxα(t, x)>

(
Λ+)−1

α(t, x)dx (16)

2
∫ 1

0
e−δxα(t, x)>

(
Λ+)−1

Σ+−β(t, x)dx

≤ M
(∫ 1

0
e−δxα(t, x)>R−1α(t, x)dx

+

∫ 1

0
eδxβ(t, x)>Rβ(t, x)dx

)
(17)

2
∫ 1

0

∫ x

0
e−δxα(t, x)>

(
Λ+)−1 C+(x, y)α(t, y)dxdy

≤
M
δ

∫ 1

0
e−δxα(t, x)>

(
Λ+)−1

α(t, x)dx (18)

2
∫ 1

0

∫ x

0
e−δxα(t, x)>

(
Λ+)−1 C−(x, y)β(t, y)dxdy

≤
M
δ

(∫ 1

0
e−δxα(t, x)>R−1α(t, x)dx

+

∫ 1

0
eδxβ(t, x)>Rβ(t, x)dx

)
(19)

X(t)>
(
PB + B>P

)
β(t, 0) ≤ M

[
1
γ
|X(t)| + γβ(t, 0)>β(t, 0)

]
(20)

where γ > 0 is a design parameter to be defined. Further,
given the structure of the G matrix given by (13), there
exists M > 0 such that

∫ 1

0
eδxβ(t, x)>

(
Λ−

)−1 RG(x)β(t, 0)dx

≤ M
[∫ 1

0
eδxβ(t, x)>Rβ(t, x)dx + eδβ(t, 0)>Cβ(t, 0)

]
(21)

where

C = diag (c1, · · · , cm), ci =

{∑m
j=i+1 r j, 1 ≤ i ≤ m − 1

0, i = m
(22)

Besides, let S = diag (s1, ..., sm) such that

Q>0 Q0 − S ≺ 0 (23)

Finally, plugging (8),(11),(12) into (15) and denoting Q =

3



−
[
P(A + BK) + (A + BK)>P

]
> 0 yields

V̇(t) ≤ −β(t, 0)>
[
R − MCeδ − γMIm×m − S

]
β(t, 0)

− X(t)>
[
Q −

1
γ

Ip×p

]
X(t)

−

∫ x

0
e−δxα(t, x)>

[
δIn×n − M

(
1 +

1
δ

) (
In×n + R−1

)]
α(t, x)dx

−

[
δ − M

(
2 +

1
δ

)] ∫ 1

0
eδxβ(t, x)>Rβ(t, x)dx (24)

thus, picking γ, R such that

Q −
1
γ

Ip×p ≺ 0 (25)

∀i = 1, ...,m − 1 ri > Meδ
m∑

j=i+1

r j + γM + si (26)

rm > γM + sm (27)

and δ large enough concludes the proof.

2.2 Volterra Transform

To map the original system (1)–(5) to the target system (8)-
(12), we use the following Volterra transformation

α(t, x) ≡u(t, x) (28)

β(t, x) =v(t, x) −
∫ x

0
K(x, y)u(t, y)dy

−

∫ x

0
L(x, y)v(t, y)dy − γ(x)X(t) (29)

where the kernels K, L and γ have yet to be defined. Dif-
ferentiating (29) w.r.t. space and time yields the following
kernel equations

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

µi∂xKi j(x, y) − λ j∂ξKi j(x, y) = σ−−ii Ki j(x, y)

+

n∑
k=1

σ++
k j Kik(x, y) +

m∑
p=1

σ−+
p j Lip(x, y) (30)

for 1 ≤ i ≤ m, 1 ≤ j ≤ m

µi∂xLi j(x, y) + µ j∂ξLi j(x, y) = σ−−ii Li j(x, y)

+

m∑
p=1

σ−−p j Lip(x, y) +

n∑
k=1

σ+−
k j Kik(x, y) (31)

along with the following set of boundary conditions, for i =
1, ...,m

∀ j, Ki j(x, x) = −
σ−+

i j

µi + λ j
(32)

∀ j , i, Li j(x, x) = −
σ−−i j

µi − µ j

∆
= li j (33)

∀ j ≥ i µ jLi j(x, 0) =

n∑
k=1

λkKik(x, 0)qk, j +

n∑
k=1

bk jγik(x)

(34)

where the qk, j in (34) are the elements of Q0. Besides, γ
satisfies the following ODE

∀ j, γ′i j(x) = −

n∑
k=1

ak j +

m∑
p=1
p<i

bkpγp j(x)

 γik(x)

+

m∑
p=1
p<i

λpLip(x, 0)γp j(x) +

n∑
k=1

Kik(x, 0)λkck j

(35)

with initial condition

∀ j, γi j(0) = κi j (36)

where the κi j are the entries of the control matrix gainK . To
ensure well-posedness of the system, we add the following
arbitrary boundary conditions

∀ j < i, Li j(1, x) = li j(x) (37)

These are degrees of freedom in the control design. How-
ever, their effect on the closed-loop performances are still
unclear, thus, to study well-posedness, which we do in the
next section, we only impose li j ∈ L∞([0, 1]). Besides, pro-
vided the K and L kernels are well-posed, the coefficients
of G, C+, C− and D are given by

∀ j < i, gi j(x) = µ jLi j(x, 0) −
n∑

k=1

λkKik(x, 0)qk, j

−

n∑
k=1

bk jγik(x) (38)

We prove well-posedness of the kernel equations over the
next two sections. First, we study a relatively general class
of hyperbolic PDEs on a triangular domain.
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3 A general class of kernel equations

3.1 Problem setup

We consider the following class of equations on a triangular
domain

εi(x)∂xFi(x, y) + νi(y)∂yFi(x, y) = Σi(x, y)F(x, y) (39)

where F =

(
F1 · · · Fn

)T
. Each unknown Fi satisfies bound-

ary conditions on a subset Ωi ⊂ ∂T of the following form

∀i = 1, ..., n Fi|Ωi = fi +

n∑
j=1

Γi j(·)F j|Ωi (40)

where fi and Γi j are defined on Ωi. The functions Γi j, de-
fined on the boundaries of the triangular domain T , are
boundary couplings between the different kernels Fi. The
well-posedness of (39),(40) depends on the sparsity of the
matrix Γ = (Γi j). More precisely, consider the following def-
inition.

Definition 3.1 Let G be the directed graph whose ver-
tices are the Fi and whose edges are defined by the ma-
trix

( ∥∥∥Γi j

∥∥∥
∞

)
. In other words, there is an edge between

nodes i and j iff
∥∥∥Γi j

∥∥∥
∞
, 0. Thus, a valid path of length p

in the graph is a p–uplet a = (a1, ..., ap) such that

p−1∏
k=1

∥∥∥Γak ,ak+1

∥∥∥
∞
, 0 (41)

By convention, a path (a1) of length p = 1 is the single
node Fa1 .

The following Theorem gives a sufficient condition on the
structure of G for the system to be well-posed.

Theorem 3.2 Consider system (39) with boundary condi-
tions (40). Assume

(i) that the uncoupled system, obtained by taking Σ(x, y) ≡
0 in (39) and Γi j = 0, ∀i, j in (40), is well-posed;

(ii) that there exists α > 1 such that, for all i = 1, ..., n, the
following inequality holds

∀(x, y) ∈ T αεi(x) − νi(y) > δ > 0 (42)

(iii) The graph G is acyclic, i.e. is does not contain any
cycles.

Then there is a unique solution F ∈ L∞(T ).

Remark 1 A necessary and sufficient condition for Assump-
tion (i) to be satisfied is that, for every i = 1, ..., n the char-
acteristics defined by the εi, νi connect each point of T to Ωi.

Remark 2 Assumption (ii) is a simple geometric condi-
tion for the well-posedness of the system: the tangent vec-
tor (εi(x), µi(y)) to all the characteristics, at all points (x, y) ∈
T must lie in the half-space such that the scalar product
with (α,−1)T is negative. In other words, the characteristics
leaving the boundaries where (40) are defined must always
“point away” from a certain line y = αx, with α > 1. Ex-
amples of such characteristics are pictured on Figure 3.

p

ax
 -

 y 
= 0

Fig. 3. Examples of characteristic lines that satisfy Assumption (ii)
of Theorem 3.2.

The proof of Theorem 3.2 is quite involved and spans
over the next few sections. It relies on the transformation
of (39),(40) into integral equations. For this, we define in
the next section the characteristic curves.

3.2 Transformation into integral equations

Assumption (i) of Theorem 3.2 yields the existence and
uniqueness of characteristic curves, defined as follows

Definition 3.3 For each i = 1, ..., n and any (x, y) ∈ T there
exists (χ0

i (x, y), ξ0
i (x, y)) ∈ Ωi and sF

i (x, y) ∈ R+ such that


dχi(s; x, y)

ds
= εi(χi(s; x, y))

χi(0; x, y) = χ0
i (x, y) ∈ Ωi

χi(sF
i (x, y); x, y) = x

(43)


dξi(s; x, y)

ds
= νi(ξi(s; x, y))

ξi(0; x, y) = ξ0
i (x, y) ∈ Ωi

ξi(sF
i (x, y); x, y) = y

(44)
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The curves (χi(s), ξi(s)) are the characteristic curves associ-
ated with Fi. For any two points (M1,M2) ∈ T , we denote
Ci(M1,M2) the characteristic curve associated with Fi start-
ing in M1 = (x1, y1) and ending in M2 = (x2, y2), if such a
curve exists, i.e. if

χi(sF(x1, y1); x1, y1) = x2, ξi(sF(x1, y1); x1, y1) = y2 (45)

In the absence of the boundary couplings Γi j, the proof
of well-posedness would consist in integrating (39)
along (43),(44) and using a method of successive approxi-
mations. Here, this yields

Fi(x, y) = fi(χ0
i (x, y), ξ0

i (x, y))

+

n∑
j=1

Γi j(χ0
i (x, y), ξ0

i (x, y))F j(χ0
i (x, y), ξ0

i (x, y))

+

∫ sF
i (x,y)

0
Σi(χi(s; x, y), ξi(s; x, y))F(χi(s; x, y), ξi(s; x, y))ds

(46)

The second term still contains unknowns, and the method of
successive approximations does not straightforwardly apply.
Rather, the second term must, again, be integrated along the
characteristics of the F j’s for which Γi j is non-zero. This
situation is depicted on Figure 3.2 for an example.

p

 
  

 

F

F
F

F

1

2

3

4

To avoid this situation repeating infinitely (infinitely
many “rebounds”), we use the following basic results from
Graph Theory.

3.3 Basic results from Graph Theory

The following Definitions and Lemmas are classical results,
see e.g. [23].

Lemma 2 If G is acyclic, then the following holds

(a) There exist terminal nodes, i.e. there exists a set T N ⊂
{1, ..., n} such that

∀i ∈ T N, ∀k ∈ {1, ..., n} Γik = 0 (47)

(b) All the valid paths are of finite length. In other words,
any valid path can be completed with a valid path that
leads to a terminal node and has a uniformely bounded
length.

This allows us to add the following two definitions

Definition 3.4 For any node Fi, we define its depth di as
the length of the longest valid path to a terminal node. We
also define dmax as the maximum length of any path dmax =
max

i=1,...,n
di.

Definition 3.5 Let a = (a1, ..., ap) be a (not necessarily
valid) path. Then, we recursively define the sequence of
points Ma

k (x, y) ∈ T , k = 0, ..., p such that

Ma
0(x, y) = (x, y) (48)

Ma
k (x, y) =

(
χ0

ak
(Ma

k−1), ξ0
ak

(Ma
k−1)

)
∈ Ωak (49)

where χ0
ak

(·) and ξ0
ak

(·) are defined by (43),(44). In other
words, Ma

k is the point on the boundary of T such that the
characteristic curve Cak (Ma

k ,M
a
k−1) exists.

Property 3.6 For any two paths a = (a1, ..., ap) and b =
(b1, ..., bq) one has

Ma
p

(
Mb

q
(
x, y

))
= M(b,a)

p+q (x, y) (50)

where (b, a) denotes the concatenation of the two paths.

We are now ready to prove Theorem 3.2.

3.4 Proof of Theorem 3.2

Proof Classically, the proof consists in transformation the
PDEs into integral equations and using a method of succes-
sive approximations.

3.4.1 Transformation into integral equations

The proof relies on the following transformation of (39),(40)
into integral equations. For any i = 1, ..., n, any M = (x, y) ∈
T , one has

Fi(x, y) =

di∑
p=1

∑
a=(a1 ,...ap )

a1=i

 p−1∏
k=1

Γak ,ak+1

(
Ma

k (x, y)
)

·

 fap

(
Ma

p(x, y)
)

+

∫
Cap (Ma

p(x,y),Ma
p−1(x,y))

Σap F

 (51)

6



Remark 3 The sum
∑

a=(a1 ,...ap )
a1=i

denotes the sum over all (pos-

sibly invalid) paths of length p starting from the node Fi.
However, a large number of the terms of this sum is zero
due to the product of Γak ,ak+1 inside this sum.

We now prove Equation (51) by recursion on the depth d.

d = 1. Consider a node Fi such that di = 1, i.e. Fi is a termi-
nal node. Assuming by convention that, the empty product
is equal to 1, i.e.

0∏
k=1

Γak ,ak+1 ≡ 1 (52)

Equation (51) can be rewritten as

Fi(x, y) =

1∑
p=1

∑
a=(a1)
a1=i

fa1 (Ma
1(x, y)) +

∫
Ca1 (Ma

1 (x,y),Ma
0 (x,y))

Σa1 F

= fi(Ma
1(x, y)) +

∫
Ci(Ma

1 (x,y),Ma
0 (x,y))

ΣiF (53)

Which exactly corresponds to integrating (39) along the
characteristics associated to Fi since for all j = 1, ..., n, Γi j
= 0 for a terminal node (see (46) with Γi j = 0).

d→ d + 1. Assume now that (51) is true for all nodes of
depth less or equal to d, for some d ∈ {1, ..., dmax}. Consider
now Fi of depth d + 1. Integrating (39) along the character-
istics and plugging in the boundary conditions (40) yields

Fi(x, y) = fi(M(i)
1 (x, y)) +

n∑
j=1

Γi j(M(i)
1 (x, y))F j(M(i)

1 (x, y))

+

∫
Ci(M(i)

1 (x,y),M(i)
0 (x,y))

ΣiF (54)

Notice that all the F j for which Γi j , 0 are of depth d j ≤ d.
Applying equation (51) to them yields

Fi(x, y) = fi(M(i)
1 (x, y)) +

∫
Ci(M(i)

1 (x,y),M(i)
0 (x,y))

ΣiF

+

n∑
j=1

d∑
p=1

∑
a=(a1 ,...ap )

a1= j

Γi j

(
M(i)

1 (x, y)
)  p−1∏

k=1

Γak ,ak+1

(
Ma

k

(
M(i)

1

))
·

 fap (Ma
p

(
M(i)

1

)
) +

∫
Cap

(
Ma

p

(
M(i)

1

)
,Ma

p−1

(
M(i)

1

)) Σap F

 (55)

which yields

Fi(x, y) = fi(M(i)
1 (x, y)) +

∫
Ci(M(i)

1 (x,y),M(i)
0 (x,y))

ΣiF

+

d∑
p=1

n∑
j=1

∑
a=(a1 ,...ap )

a1= j

Γi j(M(i)
1 (x, y))

p−1∏
k=1

Γak ,ak+1

(
Ma

k

(
M(i)

1

))
·

 fap (Ma
p

(
M(i)

1

)
) +

∫
Cap

(
Ma

p

(
M(i)

1

)
,Ma

p−1

(
M(i)

1

)) Σap F

 (56)

i.e.

Fi(x, y) = fi(M(i)
1 (x, y)) +

∫
Ci(M(i)

1 (x,y),M(i)
0 (x,y))

ΣiF

+

d∑
p=1

n∑
j=1

∑
a=(a1 ,...ap ,ap+1)

a2= j, a1=i

 p∏
k=1

Γak ,ak+1

(
Ma

k (x, y)
)

·

 fap+1 (Ma
p+1 (x, y)) +

∫
Cap+1

(
Ma

p+1(x,y),Ma
p(x,y)

) Σap+1 F

 (57)

i.e.

Fi(x, y) = fi(M(i)
1 (x, y)) +

∫
Ci(M(i)

1 (x,y),M(i)
0 (x,y))

ΣiF

+

d∑
p=1

∑
a=(a1 ,...,ap+1)

a1=i

 p∏
k=1

Γak ,ak+1

(
Ma

k+1 (x, y)
)

·

 fap+1 (Ma
p+1 (x, y)) +

∫
Cap+1

(
Ma

p+1(x,y),Ma
p(x,y)

) Σap+1 F

 (58)

i.e.

Fi(x, y) = fi(M(i)
1 (x, y)) +

∫
Ci(M(i)

1 (x,y),M(i)
0 (x,y))

ΣiF

+

d+1∑
p=2

∑
a=(a1 ,...,ap )

a1=i

 p−1∏
k=1

Γak ,ak+1

(
Ma

k+1 (x, y)
)

·

 fap (Ma
p (x, y)) +

∫
Cap

(
Ma

p(x,y),Ma
p−1(x,y)

) Σap F

 (59)

i.e., using (52)

Fi(x, y) =

di∑
p=1

∑
a=(a1 ,...,ap )

a1=i

 p−1∏
k=1

Γak ,ak+1

(
Ma

k+1 (x, y)
)

·

 fap (Ma
p (x, y)) +

∫
Cap

(
Ma

p(x,y),Ma
p−1(x,y)

) Σap F

 (60)

which concludes the proof by induction since di = d + 1.
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3.4.2 Method of successive approximations

The end of the proof follows the classical successive ap-
proximations method, applied to (51). More precisely, we

define the following operators Φ =

(
Φ1 · · · Φn

)>
Φi[F](x, y) =

di∑
p=1

∑
a=(a1 ,...ap )

a1=i

 p−1∏
k=1

Γak ,ak+1

(
Ma

k (x, y)
) ∫

Cap (Ma
p(x,y),Ma

p−1(x,y))
Σap F

(61)

As well as the following vector φ =

(
φ1 · · · φn

)>
φi(x, y) =

di∑
p=1

∑
a=(a1 ,...ap )

a1=i

 p−1∏
k=1

Γak ,ak+1

(
Ma

k (x, y)
) fap

(
Ma

p(x, y)
)

(62)

Define now the following sequence for q ∈ N

F 0(x, y) =0 (63)

F q+1(x, y) =φ(x, y) + Φ[F q](x, y) (64)

=

(
φ1(x, y) · · · φn(x, y)

)>
+(

Φ1[F q](x, y) · · · Φn[F q](x, y)
)>

(65)

Finally, define the following sequence for q ≥ 1

∆F q = F q − F q−1 (66)

Provided the limit exists, then

F = lim
q7→+∞

F q =

+∞∑
q=1

∆F q (67)

is a solution to (51). To prove that the series is convergent,
we rely on the following lemmas

Lemma 3 Assume inequality (42) holds. Then for all i =
1, ..., n, (x, y) ∈ T , the following function

ψi
(x,y) : s ∈ [0, sF

i (x, y)] 7→ αχi(s; x, y) − ξi(s; x, y) (68)

is strictly increasing. In particular, the following inequality
holds

ψi
(x,y)(sF

i (x, y)) = αx − y > αχ0
i (x, y) − ξ0

i (x, y) = ψi
(x,y)(0)

(69)

Thus, ψi
(x,y) defines a diffeomorphism of [0, sF

i (x, y)] onto its

image
[
αχ0

i (x, y) − ξ0
i (x, y), αx − y

]
.

Proof The proof is trivial since for i = 1, ..., n and (x, y) ∈ T ,
one has

dψi
(x,y)

ds
(s) = αεi(χi(s; x, y)) − νi(ξi(s; x, y)) (70)

and recalling (42).

Corollary 3.7 For any path a = (a1, ..., ap) of length p ≥ 0
and any k = 0, ..., p, denote Ma

k (x, y) = (xk, yk). Then one has

αxk − yk ≤ αx − y (71)

Proof We prove the result by induction. For k = 0, given
the definition of the Ma

k (Equation (48)), one has

αx0 − y0 = αx − y (72)

Assume now that (71) is satisfied for some k = 1, ..., p − 1,
then, by definition of the Ma

k (·, ·), one has

αxk+1 − yk+1 = αχ0
ak

(xk, yk) − ξ0
a1

(xk, yk) (73)

Using Lemma 3 for i = ak+1, this yields

αxk+1 − yk+1 < αxk − yk (74)

Then, using the induction assumption, this concludes the
proof.

Lemma 4 For any i = 1, ..., n and any (x, y) ∈ T , one has∫ sF
i (x,y)

0

[
αχi(s; x, y) − ξi(s; x, y)

]q ds ≤
1
δ

(
αx − y

)q+1

q + 1
(75)

where α and δ are defined by (42).

Proof Consider the following change of variables

τ = ψi
(x,y)(s) (76)

where ψi
(x,y)(·) is defined by (68). It yields

∫ sF
i (x,y)

0

[
αχi(s; x, y) − ξi(s; x, y)

]q ds =∫ αx−y

αχ0
i (x,y)−ξ0

i (x,y)

τpdτ
αεi(χ̄i(τ; x, y)) − νi(ξ̄i(τ; x, y))

(77)

where we have abusively denoted χ̄i(τ; x, y) = χi((ψi
(x,y))

−1(τ); x, y)
(resp. ξ̄i(τ; x, y) = ξi((ψi

(x,y))
−1(τ); x, y)). Using (42) this
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yields

∫ sF
i (x,y)

0

[
αχi(s; x, y) − ξi(s; x, y)

]q ds

<
1
δ

[
αx − y

]q+1
−

[
αχ0

i (x, y) − ξ0
i (x, y)

]q+1

q + 1
(78)

Since (χ0
i (x, y), ξ0

i (x, y)) ∈ T and α > 1, one has αχ0
i (x, y) −

ξ0
i (x, y) > 0 which yields the result.

Lemma 5 For any path a = (a1, ..., ap) of length p ≥ 0 and
any k = 1, ..., p, one has∫
Cak (Ma

k (x,y),Ma
k−1(x,y))

[
αχak (·) − ξak (·)

]q
≤

1
δ

(
αx − y

)q+1

q + 1
(79)

Proof Denoting Ma
k (x, y) = (xk, yk), one has from Lemma 4∫

Cak (Ma
k (x,y),Ma

k−1(x,y))

[
αχak (·) − ξak (·)

]q

≤
1
δ

[
αxk−1 − yk−1

]q+1

q + 1
(80)

Applying Corollary 3.7 yields the results.

Lemma 6 Define

φ̄ = max
i=1,...,n

‖φi(·, ·)‖L∞(T ) , Γ̄ = max
i, j∈{1,2,...,n}

‖Γi j‖∞ (81)

Σ̄ = max
(x,y)∈T , i=1,...,n

|||Σi(x, y)||| (82)

M =
dmax

δ

dmax∏
k=0

(n − k)

 Γ̄dmax−1Σ̄ (83)

Assume that for some q ≥ 1, one has, for all (x, y) ∈ T

∀i = 1, ..., n
∣∣∣∆F q

i (x, y)
∣∣∣ ≤ φ̄Mq (αx − y)q

q!
(84)

Then, one has

∀i = 1, ..., n
∣∣∣∣∆F q+1

i (x, y)
∣∣∣∣ ≤ φ̄Mq+1 (αx − y)q+1

(q + 1)!
(85)

Assume that (84) holds for some fixed q ≥ 1. Then, one has,
for all i = 1, ..., n∣∣∣∣∆F q+1

i (x, y)
∣∣∣∣ (86)

= |Φi[∆F q](x, y)| (87)

≤

di∑
p=1

∑
a=(a1 ,...ap)

a1=i

Γ̄p−1
∫
Cap (Ma

p(x,y),Ma
p−1(x,y))

∣∣∣Σap∆F
q
∣∣∣ (88)

Using (84) yields

≤

di∑
p=1

∑
a=(a1 ,...ap )

a1=i

Γ̄p−1Σ̄

∫
Cap (Ma

p(x,y),Ma
p−1(x,y))

φ̄
Mq

(
αχap (·) − ξap (·)

)q

q!

(89)

Using Lemma 5 yields

≤

di∑
p=1

∑
a=(a1 ,...ap )

a1=i

Γ̄p−1Σ̄φ̄
Mq (αx − y)q+1

(q + 1)!
(90)

Noticing that there cannot be more than
p∏

k=1
(n − k) paths of

length p from a given node i, this yields

≤ dmax
i


dmax

i∏
k=1

(n − k)

 Γ̄dmax
i −1Σ̄φ̄

Mq (αx − y)q+1

(q + 1)!
(91)

which, in turn, yields the result given the definition of M
(Equation (83)). Finally, Lemma 6 ensures that the se-
ries (66) is uniformly convergent, thus the kernel equa-
tions (39) with boundary conditions (40) are well-posed
(see, e.g. [8] for a detailed proof). In the next section, we
apply Theorem 3.2 to prove well-posedness of (30)–(37).

4 Well-posedness of (30)–(37) and control law

In this section, we apply the results of Section 3 to prove
the well-posedness of the kernel equations. The following
theorem assesses the well-posedness of the kernel equations.

Theorem 4.1 System (30)–(37) has a unique solution K, L ∈
L∞(T ).

Proof We prove the result by induction on i = 1, ..., n.

i = 1. For i = 1, the equations rewrite as follows

for 1 ≤ j ≤ n

µ1∂xK1 j(x, y) − λ j∂ξK1 j(x, y) = σ−−11 K1 j(x, y)

+

n∑
k=1

σ++
k j K1k(x, y) +

m∑
p=1

σ−+
p j L1p(x, y) (92)

for 1 ≤ j ≤ m

µ1∂xL1 j(x, y) + µ j∂ξL1 j(x, y) = σ−−11 L1 j(x, y)

+

m∑
p=1

σ−−p j L1p(x, y) +

n∑
k=1

σ+−
k j K1k(x, y) (93)
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∀ j, K1 j(x, x) = −
σ−+

1 j

µ1 + λ j

∆
= k1 j (94)

∀ j , 1, L1 j(x, x) = −
σ−−1 j

µ1 − µ j

∆
= l1 j (95)

∀ j ≥ 1 µ jL1 j(x, 0) =

n∑
k=1

λkK1k(x, 0)qk, j +

n∑
k=1

bk jγ1k(x)

(96)

∀ j, γ′1 j(x) = −

n∑
k=1

ak jγ1k(x) +

n∑
k=1

K1k(x, 0)λkck j

(97)
∀ j, γ1 j(0) = κ1 j (98)

One can readily check that (92)–(93) are of the form (39).
Besides, the ODE (97) can also be put under the form (39)
by “embedding” it into T . More precisely, denoting

1{y=0}(x, y) =

{
1 if y = 0
0 otherwise

(99)

one can define γ̃ j such that

∀(x, y) ∈ T γ̃ j(x, y) = 1{y=0}(x, y)γ1 j(x) (100)

or, equivalently, the γ̃ j satisfy the following PDEs of the
form (39)

∂xγ̃ j(x, y) = 1{y=0}(x, y)

− n∑
k=1

ak jγ̃k(x) +

n∑
k=1

K1k(x, 0)λkck j


(101)

with boundary conditions

γ̃ j(x, x) = 1{y=0}(x, x)κ1 j (102)

Besides, boundary conditions (94)–(96),(102) are of the
form (40), with the boundary coupling coefficients Γi j being
zero for every kernel except the Li j on the y = 0 boundary.
Therefore, the graph defined by Γi j is acyclic, and Theo-
rem 3.2 applies to (92)–(98) which is well-posed, i.e. has a
unique solution with K1 j, L1 j ∈ L∞(T ) and γ1 j ∈ L∞([0, 1]).

{1, ..., i − 1} → i. Let i ∈ {2, ..., n} be fixed and assume that
for p = 1, ..., i − 1 there exist Kp j, Lp j ∈ L∞(T ) and γp j ∈

L∞([0, 1]), for all j. Then, Equations (30)–(37) are of the
form (39),(40) with coefficients in L∞ since they are linear
in the Ki j, Li j and γi j variables with coefficients that depend
on the Kp j, Lp j and γp j for p < j. Thus, Theorem 3.2 applies
again and the equations are well-posed.

This yields the main result of the paper, stated in the fol-
lowing theorem.

Theorem 4.2 Consider System (1)–(5) with the following
control law

U(t) = −R1u(t, 1) +

∫ 1

0
K(1, y)u(t, y)dy

+

∫ 1

0
L(1, y)v(t, y)dy + γ(1)X(t) (103)

where K, L and γ are defined by (30)–(37). Then, the zero
equilibrium is exponentially stable in the L2 sense.

Proof Theorem 4.1 ensures the existence of K, L ∈

L∞(T ), γ ∈ L∞([0, 1]) such that (28),(29) holds and (α, β)
satisfies (8),(12). Lemma 1 and the invertibility of the
Volterra transformation yields the result.

5 Conclusion and perspectives

We have presented a control design for ODEs with a system
of hyperbolic PDEs in the actuating path. The design results
in a full-state feedback law needing measurements of the
distributed actuator states along the spatial domain. This is
not realistic in practice and future contributions will focus
on the design of an observer solely relying on (collocated)
boundary measurements.

Besides, the result opens the door to control design for other
systems involving cascaded hyperbolic PDEs. In particular,
networks of systems of hyperbolic balance laws are instru-
mental in modeling, e.g. oil production systems, networks
of open channels [1] or power transmission lines [11].
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