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A Hamiltonian Monte Carlo Method for Non-Smooth
Energy Sampling

Lotfi Chaari, Member, IEEE, Jean-Yves Tourneret, Senior Member, IEEE, Caroline Chaux, Senior Member, IEEE,
and Hadj Batatia, Member, IEEE

Abstract—Efficient sampling from high-dimensional distribu-
tions is a challenging issue that is encountered in many large
data recovery problems. In this context, sampling using Hamil-
tonian dynamics is one of the recent techniques that have been
proposed to exploit the target distribution geometry. Such schemes
have clearly been shown to be efficient for multidimensional sam-
pling but, rather, are adapted to distributions from the exponential
family with smooth energy functions. In this paper, we address the
problem of using Hamiltonian dynamics to sample from probabil-
ity distributions having non-differentiable energy functions such
as those based on the �1 norm. Such distributions are being used
intensively in sparse signal and image recovery applications. The
technique studied in this paper uses a modified leapfrog transform
involving a proximal step. The resulting nonsmooth Hamiltonian
Monte Carlo method is tested and validated on a number of exper-
iments. Results show its ability to accurately sample according to
various multivariate target distributions. The proposed technique
is illustrated on synthetic examples and is applied to an image
denoising problem.

Index Terms—Sparse sampling, Bayesian methods, MCMC,
Hamiltonian, proximity operator, leapfrog.

I. INTRODUCTION

S PARSE signal and image recovery is a hot topic which has
gained a lot of interest during the last decades, especially

after the emergence of the compressed sensing theory [1]. In ad-
dition, many recent applications, especially in remote sensing
[2] and medical image reconstruction [3], [4], deal with large
data volumes that are processed either independently or jointly.
To handle such inverse problems, Bayesian techniques have
demonstrated their usefulness especially when the model hyper-
parameters are difficult to be adjusted a priori. These techniques
generally rely on a maximum a posteriori (MAP) estimation
built upon the signal/image likelihood and priors. Analytical
expressions of the MAP estimators are often difficult to obtain
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due to the complex form of the associated efficient priors. For
this reason, many Bayesian estimators are computed using sam-
ples generated according to the posterior using Markov chain
Monte Carlo (MCMC) sampling techniques [5]. To handle large-
dimensional sampling, several techniques have been proposed
during the last decades. In addition to the random walk Metropo-
lis Hastings (MH) algorithm [5], one can mention the work in
[6] about efficient high-dimensional importance sampling, the
Metropolis-adjusted Langevin algorithm (MALA) [7]–[9], el-
liptical slice sampling [10] or the high-dimensional Gaussian
sampling methods of [11], [12]. To handle log-concave or multi-
modal smooth probability distributions, a Hamiltonian Monte
Carlo (HMC) sampling technique has recently been proposed
in [8], [13], [14]. This technique uses the analogy with the ki-
netic energy conservation in physics to design efficient proposals
that better follow the geometry of the target distribution. HMC
has recently been investigated in a number of works dealing
with multi-dimensional sampling problems for various applica-
tions [15], [16], demonstrating its efficiency. Efficient sampling
is obtained using these strategies where the convergence and
mixing properties of the simulated chains are improved com-
pared to classical sampling schemes such as the Gibbs and MH
algorithms. However, these techniques are only appropriate for
probability distributions with smooth energy functions whose
gradient can be calculated. This constraint represents a real lim-
itation in applications where sparsity is a key property, especially
with large datasets. Indeed, sparsity promoting probability dis-
tributions generally have a non-differentiable energy function
such as the Laplace or the generalized Gaussian (GG) distri-
butions [17] which involve �1 and �p regularizations, respec-
tively. These distributions have been used as priors for the target
signals or images in a number of works where inverse prob-
lems are handled in a Bayesian framework [18]–[21]. Sampling
from non-smooth posteriors has been considered in a number
of signal and image processing problems such as image deblur-
ring [22], magnetic resonance force microscopy reconstruction
[23] and electroencephalography signal recovery [24]. How-
ever, these works did not use efficient sampling moves based
on HMC or MALA, since the definition of these moves for
non-differentiable functions is not an easy problem.

This paper introduces a modified HMC algorithm allowing
us to sample from possibly non-differentiable energy functions.
The objective of this algorithm is therefore to be applicable to
both differentiable and non-differentiable energy functions.

The so called non-smooth HMC (ns-HMC) sampling scheme
relies on a modified leapfrog transform [13], [14] that circum-
vents the non-differentiability of the target energy function. The
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modified leapfrog transform relies on the sub-differential and
proximity operator concepts [25]. The proposed scheme is val-
idated on a sampling example where samples are drawn from a
GG distribution with different shape parameters. It is also ap-
plied to a signal recovery problem where a sparse regularization
scheme is used to recover a high-dimensional signal.

The remainder of the paper is organized as follows. Section II
formulates the problem of non-smooth sampling for large data
using Hamiltonian dynamics. Section III presents the proposed
ns-HMC sampling scheme. This technique is then validated in
Section IV to illustrate its efficiency for sampling from non-
smooth distributions. Finally, some conclusions and perspec-
tives are drawn in Section V.

II. PROBLEM FORMULATION

Let us consider a signal of interest x ∈ RN and let f(x;θ)
be its probability density function (pdf) which is parametrized
by the vector of parameters θ. In this work, we focus on an
exponential family of distributions such that

f(x;θ) ∝ exp[−Eθ(x)] (1)

where Eθ(x) is the energy function. Precisely, we concentrate
on sampling from the class of log-concave probability densities,
where the energy function Eθ is assumed to be convex but not
necessarily differentiable. In addition, we will also make the
assumption that Eθ belongs to Γ0(R), the class of proper lower
semi-continuous convex functions from R to ] −∞,+∞]. Fi-
nally, we will consider probability distributions from which
direct sampling is not possible and requires the use of an
acceptance-rejection step. Example II.1 presents the case of the
GG distribution which satisfies the above mentioned assump-
tions.

Example II.1: Let γ > 0 and p ≥ 1 two real-positive scalars.
The generalized Gaussian distribution GG(x; γ, p) is defined by
the following probability density function

GG(x; γ, p) =
p

2γ1/pΓ(1/p)
exp

(
−|x|p

γ

)
(2)

for x ∈ R.
Except for even values of p, such as p = 2, 4, . . ., the energy

function Eθ(x) = |x|p
γ is not differentiable (where θ = (γ, p)).

In what follows, we are interested in efficiently drawing samples
according to the probability distribution f defined in (1). The
following section describes the proposed non-smooth sampling
algorithm that can be used for this generation.

III. NON-SMOOTH SAMPLING

A. Hamiltonian Monte Carlo Methods

HMC methods [13], [14], [16] are powerful tools that use the
principle of Hamiltonian dynamics and energy preservation. The
theory of Hamiltonian dynamics is a reformulation of the theory
of classical mechanics. It is generally used to model dynamic
physical systems [26]. Let us consider the one-dimensional case
to explain the principle of HMC methods. A dynamic particle of
mass m can be characterized by its position x and momentum

q = mv, where v = ∂x
∂ t is the velocity of the particle (∂ denotes

the partial derivative). The Hamiltonian models the total energy
of this particle, namely the potential energy E(x) and the kinetic

energy K(v) =
1
2
mv2 , which can also be expressed as a func-

tion of the momentum since K(q) = 1
2m q2 . The Hamiltonian

H(x, q) can be expressed as

H(x, q) = E(x) + K(q). (3)

The Hamiltonian’s motion equations determine the evolution
of x(t) as a function of time t [14]

dq

dt
=

∂H

∂x

dx

dt
= −∂H

∂q
. (4)

These equations define a transformation Fs that maps the state
of the system at time t to the state at time t + s.

In the multidimensional case (where the particle has a uni-
tary mass), Hamiltonian dynamics are used to sample from a
target distribution f(x;θ) departing from a given position x by
introducing an auxiliary momentum variable q. The pdf of the
Hamiltonian dynamics energy defined in (3) is given by

fθ(x, q) ∝ exp [−H(x, q)]

∝ f(x;θ) exp

(
−qTq

2

)
. (5)

HMC methods iteratively proceed by alternating updates of
samples x and q drawn according to the distribution (5). At it-
eration #r, the HMC algorithm starts with the current values of
vectors x(r) and q(r) . Two steps have then to be performed. The
first updates the momentum vector leading to q(r) by sampling
according to the multivariate Gaussian distribution N (0, IN ),
where IN is the N × N identity matrix. The second step updates
both momentum q and position x by proposing two candidates
x∗ and q∗. These two candidates are generated by simulating
the Hamiltonian dynamics, which are discretized using some
discretization techniques such as the leapfrog method. For in-
stance, the discretization can be performed using Lf steps of
the leapfrog method with a stepsize ε > 0. The parameter Lf

can either be manually fixed or automatically tuned such as in
[27].

The lth leapfrog discretization will be denoted by Ts and can
be summarized as follows

q(r,(l+ 1
2 )ε) = q(r,lε) − ε

2
∂Eθ

∂xT

(
x(r,lε)

)
(6)

x(r,(l+1)ε) = x(r,lε) + εq(r,(l+ 1
2 )ε) (7)

q(r,(l+1)ε) = q(r,(l+ 1
2 )ε) − ε

2
∂Eθ

∂xT

(
x(r,(l+1)ε)

)
. (8)

After the Lf steps, the proposed candidates are given by q∗ =
q(r,εLf ) and x∗ = x(r,εLf ) . These candidates are then accepted
using the standard MH rule, i.e., with the following probability

min
{
1, exp

[
H(x(r) , q(r)) − H(x∗, q∗)

]}
(9)

where H is the Hamiltonian defined in (3).



B. Non-Smooth Hamiltonian Monte Carlo Schemes

The key step in standard HMC sampling schemes is the ap-
proximation of the Hamiltonian dynamics. This approximation
allows the random simulation of uncorrelated samples accord-
ing to a target distribution while exploiting the geometry of
its corresponding energy. In this section, we propose two non-
smooth Hamiltonian Monte Carlo (ns-HMC) schemes to per-
form this approximation for non-smooth energy functions. The
first scheme is based on the subdifferential operator while the
second one is based on proximity operators. For both schemes,
the whole algorithm to sample x and q is detailed in Algorithms
1 and 2. These algorithms describe all the necessary steps to
sample from a log-concave target distribution.

1) Scheme 1—Subdifferential Based Approach: Let us first
give the definition of the sub-differential and a useful example.

Definition III.1. [25, p. 223]: Let ϕ be in Γ0(R). The sub-
differential of ϕ is the set ∂sϕ(x) = {ρ ∈ R| ϕ(η) ≥ ϕ(x) +
〈ρ|η − x〉∀η ∈ R}, where 〈·|·〉 defines the standard scalar prod-
uct. Every element ρ ∈ ∂sϕ(x) is a sub-gradient of ϕ at point x.
If ϕ is differentiable, the sub-differential reduces to its gradient:
∂sϕ(x) = {∇ϕ(x)}.

Example III.1: Let ϕ be defined as

ϕ : R �−→ R

x −→ |x|. (10)

The sub-differential of ϕ at x is defined by

∂sϕ(x) =
{
{sign(x)} if x = 0
[ − 1, 1] if x = 0.

(11)

In addition, if we consider a scalar λ ∈ R+ and we call ϕλ(·) =
λϕ(·), then we have ∂sϕλ(x) = λ∂sϕ(x) for every x ∈ R [25,
Prop. 16.5].

For distributions with smooth energy, one can use the leapfrog
method whose basic form requires to compute the gradient of the
potential energy Eθ(x). Since we cannot determine this gradient
for non-smooth energy functions, we resort to the following
reformulation of the leapfrog scheme by using the concept of
sub-differential introduced hereabove

q(r,(l+ 1
2 )ε) = q(r,lε) − ε

2
ρ

(
x(r,lε)

)
(12)

x(r,(l+1)ε) = x(r,lε) + εq(r,(l+ 1
2 )ε) (13)

q(r,(l+1)ε) = q(r,(l+ 1
2 )ε) − ε

2
ρ

(
x(r,(l+1)ε)

)
(14)

where ρ ∈ ∂sEθ is sampled uniformly in the sub-differential of
Eθ. This discretization scheme will be denoted by T ′

s . If Eθ(x)
is differentiable, the mapping T ′

s in (12), (13) and (14) exactly
matches the conventional HMC mapping Ts in (6), (7) and (8).

As for the standard HMC scheme, the proposed candidates
are defined by q∗ = q(r,εLf ) and x∗ = x(r,εLf ) that can be
computed after Lf leapfrog steps. These candidates are then
accepted based on the standard MH rule defined in (9). The
resulting sampling algorithm is summarized in Algorithm 1.

Note that we do not need to account for any additional term in
the acceptance ratio in (9) since volume preservation is ensured
by the Metropolis update. Volume preservation is equivalent to

having an absolute value of the Jacobian matrix determinant for
the mapping Ts equal to one. This is due to the fact that candi-
dates are proposed according to Hamiltonian dynamics. More
precisely, volume preservation can be easily demonstrated by
using the concept of Jacobian matrix approximation [28] such
as the Clarke generalization [29], and by conducting calcula-
tions similar to [14, Chapter 5, p. 118].

2) Scheme 2—Proximal Based Approach: Since the calcula-
tion of the subdifferential is not straightforward for some classes
of convex functions, a second scheme modifying the leapfrog
steps (12), (13) and (14) can be considered by using the con-
cept of proximity operators. These operators have been found
to be fundamental in a number of recent works in convex opti-
mization [30]–[32], and more recently in [33] where stochastic
proximal algorithms have been investigated. Let us first recall
the proximity operator definition.

Definition III.2. [25, Definition 12.23] [34]: Let ϕ∈Γ0(R).
For every x ∈ R, the function ϕ + ‖ · −x‖2/2 reaches its infi-
mum at a unique point referred to as proximity operator and
denoted by proxϕ (x).

Example III.2: For the function ϕ defined in Example III.1,
the proximity operator is given by

proxϕ (x) = sign(x)max{|x| − 1, 0} ∀x ∈ R. (15)

Many other examples and interesting properties that make
this tool very powerful and commonly used in the recent opti-
mization literature are given in [35]. One of these properties in
which we are interested here is the following.

Property 1 [36, Prop. 3]: Let ϕ ∈ Γ0(R) and x ∈ R. There
exists a unique point x̂ ∈ R such that x − x̂ ∈ ∂sϕ(x̂). Using
the proximity operator definition hereabove, it turns out that
x̂ = proxϕ (x).

By modifying the discretization scheme Ts (Eqs. (6)–(8)),
we propose the following l-th leapfrog discretization scheme



denoted by T ′′
s

q(r,(l+ 1
2 )ε) = q(r,lε) − ε

2

[
x(r,lε) − proxEθ

(x(r,lε))
]

(16)

x(r,(l+1)ε) = x(r,lε) + εq(r,(l+ 1
2 )ε) (17)

q(r,(l+1)ε) = q(r,(l+ 1
2 )ε) − ε

2

×
[
x(r,(l+1)ε) − proxEθ

(x(r,(l+1)ε))
]
. (18)

If Eθ(x) is differentiable, the mapping T ′′
s in (16), (17) and (18)

exactly matches the mapping Ts in (6), (7) and (8). The only
difference is that the sub-differential of the mapping T ′′

s is eval-
uated in proxEθ

(x) instead of x. As for scheme 1, the proposed
candidates are given by q∗ = q(r,εLf ) and x∗ = x(r,εLf ) after
Lf leapfrog steps. These candidates are then accepted based on
the standard MH rule (9).

The Gibbs sampler resulting from the transformation T ′′
s is

summarized in Algorithm 2. Similarly to Algorithm 1, and due
to the presence of the MH acceptance rule, the elements x(r)

generated by this algorithm are asymptotically distributed ac-
cording to the target distribution f(x;θ) defined in (1).

C. Discussions

1) Comparison of the Two Schemes: Fig. 1 illustrates the
use of the proposed discretization schemes (algorithms 1 and 2)
to approximate a Hamiltonian made up of a quadratic kinetic
energy and a potential energy having the following form

Ea,b(x) = a|x| + bx2 (19)

where (a, b) ∈ (R∗
+)2 . For this potential energy, the subdiffer-

ential can be analytically calculated and is given by

∂sEa,b = a∂sϕ + (2b)Id (20)

Fig. 1. The potential energy Ea,b (solid black line) in (19) (a = 10, b = 5)
and its discretizations using the modified leapfrog schemes T ′

s (squares) and
T ′′

s (circles), as well as the difference between the two discretizations T ′′
s − T ′

s
(dashed blue line).

Fig. 2. The proximity operator proxE a , b
, the identity function (Id) and the

difference Id − proxE a , b
for a = b = 2.

where ∂sϕ is defined in Example III.1 and Id is the identity
operator. Both proposed algorithms can therefore be compared
for this example.

Fig. 1 shows that the discretized energy is close to the con-
tinuous one for the two mappings T ′

s and T ′′
s . Moreover, the

slight difference (T ′′
s − T ′

s) between the two mappings shows
that the two discretization schemes perform very similarly close
to the critical region of non-differentiability (the interval [−ε, ε]
with small ε ∈ R+ , see the zoom around the origin in Fig. 1).
Fig. 2 illustrates the shape of the proximity operator for the con-
sidered energy function Ea,b , as well as the identity function
Id and the difference Id − proxEa , b

. This figure clearly shows
that, due to the thresholding property of the proximity operator,
we have x � x − proxEa , b

x for x ∈ [−ε, ε]. In particular, for
the considered example, we have x � x − proxEa , b

x for every
x ∈ [ −a

b+1 , a
b+1 ]. This comparison confirms that the two schemes

perform similarly especially close to the non-differentiability
point.

Since Algorithm 2 is more general than Algorithm 1 (the
proximity operator is generally unique with a closed-form) and
allows us to handle energies for which the sub-differential is



not straightforward (while performing well especially close to
the critical regions), we will focus on this second discretization
scheme for our experiments.

2) Convergence Analysis: The convergence conditions of
the proposed sampling scheme are discussed in this section.
Since the proposed scheme relies on an MH acceptance step with
an infinite support of the proposal distribution (which therefore
includes the support of the target distribution), ensuring volume
preservation of the discretization scheme suffices to guarantee
the convergence of the proposed scheme.

From a geometric point of view, it is worth to note that the
two modified leapfrog discretization schemes T ′

s and T ′′
s defined

respectively in (12)–(14) and (16)–(18), as well as the original
leapfrog scheme defined in (6)–(8), preserve volume since they
are shear transformations. The interested reader can refer to [14]
or [37, page 121] for more details.

Analytically speaking, volume preservation can also be
demonstrated by using the generalization of the Jacobian matrix
which is defined using the sub-gradient instead of the gradient
itself. Let us denote by Fδ (see Section III-A) the mapping
between the state at time t, denoted by (x(t), q(t)), and the
state (x(t + δ), q(t + δ)) at time t + δ. Without loss of gen-
erality, we consider here the one-dimensional case since the
multi-dimensional case can be handled through simple gener-
alizations. Developments similar to [14] lead to the following
form of the generalized Jacobian matrix for the one-dimensional
case

Jδ =

⎡
⎢⎢⎣

1 + δ
∂2

s Hθ

∂sq∂sx
δ
∂2

s Hθ

∂sq2

−δ
∂2

s Hθ

∂sq2 1 − δ
∂2

s Hθ

∂sx∂sq

⎤
⎥⎥⎦ + O(δ2) (21)

where ∂s denotes the sub-gradient and ∂ 2
s Hθ

∂s q∂s x is an element of
the second-order sub-differential with respect to q and x. The
determinant of this matrix can therefore be written as

det(Jδ ) = 1 + δ
∂2

s Hθ

∂sq∂sx
− δ

∂2
s Hθ

∂sx∂sq
+ O(δ2)

= 1 + O(δ2). (22)

Following the construction proposed in [14], it turns out that for
some time interval s that is not close to zero, det(Js) = 1. Since
the transformation Fs is reversible (by replacing the stepsize by
its opposite), it then preserves volume. Hence, the determinant
of the Jacobian matrix does not need to be involved in the MH
acceptance probability. Therefore, for the deterministic map-
ping Fs , the corresponding acceptance probability is given by
(9). Under the reversibility condition of the dynamics, the joint
density as well as the marginals f(x) and f(q) are left invariant.
Moreover, and as explained in a number of works such as [8],
HMC schemes for f(x) can be interpreted as a Gibbs sampler
with an auxiliary variable q. The proposed scheme produces
therefore an ergodic and time reversible Markov chain whose
stationary distribution is fθ(x, q) with marginal distribution
f(x).

3) Effectiveness Analysis: We give here a theoretical anal-
ysis of the effectiveness of the proposed sampling scheme.

Combining (16) and (17) in a single step yields the following
update form

x(r,(l+1)ε) = x(r,lε) + εq(r,lε) − ε2

2

[
x(r,lε) − proxEθ

(x(r,lε))
]

(23)

which can also be rewritten as

x(r,(l+1)ε) =
ε2

2

[
(1 − ε2

2 )
ε2

2

x(r,lε) + proxEθ
(x(r,lε))

]
+ εq(r,lε) .

(24)
One can notice that this update scheme is similar to a random
walk step with random q updated around the point

x# =
ε2

2

[
(1 − ε2

2 )
ε2

2

x(r,lε) + proxEθ
(x(r,lε))

]
. (25)

Using the definition of the proximity operator given in
Definition III.2, we can write

∀y ∈ RN , proxEθ
(x(r,lε)) = arg inf

y
Eθ(y) + ‖y − x‖2/2.

(26)
If the infimum is reached, we can write

∀y ∈ RN , proxEθ
(x(r,lε)) = arg min

y∈RN

Eθ(y) + ‖y − x‖2/2

(27)

which can be interpreted as a regularized minimization of the
target distribution energy function Eθ. The term x# can there-
fore be seen as a linear combination of the current point x and
the point of minimal energy value (due to the minimization of
the energy function). As a consequence, it turns out that the
proposed scheme reduces to a random walk that is applied not
around the current point as done in the standard random walk
Metropolis-Hastings (rw-MH) algorithm, but around a more
optimal point which provides a good compromise between the
current state and the state of minimal energy (i.e., the maximal
value of the target probability density function).

As regards computational costs, the proposed scheme
presents the same level of complexity than the standard HMC
scheme. Indeed, the modified leapfrog transform relies on the
calculation of the proximity operator, whose cost is not neces-
sarily higher than that of calculating a gradient. For example,
let us consider the function

ϕ : R �−→ R

x −→ αx2 . (28)

The gradient of ϕ is given by ∇ϕ(x) = 2αx, while the prox-
imity operator is proxϕ (x) = x/(2α + 1). For this example, the
gradient and proximal operators can be computed with similar
complexity. Other examples of proximity operator calculations
are available in [31], [35].

IV. EXPERIMENTAL VALIDATION

This section validates the proposed ns-HMC scheme for non-
smooth log-concave distributions through three experiments.
The two first experiments consider the GG distribution whose



energy function is non-differentiable for the values of the shape
parameter considered here (p = 1 and p = 1.5). For the third
experiment, a Laplace distribution (GG distribution with p =
1) is used for an image denoising problem where the clean
image is recovered from noisy measurements using a Bayesian
regularization scheme involving a sampling technique based on
the proposed ns-HMC algorithm.

A. Experiment 1: 1D Sampling

In the first experiment, a 1D sampling is performed for a given
configuration of the shape and scale parameters of a GG distribu-
tion (p = λ = 1). Chains generated using the proposed ns-HMC
sampling scheme are compared to the ones obtained with an rw-
MH scheme. For our ns-HMC, the number of leapfrog steps Lf

has been empirically set to 10. The stepsize ε of the algorithm
has been set to 1/Lf . Indeed, on the one hand, a too large step-
size leads to a low acceptation ratio. On the other hand, a too
small stepsize leads to a slow exploration of the target space and
thus decreases the convergence rate of the method. Choosing
ε = 1/Lf guarantees a reasonable trajectory length εLf . The
rw-MH strategy is used here for comparison since it generally
improves the mixing properties of the generated samples when
compared to a fixed proposal distribution. Let x(r) be the cur-
rent sample of the chain and x∗ the proposed one. A Gaussian
proposal centered on the current sample with unitary variance
is used for the rw-MH algorithm, i.e., x∗ ∼ N (x(r) , 1). Fig. 3
[top] displays the Kullback-Leibler (KL) divergence between
the target GG pdf (with p = 1 and λ = 1) and the histogram of
the generated samples with respect to the number of sampled
coefficients. Note that the different curves have been obtained by
averaging the outputs of 50 Monte Carlo (MC) runs. Errorbars
indicate the standard deviation around this mean. To further il-
lustrate the sampling efficiency of the ns-HMC algorithm, Fig. 3
[bottom] displays the autocorrelation functions (ACFs) of the
sampled chains for the same values of (p, λ). This figure clearly
shows that samples generated using the ns-HMC scheme are
less correlated than those generated using rw-MH, which cor-
roborates the faster convergence of the ns-HMC scheme. Note
that the proposed technique does not need any adjustment of
the proposal variance contrary to the rw-HM algorithm while
giving acceptable level of intra-chain correlation. For the sake
of comparison, Fig. 3 [bottom] also displays the ACFs of chains
sampled using a standard MH algorithm with a centered Gaus-
sian proposal (x∗ ∼ N (0, 1)). Indeed, it has been reported that
rw-MH increases the correlation level within sampled chains
[5], while an MH algorithm provides uncorrelated samples. The
comparison between the ACFs corresponding to ns-HMC and
MH shows that chains sampled using ns-HMC are as less cor-
related as the standard MH algorithm with N (0, 1) proposal.

B. Experiment 2: Sampling From Multivariate Distributions

This section studies different algorithms for sampling ac-
cording to a multivariate GG distribution. The scale and shape
parameters of this GG distribution have been adjusted to the
values of Experiment 1. Multimensional sampling is performed
in each simulation. However, to evaluate the convergence rate

Fig. 3. 1D GG sampling with p = 1 and λ = 1. Top: mean KL divergence
(with standard deviation) between the target pdf and the histogram of the gen-
erated samples using the MH, rw-MH and ns-HMC algorithms (Logarithmic
scale); bottom: ACFs of the sampled chains using the MH and the rw-MH
algorithms, in addition to the proposed ns-HMC method.

of the algorithms, we compute the KL divergence between the
marginal one-dimensional GG pdfs and the histograms of the
samples generated by the different algorithms. The obtained KL
divergence is then averaged over all the dimensions to get the
mean value. Over 50 MC runs, Fig. 4 displays the averages of
the KL divergences and the corresponding error bars (mean ±
standard deviations) w.r.t the iteration number. In addition to the
results provided by the rw-MH algorithm, and for the sake of
comparison with other existing algorithms that are adapted to
the multidimensional case, the KL divergence curves are also
provided for the elliptical slice sampling (ESS) [10] technique.

Fig. 4 shows that the convergence to the marginal distributions
is faster with ns-HMC than with rw-MH or ESS. It is also worth
noticing that the variance over the 50 MC realizations is lower
with ns-HMC. An interesting property of the ns-HMC method
is that its convergence rate does not depend on the dimension of
the problem, contrary to rw-MH. This stability is due to the fact
that HMC exploits the shape of the energy function in contrary
to the rw-MH algorithm.

These comparisons confirm the usefulness of the proposed ns-
HMC scheme especially in high-dimensional scenarios where
the convergence speed of the standard MH, rw-MH or ESS
algorithms is altered by the size of the data.



Fig. 4. Mean KL divergence (w.r.t iteration number) between the target GG pdf
and the histogram of the generated samples using the rw-MH, ESS and ns-HMC
algorithms for multidimensional signals: 2D, 6D and 12D cases (logarithmic
scale). The errorbars indicate the estimated standard deviation around the mean
values.

C. Experiment 3: Sampling From a Bernoulli-GG Distribution

In this experiment, we want to sample a vector x distributed
according to a 2D Bernoulli-GG distribution, i.e., such that

∀x ∈ R2 , f(x;ω, λ, p) = ωδ(0) + (1 − ω)GG(x; λ, p)

Fig. 5. Mean KL divergence (w.r.t iteration number) between the target GG
pdf and the histogram of the generated samples using the rw-MH, ESS and ns-
HMC algorithms for a 2D Bernoulli-GG distribution (logarithmic scale). The
errorbars indicate the estimated standard deviation around the mean values.

where δ(·) is the Dirac delta function. The aim of this example is
to investigate the performance of the ns-HMC algorithm when
the target energy function has a non-diifferentiable point (x = 0)
that is reached with a non-zero probability. All simulations were
performed with ω = 0.6, which denotes the probability of sam-
pling x = 0. The GG shape and scale parameters are the same
as in experiment # 2. Fig. 5 shows the average KL distances
(computed using 50 MC runs) between the continuous part of
the distribution and the histograms of the corresponding gener-
ated samples, with the corresponding error bars. The ns-HMC
algorithm is clearly converging faster than the rw-MH and ESS
methods. Comparing the results of Figs. 4 and 5, we can ob-
serve that the gain in terms of convergence rate is faster for a
Bernoulli-GG distribution than for a multivariate GG distribu-
tion. Indeed, the modified Leapfrog scheme investigated in this
paper based on proximal operators allows a faster convergence
to be obtained.

An experiment where the target distribution has a infinite
number of singularities is detailed in the technical report [38].

D. Experiment 4: Denoising

In this experiment, the performance of the proposed ns-HMC
sampling algorithm is analyzed for an image denoising prob-
lem. The 2D image of size N = 128 × 128 displayed in Fig. 6
[top-left] has been used as a ground truth for this example. An
independent identically distributed additive Gaussian noise of
variance σ2

n = 40 has been added to this image to obtain the
noisy image depicted in Fig. 6 [top-right]. The objective of this
third experiment is to promote the sparsity of the wavelet coeffi-
cients associated with the target image. To this end, we express
the image formation model as function of the wavelet coeffi-
cients x ∈ RN which are related to the ground truth image z
through the relation z = F−1x where F−1 ∈ RN ×N denotes
the dual frame operator. The analysis frame operator thus corre-
sponds to F ∈ RN ×N and as orthonormal bases are considered



Fig. 6. Reference (top-left), noisy (top-right) and denoised images using
Algorithm 3 (bottom-left) and the Wiener filter (bottom-right).

here, the dual frame operator reduces to the inverse operator
yielding F−1F = FF−1 = Id. The observation model can thus
be expressed as

y = F−1x + n (29)

where y ∈ RN is the observed image, x ∈ RN contains the
unknown wavelet coefficients and n ∈ RN is the additive noise.
Note that the denoised image ẑ can be easily recovered from
the estimated wavelet coefficients x̂ by taking ẑ = F−1x̂.

Based on this model and the Gaussian likelihood assumption,
a hierarchical Bayesian model has been built using an indepen-
dent Laplace prior for the wavelet coefficients [39], [40]

f(x; λ) =
(

1
2λ

)N

exp

(
−||x||1

λ

)
(30)

where λ is an unknown parameter that is estimated within the
proposed Bayesian algorithm. More precisely, an inverse gamma
prior distribution is assigned to λ [23], [41]

f(λ|a, b) = IG(λ|a, b) =
ba

Γ(a)
λ−a−1 exp

(
− b

λ

)
(31)

where Γ(·) is the gamma function, and a and b are fixed hy-
perparameters (in our experiments these hyperparameters have
been set to a = b = 10−3).

Using a Jeffrey’s prior for the noise variance (σ2
n ∼

1
σ 2

n
1R+ (σ2

n )), the full posterior of this denoising model can
be derived. The associated Gibbs sampler generates samples
according to the conditional distributions of the posterior. The

conditional distribution of the wavelet coefficients x writes

f(x|y, σ2
n , λ) ∝ exp[−U(x)] (32)

where the energy function U is defined by U(x) = ||x||1
λ

+
||y−F −1 x||22

2σ 2
n

. Sampling according to this distribution is performed
using the proposed ns-HMC scheme, which requires the calcu-
lation of the proximity operator of its energy function given
by

proxU (x) = prox||·||1 /(1+α)

(
x + αFy

1 + α

)
(33)

where α = 1
σ 2

n
and prox||·||1 /(1+α) can easily be calculated using

standard properties of the proximity operators [25], [31], [42]
(see Appendix A for more details).

Regarding the noise variance and the prior hyperparameter,
straightforward calculations lead to the following conditional
distributions which are easy to sample

σ2
n |x,y ∼ IG

(
σ2

n |N/2, ||y − F−1x||2/2
)

(34)

λ|x, a, b ∼ IG (λ|a + N, b + ||x||1) (35)

where IG is the inverse gamma distribution. The estimation of
the denoised image is performed based on the sampled wavelet
coefficients after an appropriate burn-in period, i.e., after con-
vergence of the Gibbs sampler in Algorithm 3.

An example of denoised image using Algorithm 3 is dis-
played in Fig. 6 [bottom-left]. This result is compared with
the Wiener filter, which is a state-of-the-art denoising method,
(Fig. 6 [bottom-right]). From a visual point of view, we can
easily notice that Algorithm 3 provides a better denoised im-
age compared to the Wiener filter. Quantitatively speaking, the
evaluation of the noisy and denoised images is based on both
SNR (signal to noise ratio) and SSIM [43] (structural similar-
ity). These values are directly reported in the figure and show
the efficiency of the denoising algorithm based on the proposed
ns-HMC technique to sample from the conditional distribution
of the wavelet coefficients x. As regards the computational
time, only 1000 iterations are necessary for the proposed algo-
rithm involving a burn-in period of 500 iterations, taking around
9 seconds on a 64-bit 2.00 GHz i7-3667U architecture with
a Matlab implementation. For the ns-HMC step, the second
scheme has been used with Lf = 10.



V. CONCLUSION

This paper proposed a solution to make feasible the use of
Hamiltonian dynamics for sampling according to log-concave
probability distributions with non-smooth energy functions. The
proposed sampling technique relies on some interesting results
from convex optimization and Hamiltonian Monte Carlo meth-
ods. More precisely, proximity operators were investigated to
address the non-differentiability problem of the energy func-
tion related to the target distribution. The proposed technique
provided faster convergence and interesting decorrelation prop-
erties for the sampled chains when compared to more standard
methods such as the random walk Metropolis Hastings algo-
rithm. The proposed technique was evaluated on synthetic data
and applied to an image denoising problem. Our results showed
that the use of proximity operators in a Hamiltonian Monte
Carlo method allows faster convergence to the target distribu-
tion to be obtained. This conclusion is particularly important for
large scale data sampling since the gain in convergence speed
increases with the problem dimensionality. In a future work,
we will focus on the investigation of this technique for sparse
signal recovery where a non-tight linear operator is involved in
the observation model. A preliminary attempt on synthetic data
has already been performed in [44]. A complete comparison
with other multidimensional sampling techniques would also
be interesting.

APPENDIX

A. Proximity operator calculation for the experiment of
Section IV-D

The energy function considered in this appendix is the one in-
volved in the conditional distribution of the wavelet coefficients
in (32), i.e.,

U(x) =
α

2
||y − F−1x||22 + ϕ(x) (36)

where α = 1/σ2
n and ϕ(x) = ||x||1

λ
. In order to use the pro-

posed ns-HMC sampling algorithm, the proximity operator of
the function U has to be calculated. Following the standard
definition of the proximity operator [31], [34], we can write

proxU (x) = p ⇔ x − p ∈ ∂U(p)

⇔ x − p ∈ ∂ϕ(p) + αp − αFy

⇔ x + αFy − (α + 1)p ∈ ∂ϕ(p)

⇔ x + αFy

α + 1
− p ∈ ∂ϕ/(α + 1)(p)

⇔ p = proxϕ/(α+1)

(
x + αFy

α + 1

)
(37)

which proves the expresssion of the proximity operator given
in (33).
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