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Abstract. This paper is devoted to the analysis and the approximation of parabolic hyperbolic
degenerate problems defined on bounded domains with nonhomogeneous boundary conditions. It
consists of two parts. The first part is devoted to the definition of an original notion of entropy
solutions to the continuous problem, which can be adapted to define a notion of measure-valued
solutions, or entropy process solutions. The uniqueness of such solutions is established. In the
second part, the convergence of the finite volume method is proved. This result relies on (weak)
estimates and on the theorem of uniqueness of the first part. It also entails the existence of a
solution to the continuous problem.
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1. Introduction. Let Ω be an open bounded polyhedral subset of R
d and T ∈

R
∗
+. Let us denote by Q the set (0, T )× Ω, and by Σ the set (0, T )× ∂Ω.
We consider the following parabolic-hyperbolic problem:

ut + div(F (t, x, u))−∆ϕ(u) = 0, (t, x) ∈ Q,
u(0, x) = u0(x), x ∈ Ω,
u(t, x) = ū(t, x), (t, x) ∈ Σ .

(1)

Such an equation of quasilinear advection with degenerate diffusion governs the evolu-
tion of the saturation of the wetting fluid in the study of diphasic flow in porous media
[GMT96], [Mic01], [EHM01]. In that case, the function ϕ can be expressed using the
capillary pressure and the relative mobilities. The function ϕ is only supposed to be
a nondecreasing Lipschitz continuous function. In particular, the study of problem
(1) includes the study of nonlinear hyperbolic problems (cases where ϕ′ = 0).

The analysis of the approximation of nonlinear hyperbolic problems via the finite
volume (FV) method began in the mid 1980s, involving several authors including,
for example, Cockburn, Coquel, and LeFloch [CCL95], Szepessy [Sze91], Vila [Vil94],
Kröner, Rokyta, and Wierse [KRW96], and Eymard, Gallouët, and Herbin [EGH00].
Results on the convergence of FV schemes for degenerate problems in general came
to light in more recent years [EGHM02], [Ohl01]. See also [BGN00], [EK00] for other
methods of approximation.

When the function ϕ is strictly increasing, problem (1) is of parabolic type. In
that case, the existence of a unique weak solution is well known. In the case where
ϕ′ = 0, problem (1) is a nonlinear hyperbolic problem, the uniqueness of a weak
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‡Université de Provence, Centre de Mathématiques et d’Informatique, F-13453 Marseille, France

(vovelle@cmi.univ-mrs.fr).

2262

D
ow

nl
oa

de
d 

11
/1

9/
18

 to
 1

40
.7

7.
13

8.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2263

solution is not ensured, and one has to define a notion of entropy solutions to recover
uniqueness [Kru70]. Therefore, it is quite difficult to define a notion of solution in the
case where ϕ is merely a nonincreasing function. In fact, as far as the Cauchy problem
in the whole space is concerned, such a definition has been done for a long time, since
Volpert and Hudjaev [VH69], but uniqueness with nonlinear parabolic terms has only
been proved recently by Carrillo [Car99] (see also [KO01], [KR00]).

Another difficulty in the study of degenerate parabolic problems is analysis of the
boundary conditions (see [LBS93], [RG99]). It is not always easy to give a correct
formulation of the boundary conditions, or of the way they have to be taken into
account. In the case where the function ϕ is strictly increasing, the classical framework
of variational solutions of parabolic equations is enough to satisfy this wish. In the
case where ϕ′ = 0, things are completely different. Even if the (entropy) solution u
of problem (1) admits a trace (say, γu) on Σ, the equality γu = u on Σ does not
necessarily hold. Actually, a condition on Σ can be given, which is known as the
BLN condition [BLN79]: this is the right way to formulate boundary conditions in
the study of scalar hyperbolic problems. However, the notion of entropy solution
to nonlinear Cauchy–Dirichlet hyperbolic problems given by Bardos, LeRoux, and
Nédélec is not really suitable to the study of FV schemes since it requires that the
solution u be in a space BV (because the trace of u is involved in the formulation of
the BLN condition), and it is known that it is difficult to get BV estimates on the
numerical approximations given by the FV method on non-Cartesian grids. Actually,
Otto gave an integral formulation of entropy solutions to scalar hyperbolic problems
with boundary conditions [Ott96], and this indeed allows us to prove the convergence
of the FV method [Vov02].

To our knowledge, the problem that we deal with (convergence of the FV method
for degenerate parabolic equations with nonhomogeneous boundary conditions) has
never been considered before. Nevertheless, in [MPT02], the authors give a definition
of entropy solution for which uniqueness and consistency with the parabolic approxi-
mation are proved. This definition is not completely in integral form and therefore not
suitable for proving the convergence of the FV method, since only poor compactness
results are available on the numerical approximation. That is why we give an origi-
nal definition of the problem (see Definition 3.1). This complete integral formulation
includes the definition of Otto but not exactly the one of Carrillo (see the comments
that follow Definition 3.1). It is well suited to the study of the convergence of several
approximations of problem (1) and is used, for example, in [GMT02] to prove the
convergence of a discrete Bhatnagar–Gross–Krook (BGK) model (see also [MPT02]
for the parabolic approximation).

Notice that some particular cases have been fully treated: in [EGHM02], the
authors prove the convergence of the FV method in the case where F (x, t, s) =
q(x, t)f(s), div(q) = 0, with q · n = 0 on Σ. In that case, the boundary condi-
tion does not act on the hyperbolic part of the equation. From a technical point of
view, this means that the influence of the boundary condition appears in the terms
related to the parabolic degenerate part of the equation. These parabolic degenerate
terms are estimated by following the methods of Carrillo in [Car99], who deals with
homogeneous boundary conditions. On the other hand, in [Vov02], the author proves
the convergence of an FV method in the case where ϕ′ = 0, adapting the ideas of Otto
[Ott96]. In that case, the effects of the boundary condition in the hyperbolic equation
are the center of the work. In this paper we mix these two precedent approaches to
deal with the parabolic degenerate problem with general boundary conditions.
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2264 ANTHONY MICHEL AND JULIEN VOVELLE

We will make the following assumptions on the data:

(H1) F : (t, x, s) �→ F (t, x, s) ∈ C1(R+ × R
d × R) , divxF = 0,

∂F

∂s
is locally Lipschitz continuous uniformly with respect to (t, x);

(H2) ϕ : s �→ ϕ(s) is a nondecreasing Lipschitz continuous function;

(H3) u0 : x �→ u0(x) ∈ L∞(Ω); and
(H4) the function ū : (x, t) �→ ū(x, t) ∈ L∞(Σ) and is the trace of a function

ū ∈ L∞(Q)with ϕ(ū) ∈ L2(0, T ;H1(Ω)) .

To prove the convergence of the FV method, we will also assume that the bound-
ary datum satisfies

(H5) the function ū : (x, t) �→ ū(x, t) ∈ L∞(Σ) and is the trace of a function
ū ∈ L∞(Q) with ϕ(ū) ∈ L2(0, T ;H1(Ω)) , ∇ū ∈ L2(Q) , ūt ∈ L1(Q) .

In the course of the proof of uniqueness of the entropy process solution (Theorem
4.1), additional hypotheses on the boundary datum are required. Using the notation
defined in subsection 4.1, they read

(H6) uΣ ∈W 1,1((0, T )×B ∩Q) and ∆ϕ(uΣ) ∈ L1((0, T )×B ∩Q) .
Remark 1.1. As suggested by Porretta [MPT02], hypothesis (H6) may be relaxed

as

(H6Bis) uΣ ∈W 1,1((0, T )×B ∩Q) and

∆ϕ(uΣ) is a bounded Radon measure on (0, T )×Π .
We do not give a justification of this assertion now. Indeed, hypothesis (H6) is involved
in the proof of Lemma 4.2, and we have waited until Remark 4.1, just after this proof,
to specify to what extent hypothesis (H6Bis) is admissible.

Under assumptions (H3)–(H4), there exists (A,B) ∈ R
2 such that

A ≤ min
(
ess inf

Ω
(u0), ess inf

Q
(ū)

)
≤ max

(
ess sup

Ω
(u0), ess sup

Q
(ū)

)
≤ B,(2)

and we set

M = max

{∣∣∣∣∂F∂s (t, x, s)
∣∣∣∣ , (t, x, s) ∈ Q× [A,B]} .

We introduce the function ζ defined by ζ ′ =
√
ϕ′. (This makes sense in view of (H2).)

We will derive L2(0, T ;H1) estimates on nonlinear quantities such as ζ(u). A simple
explanation for this fact is the following. Consider the equation ut −∆ϕ(u) = 0 on
(0, T ) × Ω. Multiply it by u, and sum the result with respect to x ∈ Ω. The formal
identity

∫
Ω
∇ϕ(u) · ∇u = ∫

Ω
|∇ζ(u)|2 then leads to 1

2
d
dt

∫
Ω
u2dx +

∫
Ω
|∇ζ(u)|2 ≤ 0,

from which can be derived an energy estimate.
Notice that the hypothesis divxF = 0 can be relaxed, and source terms can be

considered in the right-hand side of (1).
The assumption that ū is the trace of an L∞ function ū such that ϕ(ū) ∈

L2(0, T ;H1(Ω)) is a necessary condition for the existence of solutions to problem (1);
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2265

the additional hypotheses introduced in (H5) are involved in the proofs of different
estimates on the approximate solution, defined thanks to the FV method.

As implied at the beginning of this introduction, one of the main points in the
study of problem (1) is the definition of a notion of solution suitable for the classical
techniques of convergence of FV schemes. This point is specified in section 2. In
section 3, we introduce and define a notion of entropy process solutions (a concept
similar to the concept of measure-valued solutions), and in section 4 we prove the
uniqueness of such solutions (see Theorem 4.1). Section 5 is devoted to the FV scheme
used to approximate problem (1); a priori estimates are derived and the convergence
is proved.

2. Entropy weak solution. Here, as in the study of purely hyperbolic prob-
lems, the concept of weak solutions is not sufficient since the uniqueness of such solu-
tions may fail. Thus, we turn to the notion of weak entropy solutions. The entropy-
flux pairs considered in the definition of this solution are the so-called Kruzhkov semi
entropy-flux pairs (η±κ ,Φ

±
κ ) (see [Car99], [Ser96], [Vov02]). They are defined by the

formula{
η+
κ (s) = (s− κ)+ = s�κ− κ,
η−κ (s) = (s− κ)− = κ− s⊥κ,

{
Φ+
κ (t, x, s) = (s− κ)+ = F (t, x, s�κ)− F (t, x, κ),
Φ−
κ (t, x, s) = (s− κ)− = F (t, x, κ)− F (t, x, s⊥κ),

with a�b = max(a, b) and a⊥b = min(a, b). Notice that, in the case where κ is con-
sidered as a variable, for example when the doubling variable technique of Kruzhkov
is used, the entropy-fluxes will be written

Φ+(x, t, s, κ) = Φ+
κ (t, x, s) and Φ−(x, t, s, κ) = Φ−

κ (t, x, s).

Definition 2.1 (entropy weak solution). A function u of L∞(Q) is said to be
an entropy weak solution to problem (1) if it is a weak solution of problem (1), that
is, if ϕ(u)− ϕ(u) ∈ L2(0, T ;H1

0 (Ω)) and

∀θ ∈ C∞c ([ 0, T )× Ω) ,(3) ∫
Q

u θt + (F (t, x, u)−∇ϕ(u)) · ∇θ dx dt +

∫
Ω

u0 θ(0, x) dx = 0,

and if it satisfies the following entropy inequalities for all κ ∈ [A,B], for all ψ ∈
C∞c ([ 0, T )× R

d) such that ψ ≥ 0 and sgn±(ϕ(u)− ϕ(κ))ψ = 0 a.e. on Σ:∫
Q

η±κ (u)ψt + (Φ
±
κ (t, x, u)−∇ (ϕ(u)− ϕ(κ))

±
) · ∇ψ dx dt +

∫
Ω

η±κ (u0)ϕ(0, x) dx

+M

∫
Σ

η±κ (ū)ψ dγ(x) dt ≥ 0.(4)

Notice that the weak equation (3) is superfluous, for it is a consequence of (4).
However, if the function ϕ were (strictly) increasing, (3) would be enough to define
a notion of the solution of problem (1) for which existence and uniqueness hold: in
that case, problem (1) would merely be a nonlinear parabolic problem. For general
ϕ, the uniqueness of the solution will be a consequence of the entropy inequalities (4);
indeed, the class of Kruzhkov semi entropy-flux pairs is wide enough to ensure the
uniqueness of the weak entropy solution, while—and we stress this fact—the class of
classical Kruzhkov entropy-flux pairs s �→ |s− κ| is not.
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2266 ANTHONY MICHEL AND JULIEN VOVELLE

Also notice that, first, in the homogeneous case ū = 0, the previous definition
is slightly different from the original definition given by Carrillo [Car99] and that,
second, if ϕ′ = 0 (problem (1) becomes hyperbolic), then the previous definition of
the entropy solution coincides with the definition of a solution suitable for hyperbolic
problems; see Otto [Ott96] and [Vov02]. A notion of an entropy solution for degenerate
parabolic problems with nonhomogeneous boundary conditions has also been defined
by Mascia, Porretta, and Terracina in [MPT02]. It is interesting to notice that, in
their definition, they directly require that the entropy condition satisfy the entropy
condition on the boundary (14) as stated in Proposition 4.1. We prove that this
property (14) is, in fact, a consequence of the entropy inequalities (4) and then follow
the main lines of the uniqueness theorem proved in [MPT02].

3. Entropy process solution. The proof of the existence of a weak entropy
solution to problem (1) lies in the study of the numerical solution uD defined by an
FV method for problem (1) (see section 5.2). Theorem 5.1 states that the numerical
solution satisfies approximate entropy inequalities (see (50)), but the bounds on uD
(a bound in L∞(Q) and a bound on the discrete H1-norm of ϕ(uD)) do not give
strong compactness, only weak compactness. Therefore, in order to be able to take
the limit of the nonlinear terms of uD (as Φ±

κ (uD), in particular), we have to turn
to the notion of measure-valued solutions (see DiPerna [DiP85], Szepessy [Sze91]) or,
equivalently, to the notion of entropy process solution defined by Eymard, Gallouët,
and Herbin [EGH00]. In light of the following theorem, it appears that the notion of
entropy process solution is indeed well suited to compensate for the weakness of the
compactness estimates on the approximate solution uD and to deal with nonlinear
expressions of uD.

Theorem 3.1 (nonlinear convergence for the weak-� topology). Let O be a
Borel subset of R

m, R be positive, and (un) be a sequence of L∞(O) such that, for
all n ∈ N, ||un||L∞ ≤ R. Then there exists a subsequence, still denoted by (un) and
µ ∈ L∞(O × (0, 1)), such that

∀g ∈ C(R), g(un) −→
∫ 1

0

g(µ(., α)) dα in L∞(O) weak- � .

Now the notion of an entropy process solution can be defined.
Definition 3.1 (weak entropy process solution). Let u be in L∞(Q × ( 0, 1)).

The function u is said to be an entropy process solution to problem (1) if

ϕ(u)− ϕ(u) ∈ L2(0, T ;H1
0 (Ω))(5)

and if u satisfies the following entropy inequalities for all κ ∈ [A,B], for all ψ ∈
C∞c ([ 0, T )× R

d) such that ψ ≥ 0 and sgn±(ϕ(u)− ϕ(κ))ψ = 0 a.e. on Σ:∫
Q

∫ 1

0

η±κ (u(t, x, α))ψt(t, x)

+
(
Φ±
κ (t, x, u(t, x, α))−∇ (ϕ(u)(t, x)− ϕ(κ))

±
)
· ∇ψ(t, x)dαdxdt

+

∫
Ω

η±κ (u0)ψ(0, x) dx +M

∫
Σ

η±κ (ū)ψ dγ(x)dt ≥ 0 .(6)

Notice that if the function u is an entropy process solution of problem (1), then
it satisfies condition (5), which means in particular that ϕ(u) does not depend on the
last variable α and is denoted by ϕ(u)(t, x).
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2267

Notation. We set Q = Q× (0, 1).
We will now show that any entropy process solution actually reduces to an entropy

weak solution.

4. Uniqueness of the entropy process solution.
Theorem 4.1 (uniqueness of the entropy process solution). Let u, v ∈ L∞(Q×

(0, 1)) be two entropy process solutions of problem (1) in accordance with Definition
3.1. Suppose that Ω is either a polyhedral open subset of R

d or a strong C1,1 open
subset of R

d, and assume hypotheses (H1), (H2), (H3), (H4), and (H6) (or (H6Bis)).
Then there exists a function w ∈ L∞(Q) such that

u(t, x, α) = w(t, x) = v(t, x, β) for almost every (t, x, α, β) ∈ Q× ( 0, 1)2 .
Corollary 4.1 (uniqueness of the weak entropy solution). If Ω is either a

polyhedral open subset of R
d or a strong C1,1 open subset of R

d, and under hypotheses
(H1), (H2), (H3), (H4), and (H6) (or (H6Bis)), problem (1) admits at most one weak
entropy solution.

In the case where Ω is a polyhedral open subset of R
d, the proof of Theorem 4.1

is slightly more complicated than the proof in the case where Ω is a strong C1,1 open
subset of R

d. Besides, although the study of the FV method applied to (1) relies
on Theorem 4.1 only in the case of Ω polyhedral, we wish to specify the validity of
Theorem 4.1 when Ω is C1,1. Indeed, problem (1) may of course be posed on such
an open set, and, in that case, Theorem 4.1 would be one of the major steps in the
proof of the convergence of such an approximation, as for the vanishing viscosity
approximation, for example.

We therefore explain the proof of Theorem 4.1 in the case where Ω is C1,1 and
then indicate how to adapt it to the case where Ω is a polyhedral open subset of R

d

(see subsection 4.6).

4.1. Proof of Theorem 4.1: Definitions and notation.

4.1.1. Localization near the boundary. We suppose that Ω is a strong C1,1

open subset of R
d. In that case, there exists a finite open cover (Bν)0,... ,N of Ω and a

partition of unity (λν)0,... ,N on Ω subordinate to (Bν)0,... ,N such that, for ν ≥ 1, up
to a change of coordinates represented by an orthogonal matrix Aν , the set Ω∩Bν is
the epigraph of a C1,1-function fν : R

d−1 → R; that is,

Ω ∩Bν = {x ∈ Bν ; (Aν x)d > fν(Aν x)} and

∂Ω ∩Bν = {x ∈ Bν ; (Aν x)d = fν(Aν x)} ,
where y stands for (yi)1,d−1 if y ∈ R

d.
Until the end of the proof of Theorem 4.1, the problem will be localized with the

help of a function λν . We drop the index ν and, for the sake of clarity, suppose that
the change of coordinates is trivial: A = Id. We denote by Π = {x̄, x ∈ Ω∩B} ⊂ R

d−1

the projection of B ∩ Ω onto the (d − 1) first components, and Πλ = {x̄, x ∈ supp
(λ)∩Ω} (see Figure 1). If a function ψ is defined on Σ, we denote by ψΣ the function
defined on [0, T ) × B ∩ Q by ψΣ(t, x) = ψ(t, x̄, f(x)). Notice that the function ψΣ

does not depend on xd and that, by abusing the notation, we shall also denote by ψΣ

the restriction of ψΣ to [0, T )×Π. In the same way, if Li is defined on [0, T ]×Π, we
also denote by Li the function defined on [0, T )×B ∩Q by Li(t, x) = Li(t, x).

4.1.2. Weak notion of trace. An important step in the proof of the uniqueness
of entropy process solutions is the derivation of the condition satisfied by any entropy
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2268 ANTHONY MICHEL AND JULIEN VOVELLE

x

x

Ω
_

= f ( x )

_
x

B

λsupp(  )

Π
Πλ

d

d

Fig. 1. Localization by λ in the ball B.

process solution on the boundary of the domain. This condition is the matter of
Proposition 4.1. (It can be viewed as a kind of BLN condition [BLN79], balanced
by second order terms issued from the degenerate parabolic part of the equation of
(1).) In the course of the proof of Proposition 4.1, we need to define the normal trace
of certain fluxes (Φ+

κ (t, x, u) − ∇(ϕ(u) − ϕ(κ))+, among others, for example) and,
more precisely, to ensure the consistency of this definition of the normal trace with
different approximations. For that purpose, we turn to the work of Chen and Frid
[CF02]. Adapted to our context, the main theorem of [CF02] is the following.

Theorem 4.2 (see Chen and Frid [CF02]). Recall that Q = (0, T )×Ω, and denote
by ν the outward unit normal to Q. Let F ∈ (L2(Q))d+1 be such that divF is a bounded
Radon measure on Q. Then there exists a linear functional Tν on W 1/2,2(∂Q)∩C(∂Q)
which represents the normal traces F · ν on ∂Q in the sense that, first, the following
Gauss–Green formula holds: for all ψ ∈ C∞c (Q),

〈Tν , ψ〉 =
∫
Q

ψ divF +
∫
Q

∇ψ · F .(7)

Second, 〈Tν , ψ〉 depends only on ψ|∂Q, while, third, if (B, λ, f) is as above (subsection
localization near the boundary), then for all ψ ∈ C∞c ([0, T )× Ω),

〈Tν , ψλ〉 = − lim
s→0

1

s

∫ T

s

∫
Π

∫ f(x)+s

f(x)

F ·
 −∇f(x)

1
0

 ψλdxd dx dt(8)

+

∫ s

0

∫
Ω

F ·
 0
0
1

 ψλdx dt

 .

Let u be an entropy weak solution of problem (1). The entropy inequality (4)
shows that the divergence of the field

F+
κ (t, x) =

(
(u− κ)+

Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+

)
is a bounded Radon measure on Q. This field belongs to (L2(Q))d+1, and according
to the previous theorem, there exists a linear functional T +

ν,κ on W
1/2,2(∂Q) ∩ C(∂Q)

which represents F+
κ (t, x) · ν. Then, to define a notion of the normal trace of the flux
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2269

Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+, we set

〈T +
n,κ, ψ〉 = 〈T +

ν,κ, ψ〉+
∫

Ω

(u0 − κ)+ψ(0, x) dx ∀ψ ∈ C∞c ([0, T )× Ω) .(9)

This definition makes sense because the entropy weak solution assumes the values of
the initial data u0:

lim
s→0

1

s

∫ s

0

∫
Ω

(u− κ)+ψ dx dt =

∫
Ω

(u0 − κ)+ψ(0, x) dx ,

as can be seen by choosing s−t
s χ(0,s)(t)ψ as a test-function in (4). In particular,

〈T +
n,κ, ψλ〉 depends only on ψ|Σ, and from (8) we can derive the formula

〈T +
n,κ, ψλ〉

= − lim
s→0

1

s

∫ T

s

∫
Π

∫ f(x)+s

f(x)

(Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+) ·

(−∇f(x)
1

)
ψλdxd dx dt

for all ψ ∈ C∞c ([0, T )× Ω).
4.1.3. Mollifiers ρn and the cut-off function ωε. Technically, the heart of

the proof of uniqueness is the doubling of variables. This technique involves mollifiers,
which are defined as ρn(t) = nρ(nt), where ρ is a nonnegative function of C∞c (−1, 0)
such that

∫ 0

−1
ρ(t) dt = 1. (Notice that the the support of the function ρ is located to

the left of zero.) For ε a positive number, ρε naturally denotes the map t �→ 1
ερ(

t
ε ),

and we define Rn(t) =
∫ −t

−∞ ρn(s) ds. Since the technique of doubling of variables
interferes with a certain evaluation of the boundary behavior of the entropy process
solution (described by (14)), we need to define a cut-off function ωε built upon the
sequence of mollifiers. We set

ωε(x) =

∫ 0

f(x)−xd

ρε(z) dz =

∫ 0

f(x)−xd
ε

ρ(z) dz.(10)

On Ω∩B, the function ωε vanishes in a neighborhood of ∂Ω and equals 1 if dist(x, ∂Ω) >
ε; in particular, ωε → 1 in L1(Ω ∩B) and, if ψ ∈ H1(Ω), then∫

Ω

λψ · ∇ωε = −
∫

Ω

div(λψ)ωε
ε→0→ −

∫
Ω

div(λψ) = −
∫
∂Ω

λψ · n .

Roughly speaking, if F : Ω→ R
d, then −F · ∇ωε approaches the normal trace F · n.

To make this idea more precise, for the field F = Φ+
κ (t, x, u) − ∇(ϕ(u) − ϕ(κ))+

we call upon the notion of normal trace defined above (subsection 4.1.2). Let ψ ∈
C∞c ([0, T ) × Ω). Since ψ = ψ(1 − ωε) on Σ, 〈T +

n,κ, ψλ〉 = 〈T +
n,κ, ψλ(1 − ωε)〉. The

definition of T +
n,κ (see (9)) and the Gauss–Green formula (7) yield

〈T +
n,κ, ψλ〉 =

∫
Q

ψ(1−ωε)λ divF+
κ +

∫
Q

∇(ψ(1−ωε)λ)·F+
κ +

∫
Ω

(u0−κ)+ψ(1−ωε)λ dx.

Since 0 ≤ 1 − ωε ≤ 1 and ωε(x) → 1 for all x ∈ Ω ∩ B, the dominated convergence
theorem ensures that limε→0

∫
Q
ψ(1− ωε)λ divF+

κ = 0 and

〈T +
n,κ, ψλ〉 = − lim

ε→0

∫
Q

[Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+] · ∇ωε ψλdx dt .
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2270 ANTHONY MICHEL AND JULIEN VOVELLE

4.1.4. Otto entropy-fluxes. Let u ∈ L∞(Q × ( 0, 1)) be an entropy process
solution of problem (1) and κ ∈ [A,B]. Set Φ = Φ++Φ−. We denote by Gx(t, x, u, κ)
the quantity

Gx(t, x, u, κ) = Φ(t, x, u(t, x, α), κ)−∇x|ϕ(u)(t, x)− ϕ(κ)| .(11)

For w ∈ R, the function Fϕ is defined by the formula

Fϕ(t, x, u, κ, w) = Gx(t, x, u, κ) + Gx(t, x, u, w)− Gx(t, x, κ, w) .(12)

4.2. A result of approximation.
Lemma 4.1. Let U be a bounded open subset of R

q, q ≥ 1. If f ∈ L∞ ∩BV (U),
then, given ε > 0, there exists g ∈ C(U) such that

g ≥ f a.e. on U and

∫
U

(g(x)− f(x)) dx < ε .

This result may be false if f /∈ BV (U) (consider f = 11Q∩(0,1) on U = (0, 1)), but
this is not a necessary condition, because, on U = (0, 1), the function f = 11K , where
K is the triadic Cantor, can be approximated in L1(0, 1) by continuous functions g
such that g ≥ f a.e. Indeed, we claim that, if E is a measurable subset of U , then
f = 11E satisfies the conclusion of Lemma 4.1 if and only if

m(E) = inf {m(K) ; E ⊂ K , K compact} .(13)

(Here, m denotes the Lebesgue measure on R
q.)

Before proving Lemma 4.1, let us justify this assertion. If (13) holds, then, given
ε > 0, there exists a compact K of U such that E ⊂ K and m(K \ E) < ε. Since
the Lebesgue measure is regular, there exists an open subset V of U such that K ⊂
V ⊂ V ⊂ U and m(V \K) < ε. Then the function g : x �→ d(x,Rq \ V )/(d(x,K) +
d(x,Rq \ V )) is continuous on R

q, g ≥ 11E , and
∫
U
(g − 11E) < 2ε.

Conversely, suppose that, given ε > 0, there exists g ∈ C(U) such that g ≥ 11E
and

∫
U
(g − 11E) < ε. Then K = {x ∈ U ; g(x) ≥ 1} is compact, E ⊂ K, and

m(K \ E) < ε.
Proof of Lemma 4.1. Notice that, if E is a measurable subset of U such that

m(∂E) = 0, then (13) holds (consider the compact E). If E is a level set of a BV
function, then E has almost surely a finite perimeter and, consequently, m(∂E) = 0,
which ensures that 11E satisfies the conclusion of Lemma 4.1. This result may be seen
as the heart of the proof. Indeed, first suppose that 0 ≤ f(x) ≤ 1 for every x ∈ U .
For t ∈ [0, 1], set Et = {x ∈ U ; f(x) < t}. Then, for almost every t, Et is a set
with finite perimeter since f ∈ BV (U). Let (tn) be a sequence of reals dense in [0, 1]
and such that t1 = 1; Etn is a set with finite perimeter for every n. We will define a
sequence of simple functions θn =

∑n
i=1 α

n
i 11An

i
which approximate f from above and

such that each set An
i is built upon the level sets Eti . To that purpose, first define

θ1(x) = 1 for all x ∈ U . If n > 1, let {k1, . . . , kn} be an enumeration of {1, . . . , n}
such that tk1 > · · · > tkn . Set

An
i = Etki

\ Etki+1
if 1 ≤ i < n ,

An
n = Etkn

and θn =
∑n

i=1 tki 11An
i
. Notice that (An

i )1≤i≤n is a partition of U and that A
n
i ⊂ Etki

;
therefore, if x ∈ U , say x ∈ An

i , then θn(x) = tki
> f(x) and θn ≥ f . Besides,
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2271

the sequence (Etki
)1≤i≤n is decreasing, and this, together with the definition of A

n
i ,

ensures that θn(x) ≤ ti if x ∈ Eti for 1 ≤ i ≤ n. Now, given x ∈ U and ε > 0,
there exists n0 such that f(x) + ε > tn0

> f(x). Then, for every n ≥ n0, x ∈ Etn0

and, consequently, θn(x) ≤ tn0 < f(x) + ε. Thus, (θn) converges to f everywhere on
U (in fact, the convergence is monotone, but we do not prove this fact), and, since
0 ≤ θn ≤ 1, the dominated convergence theorem shows that

lim
n→+∞

∫
U

θn − f = 0 .

However, for each fixed n, the function θn satisfies the conclusion of the lemma.
Indeed, let ε > 0 be fixed. Since Etki+1

⊂ Etki
, we have 11An

i
= 11Etki

− 11Etki+1
.

The functions 11Etki
and 11Etki+1

are in BV (U), by the definition of a set with finite

perimeter. Thus 11An
i
is BV too, and An

i is a set with finite perimeter. As noticed

in the beginning of the proof, An
i satisfies (13), and there exists gi ∈ C(U) such that

gi ≥ tki 11An
i
and

∫
U
(gi − tki

11An
i
) < ε/n. Moreover, we can suppose that gi ≤ tki for

every i. Set g = max1≤i≤n gi. The function g is continuous on U , and g ≥ θn on U
by construction. It remains to compute ||g − θn||L1(U). If x ∈ An

i , then gi(x) = tki
,

and the condition gj ≤ tkj
enforces the maximum of the gj(x) to be reached for

j ∈ {i, . . . , n}. We then have

(g − θn)(x) = gj(x)− tki ≤ gj(x)− tkj 11An
j
(x).

Indeed, if j = i, this is obvious, and if j > i, we have 11An
j
(x) = 0, while tki ≥ 0.

Consequently, (g− θn)(x) ≤
∑n

i=1(gj − tkj 11An
j
)(x) and

∫
U
(g− θn) < n× ε/n = ε. If

n has been chosen such that
∫
U
(θn − f) < ε, then g is relevant to the conclusion of

the lemma.
We suppose that 0 ≤ f(x) ≤ 1 for every x ∈ U . For a general function f ∈

L∞∩BV (U), we can suppose, after an adequate modification of the function on a set
of negligible measure, that −M ≤ f(x) ≤M for every x ∈ U , where M = ||f ||L∞(U).
Then we consider the function f1 = (f + M)/(2M). Given ε > 0, there exists
g1 ∈ C(U) such that g1(x) ≥ f1(x) and ||g1 − f1||L1(U) < ε/(2M) and g = 2Mg1 −M
is convenient.

4.3. Proof of Theorem 4.1 (preliminary): Boundary condition.
Proposition 4.1 (boundary condition). Let u ∈ L∞(Q × ( 0, 1)) be an entropy

process solution of problem (1), and let Fϕ be defined by (12). Assume hypotheses
(H1), (H2), (H3), (H4), and (H6) (or (H6Bis)). Then, for all κ ∈ [A,B], for all
nonnegative ψ ∈ C∞c ([ 0, T )× R

d),

lim
ε→0

∫
Q
Fϕ(t, x, u(t, x, α), κ, uΣ(t, x)) · ∇ωε(x)ψ(t, x)λ(x) dα dx dt ≤ 0 .(14)

In the case of a purely hyperbolic problem (ϕ′ = 0), inequality (14) is the bound-
ary condition written by Otto [Ott96], equivalent to the BLN condition [BLN79] for
BV solutions. If the problem is strictly parabolic (that is, ϕ′(u) ≥ Φmin > 0),
then inequality (14) is trivially satisfied by any weak solution of the problem (1). In
[MPT02], the condition (14) is listed among the conditions that an entropy solution
should satisfy by definition. We refer to [MPT02] for a complete discussion of (14).
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2272 ANTHONY MICHEL AND JULIEN VOVELLE

Proof of Proposition 4.1. We first aim to prove the following result: for every
κ̃ ∈ [A,B], for every nonnegative ψ ∈ C∞c ([0, T )× R

d),

(15)

lim
ε→0

∫
Q
[Φ+(t, x, u, κ̃�uΣ)−∇(ϕ(u)− ϕ(κ̃�uΣ))

+] · ∇ωε(x)ψ(t, x)λ(x) dα dx dt ≤ 0.

Fix κ̃ ∈ [A,B]. In subsections 4.1.2 and 4.1.3, we defined a notion of normal trace for
the flux Φ+

κ (t, x, u)−∇(ϕ(u)−ϕ(κ))+ when u is an entropy weak solution of problem
(1). Of course, the same can be done when u is an entropy process solution of problem
(1); this time just consider the field F+

κ defined by

F+
κ =

( ∫ 1

0
(u− κ)+ dα∫ 1

0
(Φ+

κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+)dα

)
.

Moreover, if T +
n,κ still denotes the normal trace of the spatial part of F+

κ , for all

ψ ∈ C∞c ([ 0, T )× R
d),

〈T +
n,κ, ψλ〉

(16)

=− lim
s→0

1

s

∫ T

s

∫ 1

0

∫
Π

∫ f(x)+s

f(x)

(Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+) ·

(−∇f(x)
1

)
ψλdxd dx dt dα

and

〈T +
n,κ, ψλ〉 = − lim

ε→0

∫
Q
[Φ+

κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+] · ∇ωε ψλdx dt dα .(17)

Therefore, if ψ is a nonnegative function of C∞c ([ 0, T ) × R
d) such that sgn+(ϕ(ū) −

ϕ(κ))ψ = 0 a.e. on (0, T )× ∂Ω, then, choosing ψ(1−ωε) as a test-function in (6), we
get

−〈T +
n,κ, ψλ〉 ≤M

∫
Σ

(u− κ)+ ψ λdγ(x) dt .(18)

Now, we intend to define a notion of normal trace for the flux Φ+(t, x, u, uΣ�κ̃) −
∇(ϕ(u)− ϕ(uΣ�κ̃))+. To that purpose, we set

F+
=

( ∫ 1

0
(u− uΣ�κ̃)+ dα∫ 1

0
(Φ+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+)dα

)
,(19)

and we prove the following lemma.
Lemma 4.2. Let u ∈ L∞(Q × ( 0, 1)) be an entropy process solution of problem

(1), and let the field F+ ∈ (L2((0, T ) × B ∩ Q))d+1 be defined by (19). Assume
hypotheses (H1), (H2), (H3), (H4), and (H6) (or (H6Bis)). Then, for every open

subset D of B such that D ⊂ B, the divergence of F+
is a bounded Radon measure

on (0, T )×D ∩Q.
Proof of Lemma 4.2. Set g = ∂t uΣ+divx F (t, x, uΣ)−∆ϕ(uΣ) . From hypothesis

(H6) we have g ∈ L1((0, T )×B ∩Q), and the function uΣ (which, we recall, belongs
to W 1,1((0, T )× B ∩Q))) can be seen as an entropy solution of the equation ∂t w +
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2273

divx F (t, x, w) − ∆ϕ(w) = g with unknown w. The identity (uΣ�κ̃ − κ)− = (uΣ −
κ)− − (uΣ − κ̃⊥κ)− ensures that the function uΣ�κ̃ satisfies the entropy inequality∫

Q

[
(uΣ�κ̃− κ)− θt + [Φ

−(t, x, uΣ�κ̃, κ)−∇(ϕ(uΣ�κ̃)− ϕ(κ))−] · ∇θ ] dα dx dt
+

∫
Ω

(uΣ�κ̃(0, x)− κ)− θ(0) dx +

∫
Q
sgn−(uΣ�κ̃− κ) g θ dx dt dα ≥ 0

for every κ ∈ [A,B] and nonnegative function θ ∈ C∞c ([0, T ) × B ∩ Q). Now we use
a result of comparison and assert that, for any nonnegative function θ ∈ C∞c ([0, T )×
B ∩Q), we have∫

Q

[
(u− uΣ�κ̃)+ θt + [Φ

+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇θ
]
dα dx dt

+

∫
Ω

(u0 − uΣ�κ̃(0, x))+ θ(0) dx +

∫
Q
sgn+(u− uΣ�κ̃) g θ dx dt dα ≥ 0.(20)

This result of comparison, proved in [Car99] for entropy weak solution, remains true
when applied to entropy process solutions. Notice that we state a result of comparison
inside [0, T )×Ω (the previous function θ vanishes on [0, T )×∂Ω); this point is crucial.
A result of comparison on the whole domain Q is the object of Theorem 4.1, which
we are actually proving. As a matter of fact, we would like to rule out the hypothesis
that θ vanishes on [0, T )× ∂Ω. Toward that end, first notice that (20) is still true if
θ ∈ C1

c ([0, T )× (B∩Ω)) and θ = 0 on [0, T )× (B∩∂Ω). Let θ̃ ∈ C∞c ([0, T )× (B∩Ω)),
define, for s > 0, hs(x) = min([xd − f(x)]/s, 1), and choose θ = θ̃ hs in (20) to get

∫
Q

[
(u− uΣ�κ̃)+ θ̃t + [Φ

+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇θ̃
]
hs dα dx dt

(21)

+

∫
Ω

(u0 − uΣ�κ̃(0, x))+ θ̃(0)hs dx +

∫
Q
sgn+(u− uΣ�κ̃) g θ̃ hs dx dt dα ≥ As +Bs,

where

As = −1
s

∫ T

0

∫ 1

0

∫
Π

∫ f(x)+s

f(x)

Φ+(t, x, u, uΣ�κ̃) · ∇x(xd − f(x)) θ̃ dxd dx dt dα,

Bs =
1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

∇(ϕ(u)− ϕ(uΣ�κ̃))+ · ∇x(xd − f(x)) θ̃ dxd dx dt.

Let C be a bound of Φ+(t, x, z, w) · ∇x(xd− f(x)) in L∞(Q× [A,B]2). Such a bound
exists and, for every s,

As ≥ −C T |Π| ||θ̃||L∞([0,T )×(B∩Ω)) .(22)

On the other hand, the term Bs can be decomposed as Bs = Bs +Bd
s , where

Bs = −1
s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

∇x(ϕ(u)− ϕ(uΣ�κ̃))+ · ∇xf(x) θ̃ dxd dx dt,

Bd
s =

1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

∂xd
(ϕ(u)− ϕ(uΣ�κ̃))+ θ̃ dxd dx dt.
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2274 ANTHONY MICHEL AND JULIEN VOVELLE

Integration by parts with respect to x in Bs and integration by parts with respect to
xd in B

d
s (we use the fact that ϕ(u)(t, x, f(x)) = ϕ(uΣ)(t, x)) yields the following: for

almost every positive s (small enough),

Bs =
1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

(ϕ(u)− ϕ(uΣ�κ̃))+divx∇xf(x) θ̃ dxd dx dt,

Bd
s = −1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

(ϕ(u)− ϕ(uΣ�κ̃))+ ∂xd
θ̃ dxd dx dt

+
1

s

∫ T

0

∫
Π

(ϕ(u)− ϕ(uΣ�κ̃))+(t, x, f(x) + s) θ̃(x, f(x) + s)dx dt.

Notice that, first, the second term on the right-hand side of the previous equal-

ity in nonnegative; that, second, lims→0Bs = 0 and lims→0
1
s

∫ T

0

∫
Π

∫ f(x)+s

f(x)
(ϕ(u) −

ϕ(uΣ�κ̃))+ ∂xd
θ̃ dxd dx dt = 0 (because the trace of ϕ(u) is ϕ(ū)); and that, third,

hs converge to 1 in L1(B ∩ Ω). Consequently, letting s go to zero on both sides of
inequality (21) yields∫

Q

[
(u− uΣ�κ̃)+ θ̃t + [Φ

+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇θ̃
]
dα dx dt

+

∫
Ω

(u0 − uΣ�κ̃(0, x))+ θ̃(0) dx +

∫
Q
sgn+(u− uΣ�κ̃) g θ̃ dx dt dα ≥ lim inf

s→0
As.

Let D be an open subset of B whose closure is a subset of B too. From (22), it appears
that lim infs→0As can be viewed as the action of a certain distribution A∞ on θ̃ and
that A∞ is a bounded Radon measure on [0, T )×D ∩Q. Since ∫ 1

0
sgn+(u− uΣ) g dα

and (u0 − uΣ�κ̃(0, x))+δt=0 are bounded Radon measures on [0, T ) × D ∩ Q, the

previous inequality shows that the divergence of the field F+
is a bounded Radon

measure on [0, T )×D ∩Q. This ends the proof of Lemma 4.2.
Remark 4.1. If uΣ satisfies (H6Bis) instead of (H6), then uΣ can be seen as the

entropy solution of the equation ∂t w + divx F (t, x, w) − ∆ϕ(w) = g, with a source
term g which is a bounded Radon measure on (0, T ) × B ∩ Q. In the proof of the
previous lemma we used a theorem of comparison of Carrillo (Theorem 8 in [Car99])
between two entropy solutions ui (i ∈ {1, 2}) of the equation

∂tui + divF (t, x, ui)−∆ϕ(ui) = fi

(where fi ∈ L1) to derive the inequality (20). A careful study of the proof of the result
of comparison given by Carrillo shows that it still holds if f1 = 0 and f2 is a bounded
Radon measure. Consequently, inequality (20) remains true under hypothesis (H6Bis)
and Lemma 4.2 also.

As a consequence of this lemma, we can define a functional T +

n,κ̃, which represents
the normal trace of the flux Φ+(t, x, u, uΣ�κ̃)−∇(ϕ(u)−ϕ(uΣ�κ̃))+ on (0, T )×(∂Ω∩
D) and satisfies the analogue of the relations (16) and (17), where κ has been replaced
by uΣ�κ̃ in these latter. (We use the fact that there exists an open set D such that
supp(λ) ⊂ D ⊂ D ⊂ B to ensure that these limits make sense.)

Now, denote by S the set of all the functions v : (0, T )×Π→ R satisfying

v(t, x) =

Nv∑
i=1

wi Li(t, x),(23)

D
ow

nl
oa

de
d 

11
/1

9/
18

 to
 1

40
.7

7.
13

8.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2275

where

∀i, wi ∈ R, Li ∈ C∞([0, T ]×Π), Li ≥ 0, and
Nv∑
i=1

Li = 1 on [0, T ]×Πλ.(24)

We say that v ∈ S+
if v ∈ S and admits a decomposition as (23) such that

wi ≥ uΣ a.e. on supp(Li) for all i. If v ∈ S and satisfies (23), we set

〈T +
n,vκ̃, ψλ〉 =

Nv∑
i=1

〈T +
n,wiκ̃, Liψλ〉.

Notice that this is a notation and not a definition, because the decomposition (23)
with wi, Li satisfying (24) is not unique. An immediate consequence of (18) is the

following: if v ∈ S+
, then

−〈T +
n,vκ̃, ψλ〉 ≤ 0 ∀ψ ∈ C∞c ([0, T )× R

d), ψ ≥ 0.(25)

Furthermore, we claim that, if v ∈ S+
, then

〈T +
n,vκ̃ − T

+

n,κ̃, ψλ〉 ≤M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

|wi − uΣ|ψλLi dx dt.(26)

Let us prove this result: from (16) we have 〈T +
n,vκ̃−T

+

n,κ̃, ψλ〉 = − lim
s→0

∑Nv

i=1(Hi(s)+

Pi(s)), where

Hi(s) =
1

s

∫ T

s

∫ 1

0

∫
Π

∫ f(x)+s

f(x)

( Φ +(t, x, u, wi�κ̃)

− Φ+(t, x, u, uΣ�κ̃)) ·
( −∇f(x)

1

)
Liψλdxd dx dt dα,

Pi(s) =
1

s

∫ T

s

∫
Π

∫ f(x)+s

f(x)

∇(( ϕ (u)− ϕ(uΣ�κ̃))+

− (ϕ(u)− ϕ(wi�κ̃))+) ·
( −∇f(x)

1

)
Liψλdxd dx dt.

Since the function Φ+(t, x, u, v) isM -Lipschitz continuous with respect to v, uniformly
with respect to (t, x, u) ∈ Q× [A,B], we have

Hi(s) ≥ −1
s
M
√
1 + ||∇xf ||2∞

∫ T

0

∫
Π

∫ f(x)+s

f(x)

|wi�κ̃− uΣ�κ̃|Liψλdxd dx dt

≥ −1
s
M
√
1 + ||∇xf ||2∞

∫ T

0

∫
Π

∫ f(x)+s

f(x)

|wi − uΣ|Liψλdxd dx dt .

Consequently,

Nv∑
i=1

Hi(s) ≥ −1
s
M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

∫ f(x)+s

f(x)

|wi − uΣ|ψλLi dxd dxdt,
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2276 ANTHONY MICHEL AND JULIEN VOVELLE

and the limit of the right-hand side of this latter inequality can be explicitly computed
since the function ψλLi is smooth:

lim
s→0

Nv∑
i=1

Hi(s) ≥ −M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

|wi − uΣ|ψλLi dx dt .(27)

On the other hand, we have lim sups→0 Pi(s) ≥ 0. We will not detail the proof of
this result, for it is identical to the justification of the fact that lim sups→0Bs ≥ 0 in
the proof of Lemma 4.2. Together with (27), the result lim sups→0 Pi(s) ≥ 0 yields
(26). Furthermore, (26) combined with (25) shows that, if v ∈ S+

(v satisfies (23),
with wi ≥ uΣ a.e. on supp(Li)), then

−〈T +

n,κ̃, ψλ〉 ≤M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

(wi − uΣ)ψλLi dx dt.(28)

Since

〈T +

n,κ̃, ψλ〉 = − lim
ε→0

∫
Q
[Φ+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇ωε ψλdx dt dα ,

our first aim, which is the proof of (15), will be reached if the right-hand side of
(28) can be made as small as desired. Let us prove this fact: ε > 0. Since uΣ ∈
L∞ ∩W 1,1((0, T ) × Π) (hypothesis (H6)), we have uΣ ∈ L∞ ∩ BV ((0, T ) × Π), and
Lemma 4.1 shows that there exists g ∈ C([0, T ]×Π) such that g ≥ uΣ a.e. on (0, T )×Π
and

∫
(0,T )×Π

g− uΣ < ε. Let η be a modulus of uniform continuity of g on [0, T ]×Π.
The set (0, T )×Π (with compact closure) can be covered by a finite number of balls
with radius η centered in (0, T )×Π, say V1, . . . , VQ. Let (Li)1,Q be a regular partition
of unity subordinate to the open coverage (Vi) of [0, T ]×Π. For a certain (ti, xi) ∈ Vi,
set wi = g(ti, xi) + ε and define v =

∑Q
i=1 wi Li. Then v ∈ S+

and

Q∑
i=1

∫ T

0

∫
Π

(wi − uΣ)ψλLi dx dt=

∫ T

0

∫
Π

(v − uΣ)ψλdx dt

=

∫ T

0

∫
Π

(v − g)ψ λdx dt+

∫ T

0

∫
Π

(g − uσ)ψ λdx dt

≤ 2||ψ λ||∞ T |Π| ε.

This completes the proof of (15). Similarly, we can prove

(29)

lim
ε→0

∫
Q
[Φ−(t, x, u, κ̃⊥uΣ)−∇(ϕ(u)− ϕ(κ̃⊥uΣ))

−] · ∇ωε(x)ψ(t, x)λ(x) dα dx dt ≤ 0

for every κ̃ ∈ [A,B] and for every nonnegative ψ ∈ C∞c ([0, T )×R
d). Then Proposition

4.1 follows from the formula

Fϕ(t, x, u, κ, w)=
[
Φ +(t, x, u, κ�w)−∇(ϕ(u)− ϕ(κ�w))+]
+
[
Φ−(t, x, u, κ⊥w)−∇(ϕ(u)− ϕ(κ⊥w))−] .D
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2277

4.4. Proof of Theorem 4.1 (step 1): Inner comparison. Let u and v ∈
L∞(Q× ( 0, 1)) be two entropy process solutions of problem (1). The following result
of comparison between u and v involving test-functions which vanish on the boundary
of Ω can be proved (see [Car99] or [EGHM02]).

Proposition 4.2 (inner comparison). Let u and v ∈ L∞(Q × ( 0, 1)) be two
entropy process solutions of problem (1). Assume hypotheses (H1), (H2), (H3), and
(H4). Let ζ be a nonnegative function of C∞([ 0, T )× R

d × [ 0, T )× R
d) such that

{ ∀(s, y) ∈ Q , (t, x) �−→ ζ(t, x, s, y) ∈ C∞c ([ 0, T )× Ω),
∀(t, x) ∈ Q , (s, y) �−→ ζ(t, x, s, y) ∈ C∞c ([ 0, T )× Ω).

Then we have

∫
Q

∫
Q


|u(t, x, α)− v(s, y, β)|(ζt + ζs)

+Gx(t, x, u(t, x, α), v(s, y, β)) · ∇xζ
+Gy(s, y, v(s, y, β), u(t, x, α)) · ∇yζ
−∇x|ϕ(u)(t, x)− ϕ(v)(s, y)| · ∇yζ
−∇y|ϕ(u)(t, x)− ϕ(v)(s, y)| · ∇xζ

 dαdxdtdβdyds

+

∫
Q

∫
Ω

|u0(x)− v(s, y, β)| ζ(0, x, s, y) dx dβ dy ds

+

∫
Q

∫
Ω

|u0(y)− u(t, x, α)| ζ(t, x, 0, y) dy dα dx dt ≥ 0.

(30)

4.5. Proof of Theorem 4.1 (step 2): General test-function. We now follow
the lines of the proof of uniqueness given by Mascia, Porretta, and Terracina in
[MPT02].

First, we would like to consider test-functions which do not necessarily vanish on
∂Ω and are localized into the ball B. For x ∈ R

d−1, set ρm(x) = ρm(x1) · · · ρm(xd−1)
and define the function ξ by

ξ(t, s, x, y) = ψ(t, x) ρl(t− s) ρm(x− y) ρn(xd − yd) .(31)

We took care to choose ρ satisfying supp(ρ) ⊂ [−1, 0) to ensure

∀(t, x) ∈ Q , (s, y) �−→ ξ(t, s, x, y) ∈ C∞c (Q) ,
∀(t, s, x) ∈ [ 0, T )× [ 0, T )× supp (λ), suppy ξ(t, s, x, ·) ⊂ B.

(32)

For ε > 0 define ζ to be the function

ζ : (t, s, x, y) �−→ ωε(x) ξ(t, s, x, y)λ(x).

Then, for m large enough compared with n, the assumptions of Proposition 4.2 are
satisfied, and, with this particular choice of function ζ, inequality (30) turns into the
inequality

D
ow

nl
oa

de
d 

11
/1

9/
18

 to
 1

40
.7

7.
13

8.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2278 ANTHONY MICHEL AND JULIEN VOVELLE

∫
Q

∫
Q



|u− v̂|ωε(x) ((ξλ)t + (ξλ)s)
+
(
Gx(t, x, u, v̂) · ∇x(ξ λ)

+Gy(t, y, v̂, u) · ∇y(ξ λ)
)
ωε(x)

−
(
∇x|ϕ(u)− ϕ(v̂)| · ∇y(ξ λ)

+∇y|ϕ(u)− ϕ(v̂)| · ∇x(ξ λ)
)
ωε(x)


dxdtdαdydsdβ

+

∫
Q

∫
Q
Gx(t, x, u, v̂) · ∇ωε(x) ξ λ dα dx dt dβ dy ds

−
∫
Q

∫
Q
∇y|ϕ(u)− ϕ(v̂)| · ∇ωε(x) ξ λ dx dt dα dy ds dβ

+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y)ωε(x) dxδβ dy ds ≥ 0,

where

u = u(t, x, α) and v̂ = v(s, y, β).

Using formula (12), this inequality can be rewritten as

∫
Q

∫
Q


|u− v̂|ωε(x) ((ξ λ)t + (ξλ)s)

+ (Gx(t, x, u, v̂) · ∇x(ξ λ) + Gy(t, y, v̂, u) · ∇y(ξ λ))ωε(x)
− (∇x|ϕ(u)− ϕ(v̂)| · ∇y(ξ λ)
+∇y|ϕ(u)− ϕ(v̂)| · ∇x(ξ λ))ωε(x)

 dαdxdtdβdyds

+

∫
Q

∫
Q
Fϕ(t, x, u, v̂, uΣ) · ∇ωε(x) ξ λ dα dx dt dβ dy ds

+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y)ωε(x) dx dy ds dβ ≥ A+B + C,

(33)

where

A =

∫
Q

∫
Q

∇y|ϕ(u)− ϕ(v̂)| · ∇ωε(x) ξ λ dx dt dy ds,

B = −
∫
Q

∫
Q
Gx(t, x, v̂, uΣ) · ∇ωε(x) ξ λ dα dx dt dβ dy ds,

C =

∫
Q

∫
Q
Gx(t, x, u, uΣ) · ∇ωε(x) ξ λ dα dx dt dβ dy ds.

Using Proposition 4.1 and taking the limit of both sides of the previous inequality
with respect to ε then yields

∫
Q

∫
Q

 |u− v̂| ((ξ λ)t + (ξ λ)s)
+Gx(t, x, u, v̂) · ∇x(ξ λ) + Gy(t, y, v̂, u) · ∇y(ξ λ)

−∇x|ϕ(u)− ϕ(v̂)| · ∇y(ξ λ) +∇y|ϕ(u)− ϕ(v̂)| · ∇x(ξ λ)

 dα dx dt dβ dy ds
+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y) dβ dy ds dx ≥ lim

ε→0
(A+B + C ),
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2279

or (using formula (11))

∫
Q

∫
Q

 |u− v̂| ((ξ λ)t + (ξ λ)s)
+Φ(t, x, u, v̂) · ∇x(ξ λ) + Φ(t, y, v̂, u) · ∇y(ξ λ)

− (∇x|ϕ(u)− ϕ(v̂)|+∇y|ϕ(u)− ϕ(v̂)|) · (∇y +∇x)(ξ λ)

 dα dx dt dβ dy ds
+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y) dβ dy ds dx ≥ lim

ε→0
(A+B + C ).

(34)

Now, we intend to pass to the limit on l, m, and n in the previous inequality.
We will do so (on l and m and, eventually, on n), but notice that the study of the
behavior of A, B, and C as [ε→ 0] and the doubling variable technique itself interfere
with each other.

Using the definition of ξ from (31), it appears that C does not depend on l, m,
and n:

C =

∫
Q
Gx(t, x, u, uΣ) · ∇ωε(x)ψ λdα dx dt.

Moreover, inequality (34) can be rewritten as

∫
Q

∫
Q

 |u− v̂| ρl ρm ρn(ψ λ)t
+Φ(t, x, u, v̂) · ∇x(ψ λ)ρl ρm ρn

− (∇x|ϕ(u)− ϕ(v̂)|+∇y|ϕ(u)− ϕ(v̂)|) · ∇x(ψ λ) ρl ρm ρn

 dα dx dt dβ dy ds

+

∫
Ω

∫
Ω

|u0(x)− u0(y)| (ψ λ)(0, x) ρm ρn dx dy ≥ lim
ε→0

(A+B + C ) +D + E,

(35)

where

D = −
∫
Q

∫
Q
[Φ(t, x, u, v̂)− Φ(t, y, u, v̂)] · ∇x(ρl ρm ρn)ψ λdα dx dt dβ dy ds,

E =

∫
Ω

∫
Q
|u0(y)− v̂| (ψ λ)(0, x) ρl(−s) ρm ρn dβ dy ds dx.

The term E can be estimated by using the fact that the solution v completely satisfies

the initial condition, which means, for example, that ess lims→0+

∫
Ω

∫ 1

0
|v(s, y, α) −

u0(y)| dβ dy = 0. On the other hand, if the flux function F does not depend on
the (t, x)-variables, then D = 0, and more generally, one can prove (see [CH99])
D + E ≥ H, where

H = −C(F,ψ) sup
{ ∫

Q
|v(s, y, yd, β)− v(s+ σ, y + h, yd + k, β)|ds dy dyd dβ ;

|σ| ≤ 1
l
, |h| ≤ 1

m
, |k| ≤ 1

n

}
.(36)

Notice that, by continuity of the translations in L1, we have liml,m,n→+∞H = 0.
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2280 ANTHONY MICHEL AND JULIEN VOVELLE

4.5.1. Study of A + B. Going back to the study of A, B, we write A + B =
I + Jy + Jx, where

I = −
∫
Q

∫
Q
(Φ(t, x, v̂, uΣ(t, x)) · ∇ωε(x) ξ λ dα dx dt dβ dy ds,

Jy =

∫
Q

∫
Q

∇y|ϕ(u)(t, x)− ϕ(v)(s, y)| · ∇ωε(x) ξ λ dx dt dy ds,

Jx =

∫
Q

∫
Q

∇x|ϕ(v̂)− ϕ(uΣ(t, x))| · ∇ωε(x) ξ λ dx dt dy ds.

Recall that

∇ωε(x) = ρε(f(x)− xd)

(−∇f(x)
1

)
,

so that

Ĩ = lim
ε→0

I

= −
∫
Q

∫
[0,T )×Π×(0,1)

(Φ(t, x, f(x), v̂, uΣ(t, x)) ·
(−∇f(x)

1

)
(ξ λ)Σx

dαdxdtdβdyds,

where the index Σx indicates that the transformation concerns only the x variable.
Here, for example, (ξ λ)Σx

(t, x, y) = ξ(t, x, f(x), y)λ(x, f(x)). To study the term Jx,
we notice that the function uΣ does not depend on xd, and thus

J̃x = lim
ε→0

Jx = −
∫

[0,T )×Π

∫
Q

∇x |ϕ(v̂)− ϕ(uΣ(t, x))| · ∇f(x) (ξ λ)Σx
dx dt dy ds.

Integration by parts with respect to x in J̃x yields J̃x = J̃x
f + J̃x

ψ + J̃x
ρm
+ J̃x

ρn
, where

J̃x
f =

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)|∆f(x) (ψ λ)Σx
ρl(t− s)

×ρm(x− y) ρn(f(x)− yd) dx dt dy ds,

J̃x
ψ =

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)|∇f(x)
·∇x ((ψ λ)Σx

)ρl(t− s) ρm(x− y)ρn(f(x)− yd)dxdtdyds,

J̃x
ρm
=

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)|∇f(x)
·∇x ρm(x− y) ρn(f(x)− yd) ρl(t− s)ψ λdx dt dy ds,

J̃x
ρn
=

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)||∇f(x)|2ρl(t− s)

×ρm(x− y) ρ′n(f(x)− yd) (ψ λ)Σxdxdtdyds.

On the other hand, via integration by parts in Jy with respect to y, and recalling that
the boundary condition ϕ(u) = ϕ(u) on Σ is strongly satisfied according to Definition
3.1, we get

J̃y = lim
ε→0

Jy

= −
∫

[0,T )×Π

∫
Q

|ϕ(uΣ(t, x))− ϕ(v̂)|
(−∇f(x)

1

)
· ∇y(ξ λ)(t, s, x, f(x), y) dx dt dy ds,
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2281

and, developing the scalar product,

J̃y =

∫
[0,T )×Π

∫
Q

|ϕ(uΣ(t, x))− ϕ(v̂)|∇f(x) · ∇y(ξ λ)(t, s, x, f(x), y)dy dx dt ds

−
∫

[0,T )×Π

∫
Q

|ϕ(uΣ(t, x))− ϕ(v̂)|∂yd (ξ λ)(t, s, x, f(x), y) dy dx dt ds

= −J̃x
ρm
+

∫
[0,T )×Π

∫
Q

|ϕ(uΣ)− ϕ(v̂)|ρl(t− s)

× ρm(x− y) ρ′n(f(x)− yd) (ψ λ)Σx
dy dx dt ds,

so that

J̃x + J̃y = J̃x
f + J̃x

ψ +

∫
[0,T )×Π

∫
Ω

|ϕ(uΣ)− ϕ(v̂)| (1 + |∇f(x)|2)

× ρl(t− s) ρm(x− y)ρ′n(f(x)− yd) (ψ λ)Σx
dx dt dy ds.

In particular, no derivatives of the functions ρm or ρl appear in J
x + Jy. Hence,

summing up by ṽ the quantity v(t, x, yd, β) and passing to the limit [l,m → +∞] in
limε→0(A+B) = Ĩ + J̃x + J̃y, we get

lim
l,m→+∞

lim
ε→0

(A+B) = I + Jf + Jψ + Jρn ,

with

I = −
∫

[0,T )×Π×(0,1)

∫ ∞

0

∫ 1

0

Φ(t, x, f(x), ṽ, uΣ)

·
(−∇f(x)

1

)
ρn(f(x)− yd)(ψ λ)Σxdxdtdαdyddβ,

Jf =

∫
[0,T )×Π

∫ ∞

0

|ϕ(ṽ)− ϕ(uΣ)|∆f(x) (ψ λ)Σx
ρn(f(x)− yd) dx dt dyd,

Jψ =

∫
[0,T )×Π

∫ ∞

0

|ϕ(ṽ)− ϕ(uΣ)|∇f(x) · ∇x ((ψ λ)Σx
) ρn(f(x)− yd) dx dt dyd,

Jρn =

∫
[0,T )×Π

∫ ∞

0

|ϕ(ṽ)− ϕ(uΣ)| (1 + |∇f(x)|2) ρ′n(f(x)− yd) (ψ λ)Σx dx dt dyd.

To compute the limit as n tends to +∞ of the four preceding terms, first recall that
trace((ϕ(v))− ϕ(uΣ)) = 0, and that, consequently,

lim
n→+∞ Jf = 0 and lim

n→+∞ Jψ = 0.

Besides, we note that

∆ω1/n(x) = −ρ′n(f(x)− xd) (1 + |∇f(x)|2) + ρn(f(x)− xd)∆f(x),

so that, replacing yd by xd in Jρn
, we have

Jρn = −
∫
Q

|ϕ(v)− ϕ(uΣ(t, x))|∆ω1/n(x) (ψ λ)(t, x, f(x)) dx dt+ Jf

=

∫
Q

∇|ϕ(v)− ϕ(uΣ(t, x))| ∇ω1/n(x) (ψ λ)(t, x, f(x)) dx dt+ ε1n .
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2282 ANTHONY MICHEL AND JULIEN VOVELLE

Here, the quantity ε1n = Jf +
∫
Q
|ϕ(v)− ϕ(uΣ(t, x))| ∇ω1/n(x) · ∇(ψ λ)Σx

dx dt tends
to zero when n→ +∞. Moreover,

I = −
∫
Q
Φ(t, x, v, uΣ) · ∇ω1/n(x) (ψ λ)Σx

dβ dx dt + ε2n ,

where ε2n =
∫
Q (Φ(t, x, v, uΣ) − Φ(t, x, f(x), v, uΣ)) · ∇ω1/n(x) (ψ λ)Σx

dβ dx dt tends
to zero when n→ +∞.

Using formula (11), we get

lim inf
n→+∞ lim

l,m→+∞
lim
ε→0

(A+B)

= − lim sup
n→+∞

∫
Q
Gx(t, x, v(t, x, β), uΣ) · ∇ω1/n(x) (ψ λ)Σ dx dt dβ .

Starting from inequality (35) and taking the limit with respect to l, m, then the
limit with respect to n of both sides yields

(37)

∫
Q

∫ 1

0

∫ 1

0

[|u− v| (ψλ)t + Gx(t, x, u, v) · ∇(ψλ) ] dβ dα dx dt

≥


− lim

n→+∞

∫
Q

∫ 1

0

Gx(t, x, v(t, x, β), uΣ(t, x)) · ∇ω1/n (ψ λ)(t, x, f(x)) dβ dx dt

+ lim
ε→0

∫
Q

∫ 1

0

Gx(t, x, u, uΣ(t, x)) · ∇ωε(x) (ψ λ)(t, x, f(x)) dα dx dt
+ lim

n→+∞ lim
l,m→+∞

H

 .

Since limn→+∞ liml,m→+∞H = 0 (see (36)), the right-hand side of (37) is an anti-
symmetric function in (u, v), while the left-hand side of (37) is a symmetric function
of (u, v). We therefore have∫

Q

∫ 1

0

[|u− v| (ψλ)t + Gx(t, x, u, v) · ∇(ψλ) ] dβ dα dx dt ≥ 0.(38)

Now, recall that λ = λα is an element of the partition of unity (λα)0≤α≤N ; summing
the previous inequality over α ∈ 0, . . . , N yields∫

Q

∫ 1

0

[|u− v|ψt + Gx(t, x, u, v) · ∇ψ ] dβ dα dx dt ≥ 0.(39)

We define the nonnegative function ψ0 by ψ0(t, x) = ψ0(t) = (T − t)χ(0,T )(t), and
apply (39) with ψ0 as a test-function to get∫ T

0

∫
Ω

∫ 1

0

∫ 1

0

|u(t, x, α)− v(t, x, β)| dβ dα dx dt ≤ 0.

Consequently, we have u(t, x, α) = v(t, x, β) for a.e. (t, x, α, β) ∈ Q × ( 0, 1) × ( 0, 1).
Defining the function w by the formula

w(t, x) =

∫ 1

0

u(t, x, α) dα

and accounting for the product structure of the measurable space Q× ( 0, 1)× ( 0, 1),
we conclude

u(t, x, α) = w(t, x) = v(t, x, β) for a.e. (t, x, α, β) ∈ Q× ( 0, 1)2.

D
ow

nl
oa

de
d 

11
/1

9/
18

 to
 1

40
.7

7.
13

8.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2283

4.6. Proof of Theorem 4.1 for Ω a bounded polyhedral subset. Let d be
the Euclidean distance on R

d. Denote by (∂Ωi)i=1,...,N the faces of Ω, and by ni the
outward unit normal to Ω along ∂Ωi. For ε > 0 small, let B

ε
i be the subset of all x ∈ Ω

such that d(x, ∂Ωi) < ε and d(x, ∂Ωi) < d(x, ∂Ωj) if i �= j; define Gε
i to be the largest

cylinder generated by ni included in B
ε
i , and set ∆

ε
i = Bε

i \Gε
i , Ωε = Ω \ (∪1,N∆

ε
i ),

and bε = 11Ωε/2
� ρε/4. We have meas(Ω \ Ωε) ≤ Cε2. If λi ∈ C∞c (Rd) is such that

supp(λi) ∩ ∂Ω ⊂ ∂Ωi and such that the orthogonal projection of supp(λi) on the
affine hyperplane determined by ∂Ωi is included in ∂Ωi, then of course the whole
previous proof explained in the case where Ω is C1,1 applies here (we look at a half-
space), to give a result of comparison on supp(λ). Otherwise, for such a choice of
function λi, (38) is true. Equation (38) is also still true if λ = λ0, where λ0 ∈ C∞c (Rd)
and supp(λ0) ⊂ Ω (use Proposition 4.2). Since the function bε can be written as
bε =

∑
i=0,N λi for functions λi as above, we have∫

Q

∫ 1

0

[|u− v| (ψbε)t + Gx(t, x, u, v) · ∇(ψbε) ] dβ dα dx dt ≥ 0.(40)

Equation (40) can be rewritten as∫
Q

∫ 1

0

[|u− v|ψt + Gx(t, x, u, v) · ∇ψ] dβ dα dx dt ≥ αε,

where αε =
∫
Q
∫ 1

0
Gx(t, x, u, v) · ∇bεψ dβ dα dx dt tends to zero when ε → 0. Indeed,

we have ∇bε = 0 on Ωε, so that, setting Rε = (0, T )× (Ω \ Ωε)× (0, 1)2, we have

αε≤ ||ψ||L∞ ||Gx(t, x, u, v)||L1(Rε)||∇bε||L∞(Rε)

≤ ||ψ||L∞meas(Rε)
1/2||Gx(t, x, u, v)||L2(Rε)||11Ωε/2

||L∞(Rε)||∇ρε/4||L1(Rε)

≤C(T, ψ) ε · ||Gx(t, x, u, v)||L2(Rε) · 1
ε ,

and we conclude by using ||Gx(t, x, u, v)||L2(Rε) → 0 when ε → 0. We thus obtain
(39), from which Theorem 4.1 follows.

5. The FV scheme. The mesh used to discretize problem (1) has to be regular
enough to ensure the consistency of the numerical fluxes, mainly because a second
order problem is considered (at least when the function ϕ is not constant). This is
specified in the following section.

5.1. Assumptions and notation. We set d to be the Euclidean distance on
R
d and denote by γ the (d− 1)-Hausdorff measure on ∂Ω.
Definition 5.1 (admissible mesh of Ω). An admissible mesh of Ω consists of a

set T of open bounded polyhedral convex subsets of Ω called control volumes, a family
E of subsets of Ω̄ contained in hyperplanes of R

d with positive measure, and a family
of points (the “centers” of control volumes) satisfying the following properties:

(i) The closure of the union of all control volumes is Ω̄.
(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K̄\K = ∪σ∈EK

σ̄.
Furthermore, E = ∪K∈T EK .

(iii) For any (K,L) ∈ T 2 with K �= L, either the “length” (i.e., the (d − 1)-
dimensional Lebesgue measure) of K̄ ∩ L̄ is 0 or K̄ ∩ L̄ = σ̄ for some σ ∈ E. In the
latter case, we shall write σ = K|L and Eint = {σ ∈ E ,∃(K,L) ∈ T 2, σ = K|L}. For
any K ∈ T , we shall denote by NK the set of neighbor control volumes of K, i.e.,
NK = {L ∈ T ,K|L ∈ EK}.
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2284 ANTHONY MICHEL AND JULIEN VOVELLE

(iv) The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ), and, if
σ = K|L, it is assumed that the straight line (xK , xL) is orthogonal to σ.

Given a control volume K ∈ T , we will denote by m(K) its measure and by Eext,K
the subset of the edges of K included in the boundary ∂Ω. If L ∈ NK , m(K|L) will
denote the measure of the edge between K and L, and TK|L the “transmissibility”

through K|L, defined by TK|L =
m(K|L)
d(xK ,xL) . Similarly, if σ ∈ Eext,K , we will denote

by m(σ) its measure and by τσ the “transmissibility” through σ, defined by τσ =
m(σ)

d(xK ,σ) . One also denotes by Eext the union of the edges included in the boundary of
Ω: ∪K∈T Eext,K . The size of the mesh T is defined by

size(T ) = max
K∈T

diam(K),

and we introduce the following geometrical factor, linked with the regularity of the
mesh, defined by

reg(T ) = min
K∈T ,σ∈EK

d(xK , σ)

diam(K)
.

Remark 5.1. Some examples of meshes satisfying these assumptions are the
triangular meshes, which verify the acute angle condition (in fact this condition may
be weakened to the Delaunay condition), the rectangular meshes, or the Voronöı
meshes; see [EGH99] or [EGH00] for more details.

Definition 5.2 (time discretization of (0, T )). A time discretization of (0, T ) is
given by an integer value N and by an increasing sequence of real values (tn)n∈[[0,N+1]]

with t0 = 0 and tN+1 = T . The time steps are then defined by δtn = tn+1 − tn, for
n ∈ [[0, N ]].

Definition 5.3 (space-time discretization of Q). A finite volume discretization
D of Q is a family D = (T , E , (xK)K∈T , N ,(tn)n∈[[0,N ]]), where T , E, (xK)K∈T is
an admissible mesh of Ω according to Definition 5.1 and N , (tn)n∈[[0,N+1]] is a time
discretization of (0, T ) according to Definition 5.2. For a given FV discretization D,
one defines

size(D) = max(size(T ), (δtn)n∈[[0,N ]]) and reg(D) = reg(T ).
5.2. The FV scheme. We may now define the FV discretization of (1). Let D

be a FV discretization of Q according to Definition 5.3. First, the initial and boundary
data are discretized by setting

U0
K =

1

m(K)

∫
K

u0(x)dx ∀K ∈ T(41)

and

Ūn+1
σ =

1

δtn m(σ)

∫ tn+1

tn

∫
σ

ū(t, x)dγ(x)dt ∀σ ∈ Eext,∀n ∈ [[0, N ]].(42)

An implicit FV scheme for the discretization of problem (1) is given by the fol-
lowing set of nonlinear equations with unknowns UD = (Un+1

K )K∈T ,n∈[[0,N ]]: ∀K ∈
T ,∀n ∈ [[0, N ]],
(43)

Un+1
K − Un

K

δtn
m(K) +

∑
σ∈EK

m(σ)Fn+1
K,σ (U

n+1
K , Un+1

Kσ
)−

∑
σ∈EK

τσ(ϕ(U
n+1
Kσ

)− ϕ(Un+1
K )) = 0,
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2285

where

Un+1
Kσ

=

{
Un+1
L if σ = K|L,

Ūn+1
σ if σ ∈ Eext,(44)

and where the function Fn+1
K,σ is a monotonous flux consistent with the function F ,

which means that
• for all v ∈ R, u �→ Fn+1

K,σ (u, v) is a nondecreasing function and for all u ∈ R,

v → Fn+1
K,σ (u, v) is a nonincreasing function,

• Fn+1
K,σ (u, v) = −Fn+1

K,σ (v, u) for all (u, v) ∈ R
2,

• Fn+1
K,σ is M -Lipschitz continuous with respect to each variable,

• Fn+1
K,σ (s, s) =

1
δtn

1
m(σ)

∫ tn+1

tn

∫
σ
F (x, t, s) · nK,σdγ(x) dt.

The Godunov scheme and the splitting flux scheme of Osher may be the most
common examples of schemes with monotone fluxes.

We call an approximate solution the piecewise constant function uD defined a.e.
on Q by

uD(t, x) = Un+1
K , t ∈ (tn, tn+1), x ∈ K.(45)

5.3. Monotony of the scheme and direct consequences. As already said in
the introduction, it is a necessity to select a physically admissible solution by means of
the entropy inequalities. The schemes with monotonous fluxes are well known to add
numerical viscosity to the equations. They are L∞ stable, and they are monotonous
so that they respect discrete entropy inequalities. In other words, continuous entropy
inequalities have their discrete analogue, and they are respected by any solution of
(41)–(44). This is summarized in the following proposition.

Proposition 5.1 (monotony). Assume hypotheses (H1), (H2), (H3), and (H4).
Then there exists a unique solution to the scheme. Moreover, this solution satisfies the
following maximum principle and discrete entropy inequalities: ∀K ∈ T ,∀n ∈ [[0, N ]],

A ≤ Un+1
K ≤ B,(46)

η±κ (U
n+1
K )− η±κ (U

n
K)

δtn
m(K) +

∑
σ∈EK

m(σ)Φ±,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)(47)

−
∑
σ∈EK

τσ
(
η±κ (ϕ(U

n+1
Kσ

))−η±κ (ϕ(Un+1
K ))

) ≤ 0,
where Φ+,n+1

K,σ,κ and Φ−,n+1
K,σ,κ are the numerical entropy-fluxes defined by

Φ+,n+1
K,σ,κ (u, v) = Fn+1

K,σ (u�κ, v�κ)− Fn+1
K,σ (κ, κ) and(48)

Φ−,n+1
K,σ,κ (u, v) = Fn+1

K,σ (κ, κ)− Fn+1
K,σ (u⊥κ, v⊥κ).

Proof. We give only some elements of the proof of this proposition because it
consists of rewriting the proofs of three lemmas that can be found in [EGHM02]
(Lemmas 3.1, 3.3, and 3.4 there) in the case where the convective flux q(x, t)f(u) is
replaced by a more general flux F (x, t, u) and the Kruzhkov entropies are replaced by
the semi-Kruzhkov entropies as in the work of Vovelle [Vov02].

We follow the classical framework of implicit FV schemes for conservation laws
(see [EGH00]). The function UD is defined in an implicit way, so we first show, using
the monotony of the scheme, that if a function UD is a solution to the scheme, then
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2286 ANTHONY MICHEL AND JULIEN VOVELLE

it satisfies the discrete inequalities (47). Then we derive the maximum principle (46)
that provides a result of existence by use of the Leray–Schauder theorem. Uniqueness
of UD is proved by using a method analogous to the one used to prove the discrete
entropy inequalities.

5.4. A priori estimates. The inequalities derived from the properties of monot-
ony and local conservation are L∞ and L1 estimates. We will prove now L2 estimates.
We introduce a discretization ŪD = (Ū

n+1
K ){K∈T ,n∈[[0,N ]]} of ū defined by

Ūn+1
K =

1

δtn

1

m(K)

∫ tn+1

tn

∫
K

ū dx dt ∀K ∈ T , ∀n ∈ [[0, N ]] .

Proposition 5.2 (L2(0, T,H1(Ω)) and weak BV estimate). Assume hypotheses
(H1), (H2), (H3), (H4), and (H5). Let uD be the approximate solution defined by
(41)–(44), and assume that reg(D) ≥ ξ, where ξ > 0. Then there exists a constant C
depending only on ξ, T , Ω, Lip(ϕ), M , ū, A, B such that

(ND(ζ(uD))
)2
=

N∑
n=0

δtn
∑
K∈T

1
2

∑
σ∈Eint,K

τσ(ζ(U
n+1
K )− ζ(Un+1

Kσ
))2

+
∑

σ∈Eext,K

τσ(ζ(U
n+1
K )− ζ(Un+1

Kσ
))2

 ≤ C

and

N∑
n=0

δtn
∑
K∈T

1

2

∑
σ∈Eint,K

m(σ) max
Un+1

K
≤c≤d≤Un+1

Kσ

(
(Fn+1

K,σ (d, c)− Fn+1
K,σ (d, d))

2

+ (Fn+1
K,σ (d, c)− Fn+1

K,σ (c, c))
2
) ≤ C.(49)

Remark 5.2. The inequality (49) is called the “weak BV inequality.” See [EGH00],
[CGH93], or [CH99].

Proof. As for Proposition 5.1, the proof has already been done in a simpler case in
[EGHM02] (Proposition 3.1). The details of the proof differ only by some arguments
that can be found in [Vov02].

These estimates are discrete energy estimates. They are obtained by multiplying
(41)–(44) by δtn(U

n+1
K − Ūn+1

K ) and summing over K ∈ T and n ∈ [[0, N ]]. In the
proof, we separate terms that contain only UD from terms containing UD and ŪD.
Then we use the Cauchy–Schwarz inequality and regularity hypotheses (H5) on ū to
control the second type of terms. To get a bound on ND(ŪD), which is a discrete
L2(0, T,H1)-norm for ŪD, we use the following inequality proved in [EGH99]:

ND(ū) ≤ C(reg(D))‖∇ū‖L2(Q).

This is a consequence of the local conservativity of the scheme combined with the
consistency of the numerical fluxes.

The last ingredient is the assumption divx(F (x, t, u)) = 0, which ensures that
the boundary terms in the discrete integrations-by-parts concerning the hyperbolic
terms can be controlled. The constant C depends on ξ, m(Ω), T , B, A, Lip(Fn+1

K,σ ),
‖ūt‖L1(Q), and on ‖∇ū‖L2(Q).
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2287

5.5. Continuous entropy inequalities. From the discrete entropy inequalities
we deduce continuous approximate entropy inequalities. The following theorem is
central in the proof of the convergence of the scheme.

Theorem 5.1 (continuous approximate entropy inequalities). Assume hypothe-
ses (H1), (H2), (H3), (H4), and (H5). Let D be an admissible discretization of Q, and
let uD be the corresponding approximate solution defined above. Then uD satisfies the
following approximate entropy inequalities: for all κ ∈ R, for all ψ ∈ C∞(R+ × R

d)
such that ψ ≥ 0 and (ϕ(ū)− ϕ(κ))

±
ψ = 0 a.e. on Σ,∫

Q

η±κ (uD)ψt+Φ
±
κ (t, x, uD)·∇ψ+η±ϕ(κ)(ϕ(uD))∆ψ dxdt−

∫
Σ

η±ϕ(κ)(ϕ(ū))∇ψ ·ndγ(x)dt

+

∫
Ω

η±κ (u0)ψ(0)dx+M

∫
Σ

η±κ (ū)ψ dγ(x)dt ≥ −E±D(ψ).(50)

Also assume that a uniform CFL condition δtn ≤ Csize(T ) for all n holds true (with
a CFL number C that can be as large as desired). Then, for a given ψ, E±D(ψ) tends
to zero when the size of the discretization tends to zero.

Proof. The proof of Theorem 5.1 is quite similar to the proof of Theorem 5.1 in
[EGHM02], except for the boundary terms, which require extra care. We will therefore
stress the analysis of these terms and make reference to [EGHM02] when needed. Of
course, we can also limit ourselves to giving the proof of (50) when the nonnegative
Kruzhkov entropy pairs are under consideration.

Let κ ∈ R, and let ψ ∈ C∞(R+ × R
d) be a nonnegative function satisfying

(ϕ(ū) − ϕ(κ))+ψ = 0 a.e. on Σ. We define discrete values of ψ with respect to
the mesh as

Ψ0
K = ψ(0, xK) ∀K ∈ T ,

Ψn+1
K =

1

δtn

∫ tn+1

tn
ψ(t, xK)dt ∀K ∈ T ,∀n ∈ [[0, N ]],

ψn+1
σ =

1

δtn

∫ tn+1

tn
ψ(t, xσ)dt ∀σ ∈ Eext,∀n ∈ [[0, N ]]

and set Ψn+1
K,σ = Ψ

n+1
L if σ = K|L and Ψn+1

K,σ = ψn+1
σ if σ ∈ Eext,K .

The definition of the numerical flux Φ+,n+1
K,σ,κ (see (48)) ensures that it is a conser-

vative flux, consistent with the function Φ+
κ . Therefore, we have∑

σ∈EK

m(σ)Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

K ) = 0 ∀K ∈ T , n ∈ [[0, N ]],

and the discrete entropy inequality (47) can then be rewritten as

η+
κ (U

n+1
K )− η+

κ (U
n
K)

δtn
m(K)+

∑
σ∈EK

m(σ)(Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K ))

−
∑
σ∈EK

τσ
(
η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K ))

) ≤ 0.(51)

Multiplying (51) by δtnΨ
n+1
K and summing over K ∈ T and n ∈ [[0, N ]] yields

A1 +A2 +A3 ≤ 0,
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2288 ANTHONY MICHEL AND JULIEN VOVELLE

where

A1 =
N∑
n=0

∑
K∈T

m(K)(η+
κ (U

n+1
K )− η+

κ (U
n
K))Ψ

n+1
K ,

and, summing over the edges, A2 = A2int +A2ext, with

A2int =

N∑
n=0

δtn
∑
K∈T

1

2

∑
σ∈Eint,K

m(σ)
(
Ψn+1
K (Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K ))

−Ψn+1
K,σ (Φ

+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
Kσ

, Un+1
Kσ

))
)

and

A2ext =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eext,K

m(σ)Ψn+1
K

(
Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K )).

Similarly, A3 admits the decomposition A3 = A3int +A3ext, with

A3int =
N∑
n=0

δtn
∑
K∈T

1

2

∑
σ∈Eint,K

τσ
(
η+
ϕ(κ)(ϕ(U

n+1
K ))− η+

ϕ(κ)(ϕ(U
n+1
Kσ

))
)
(Ψn+1

K −Ψn+1
K,σ )

and

A3ext =
N∑
n=0

δtn
∑
K∈T

∑
σ∈Eext,K

τσ
(
η+
ϕ(κ)(ϕ(U

n+1
K ))− η+

ϕ(κ)(ϕ(U
n+1
Kσ

))
)
Ψn+1
K .

Now, set

I1 = −
∫
Q

η+
κ (uD)ψt dx dt−

∫
Ω

η+
κ (u0)ψ(0, x) dx,

I2 = −
∫
Q

Φ+
κ (t, x, uD) · ∇ψ dx dt−M

∫
Σ

η+
κ (ū)ψ dγ(x)dt,

I3 = −
∫
Q

η+
ϕ(κ)(ϕ(uD))∆ψ dx dt+

∫
Σ

η+
ϕ(κ)(ϕ(ū))∇ψ · n dγ(x) dt .

We aim at proving the estimate I1+ I2+ I3 ≤ E+
D(ψ) and, to that purpose, compare

I1 to A1, I2 to A2, and I3 to A3, respectively.
A discrete integration by parts leads to |I1 − A1| ≤ E1,D(ψ), with E1,D(ψ) → 0

as size(D)→ 0 (see [EGHM02]).
Using integration by parts in I2 and the fact that uD is piecewise constant, we

obtain

I2 = I2int + I2ext,

where I2ext is the boundary term and I2int gathers the sums on the internal edges.
Precisely, we have

I2int = −
N∑
n=0

∑
K∈T

1

2

∑
σ∈Eint,K

(∫ tn+1

tn

∫
σ

Φ+
κ (t, x, U

n+1
K ) · nK,σψ dγ(x) dt

−
∫ tn+1

tn

∫
σ

Φ+
κ (t, x, U

n+1
Kσ

) · nK,σψ dγ(x) dt

)
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2289

and

I2ext = −
N∑
n=0

∑
K∈T

∑
σ∈Eext,K

∫ tn+1

tn

∫
σ

Φ+
κ (t, x, U

n+1
K ) · nK,σψdγ(x)dt−M

∫
Σ

η+
κ (ū)ψdγ(x)dt.

As in [EGHM02], we prove |I2int−A2int| ≤ E int
2,D(ψ), with E int

2,D(ψ)→ 0 as size(D)→
0.

The comparison of I2ext with A2ext involves a term corresponding to the consis-
tency error, and three terms related to the approximation of the boundary data:

I2ext−A2ext ≤ Ec1,ext
2,D (ψ) + Eb1,ext

2,D (ψ) + Eb2,ext
2,D (ψ)− T b2,ext

2,D (ψ),

where

Ec1,ext
2,D (ψ) =

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∣∣∣∣∣
∫ tn+1

tn

∫
σ

(Ψn+1
K − ψ)Φ+

κ (·, ·, Un+1
K ) · nK,σ dγ(x) dt

∣∣∣∣∣ ,

Eb1,ext
2,D (ψ) =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

m(σ)|(Ψn+1
K − ψn+1

σ )Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)|,

and

Eb2,ext
2,D (ψ) =M

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∣∣∣∣∣
∫ tn+1

tn

∫
σ

(ū− κ)+ψ dγ(x) dt

− δtnm(σ)(U
n+1
Kσ

− κ)+ψn+1
σ

∣∣∣∣∣
are three terms converging to zero when size(D)→ 0 and

T b2,ext
2,D (ψ) =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

m(σ)ψn+1
σ

(
Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
) +M(Un+1

Kσ
− κ)+

)
.

From the definition of Φ+,n+1
K,σ,κ (see (48)) and from the monotony of the scheme,

Φ+,n+1
K,σ,κ (a, b) = Fn+1

K,σ (a�κ, b�κ)− Fn+1
K,σ (κ, κ) ≥ −Lip(Fn+1

K,σ )(b− κ)+

follows, and this entails T b2,ext
2,D (ψ) ≥ 0 .

Now, to compare I3 to A3 we make the distinction between the different contribu-
tions of the terms (inside and on the boundary of Ω). Indeed, since the approximate
solution uD is piecewise constant, the term I3 reads as I3 = I3int + I3ext, where

I3int =

N∑
n=0

∑
K∈T

1

2

∑
σ∈Eintκ

(η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K )))

∫ tn+1

tn

∫
σ

∇ψ · nK,σ dγ(x) dt

and

I3ext =

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∫ tn+1

tn

∫
σ

(η+
ϕ(κ)(ϕ(ū))− η+

ϕ(κ)(ϕ(U
n+1
K )))∇ψ · nK,σ dγ(x) dt.
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2290 ANTHONY MICHEL AND JULIEN VOVELLE

A consistency error term controls the proximity of A3int to I3int:

|I3int−A3int| ≤ Ec,int
3,D (ψ),

with Ec,int
3,D (ψ)→ 0 when size(D)→ 0 [EGHM02].

In order to compare I3ext and A3ext, rearrange the term I3ext, up to consistency
or approximation errors, to get

I3ext ≤
N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσ

(
η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K ))

)
(Ψn+1

K,σ −Ψn+1
K )

+ Ec,ext
3,D (ψ) + Eb1,ext

3,D (ψ),

where

Ec,ext
3,D (ψ)

=
N∑
n=0

∑
K∈T

∑
σ∈Eextκ

2 max
u∈[A,B]

η+
ϕ(κ)(ϕ(u))

∣∣∣∣∣
∫ tn+1

tn

∫
σ

(
∇ψ · n− ψn+1

σ −Ψn+1
K

dK , σ

)
dγ(x) dt

∣∣∣∣∣ ,
Eb1,ext
3,D (ψ) =

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∫ tn+1

tn

∫
σ

∣∣ϕ(ū)− ϕ(Ūn+1
σ )

∣∣∣∣∇ψ · n∣∣ dγ(x) dt.
Then we have

I3ext−A3ext =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσ(η
+
ϕ(κ)(ϕ(U

n+1
Kσ

)) − η+
ϕ(κ)(ϕ(U

n+1
K )))Ψn+1

K,σ

+ Ec,ext
3,D (ψ) + Eb1,ext

3,D (ψ) .

Now, either η+
ϕ(κ)(ϕ(U

n+1
Kσ

)) = 0, and in that case

(η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K ))Ψn+1

K,σ ) ≤ 0,

or η+
ϕ(κ)(ϕ(U

n+1
Kσ

)) > 0. In the latter case, the condition (ϕ(ū)− ϕ(κ))
+
ψ = 0 a.e. on

Σ ensures that there exists (t, x) ∈ [tn, tn+1]× σ such that ψ(t, x) = 0. Consequently,
we have

Ψn+1
K,σ ≤ Lip(ψ)(δtn + diam(σ)) .

This estimate, combined with the inequality

η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K )) ≤ (η+

ϕ(κ))
′(ϕ(Ūn+1

σ ))(ϕ(Ūn+1
σ )− ϕ(Un+1

K )),

which is consequence of the convexity of the function η+
ϕ(κ), leads to

I3ext−A3ext ≤ Eb2,ext
3,D (ψ) + Ec,ext

3,D (ψ) + Eb1,ext
3,D (ψ),

where

Eb2,ext
3,D (ψ) =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσLip(ψ)(δtn + diam(σ))|ϕ(Ūn+1
σ )− ϕ(Un+1

K )| .
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DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2291

Using the Cauchy–Schwarz inequality, together with the L2(0, T ;H1
0 (Ω)) estimate of

Proposition 5.2 and the inequality ϕ(a)− ϕ(b) ≤√
Lip(ϕ)(ζ(a)− ζ(b)), yields

Eb2,ext
3,D (ψ) ≤ C

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσ(δtn + diam(σ))2 .

Therefore, a simple way to ascertain that Eb2,ext
3,D (ψ) converges to zero is to suppose a

uniform CFL condition such as δtn ≤ Csize(T ) for all n (where the CFL number C
can be as large as desired). Then we conclude the proof of Theorem 5.1 by defining

E+
D(ψ) as the sum of the errors E1,D(ψ), E int

2,D(ψ), Ec1,ext
2,D (ψ), Eb1,ext

2,D (ψ), Eb2,ext
2,D (ψ),

Ec,int
3,D (ψ), Ec,ext

3,D (ψ), Eb1,ext
3,D (ψ), and Eb2,ext

3,D (ψ).

5.6. Convergence of the scheme. Let Dn be a sequence of discretizations,
such that size(Dn) tends to zero. We wish to prove the convergence of uDn to an
entropy solution of problem (1). For that purpose, in view of the uniqueness Theorem
4.1, it suffices to show that, up to a subsequence, uDn

tends in the nonlinear weak-�
sense to an entropy process solution of (1). We obtain compactness properties using
estimates on uDn derived from discrete estimates on UDn , then pass to the limit in
inequality (50).

5.6.1. Nonlinear weak-� compactness. The maximum principle ensures that
(uDn

) is bounded in L∞(Q). Consequently, there exist u ∈ L∞(Q× (0, 1)) such that,
up to a subsequence, uDn tends to u in the nonlinear weak-� sense.

5.6.2. Compactness in L2(Q). From discrete estimates obtained in Propo-
sition 5.2 we easily deduce (see, e.g., [EGH00]) the following inequalities on zD =
ζ(uD)− ζ(ūD).

Proposition 5.3 (space translation estimates). Assume hypotheses (H1), (H2),
(H3), (H4), and (H5). There exists a constant C1 such that

∀y ∈ R
d,

∫ T

0

∫
Ωy

(zD(t, x+ y)− zD(t, x))
2dxdt ≤ C1|y|(|y|+ size(T )),

where Ωy = {x ∈ Ω, [x, x+ y] ⊂ Ω}.
The hypothesis (H5) includes the assumption ūt ∈ L1(Q), while the discrete

evolution equation (43) relates the discrete time derivative of uD to its discrete space
derivative. Therefore the following time translation estimate on zD is available.

Proposition 5.4 (time translation estimates). Assume hypotheses (H1), (H2),
(H3), (H4), and (H5). There exists a constant C2 such that

∀s > 0,
∫ T−s

0

∫
Ω

(zD(t+ s, x)− zD(t, x))
2dxdt ≤ C2 s.

Since the function zD vanishes on Σ, it can be extended by zero out of Q. Then
using the Fréchet–Kolmogorov theorem (see, e.g., [Bre83]), we get the existence of
a function z ∈ L2(0, T,H1(Ω)) such that, up to a subsequence, zDn → z in L2(Q).
Besides, since zD = ζ(uD)− ζ(ūD) and ζ(ūD) converges to ζ(ū) in L

2(Q), we get the
convergence of ζ(uDn) in L

2(Q) (to ζ(ū)+z). On the other hand, the nonlinear weak-
� convergence of (uDn

) shows that ζ(uDn
) converges also to ζ(u) weakly in L∞(Q), so

that ζ(ū)+z = ζ(u). In particular, ζ(u) does not depend on the last argument α, and
the trace of ζ(u) on Σ is ζ(ū). See [EGHM02] for more details on this step of the proof.

D
ow

nl
oa

de
d 

11
/1

9/
18

 to
 1

40
.7

7.
13

8.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2292 ANTHONY MICHEL AND JULIEN VOVELLE

5.6.3. Conclusion. It remains to pass to the limit in the continuous entropy
inequalities to prove that u is an entropy process solution. The uniqueness Theorem
4.1 proves that u does not depend on α and is the unique entropy weak solution of
problem (1). Besides, the whole sequence uDn is convergent (u is the unique possible
limit), and by definition of the nonlinear weak-� convergence, (uDn

)2 also converges
weakly to (u)2 so that uDn converges to u in L2(Q) (strong), and in all Lp(Q), for
1 ≤ p < +∞. Therefore, we have proved the following theorem.

Theorem 5.2. Let Dn be a sequence of discretizations, such that size(Dn) tends
to zero. Assume hypotheses (H1), (H2), (H3), (H4), (H5), and (H6) (or (H6bis)).
Then, for every 1 ≤ p < +∞, (uDn) converges to the unique entropy solution of
problem (1) in Lp(Q).
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de l’ingénierie pétrolière, Springer-Verlag, Berlin, 1996.

D
ow

nl
oa

de
d 

11
/1

9/
18

 to
 1

40
.7

7.
13

8.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



DEGENERATE PARABOLIC EQUATION ON BOUNDED DOMAIN 2293

[GMT02] F. R. Guarguaglini, V. Milisic, and A. Terracina, A discrete BGK ap-
proximation for strongly degenerate parabolic problems with boundary con-
ditions, submitted to J. Differential Equations; also available online at
http://www.math.ntnu.no/conservation/2002/029.html.

[KO01] K. Karlsen and M. Ohlberger, A note on the uniqueness of entropy solutions of
nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 275 (2002), pp.
439–458.

[KR00] K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solu-
tions of nonlinear degenerate parabolic equations with rough coefficients, Discrete
Contin. Dyn. Syst. Ser. A, 9 (2003), pp. 1081–1104.

[KR01] K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for vis-
cous and inviscid conservation laws with rough coefficients, M2AN Math. Model.
Numer. Anal., 35 (2001), pp. 239–269.

[Kru70] S. N. Kruzhkov, First order quasilinear equations with several independent variables,
Mat. Sb. (N.S.), 81 (1970), pp. 228–255.
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