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Summary. This paper is devoted to the study of the finite volume methods
used in the discretization of conservation laws defined on bounded domains.
General assumptions are made on the data: the initial condition and the
boundary condition are supposed to be measurable bounded functions. Using
a generalized notion of solution to the continuous problem (namely the
notion of entropy process solution, see [9]) and a unigueness result on this
solution, we prove that the numerical solution converges to the entropy weak
solution of the continuous problem iif _ for everyp € [1, +o0). This also

yields a new proof of the existence of an entropy weak solution.

Mathematics Subject Classification (19965M60

1 Introduction
1.1 The initial-boundary value problem

Let 2 be an open bounded polyhedral subseRéfLet us denote by its
boundary, byh the unit normal ta” outward tos2, by v the measure o#f,
by @ the set) =] 0, +-o00[x {2 and by X' the set¥ =] 0, +-o0[xI".

We consider the following scalar conservation law:

Q) w(t,x) + divy f(t, z,u(t,x)) = 0, (t,x) €Q,
with the initial condition

(2) u(0,z) = uo(x), =€ 2,
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and the boundary condition
(3) u(t,r) = ub(t,r), (t,r)e X.

The way the boundary condition is satisfied has to be precised. Indeed,
lest the problem (1)-(2)-(3) should be overdetermined, Equality (3) cannot
be required to be assumed pointwise, even if the solution to (1) is a regular
function (see [12] for a complete description of an intuitive approach to
the nature of the boundary condition). Supposing thats BV and that
ub is C2-regular, Bardos, Le Roux and Nedelec [2] prove the existence and
uniqueness of a solution to (1)-(2)-(3), explaining the way the boundary
condition must be understood and detailing an inequality on the boundary
now known as the BLN condition (see Remark 3).

Following the work of DiPerna [4], Szepessy defines a notion of measure-
valued solutionto (1) and, assuming the existence of a weak entropy solution
to the problem, proves the uniqueness of the measure-valued solution. The
existence of such a weak entropy solution is ensured by the work of Bardos,
Le Roux and Nedelec. Notice that the “BLN condition ” does make sense
only if the solutionu of (1)-(2)-(3) admits a trace o&'. When handling
the BLN condition we thus need the solution to B&, which implies,
in general, that the initial conditiony is BV and the minimum regularity
required on the data is @V type.

At any rate, the existence of a measure-valued solution is obtained
through weak estimates on approximate solutions of the problem (1)-(2)-(3)
and, under the hypotheses ¢ BV (£2) andu® € C?(X), this measure-
valued solution gives rise to a weak entropy solution; this allows several
authors to study the convergence of humerical schemes associated to the
continuous problem. In [15], Szepessy proves the convergence of a stream-
line diffusion finite elements method; in [8], Cockburn, Coquel and Lefloch
prove the convergence of the monotone finite volume method; in [3], Ben-
harbit, Chalabi and Vila prove the convergence of a class of E-schemes.

We will use here a generalized notion of solution, similar to the one of
measure-valued solution: the notion of entropy process solution introduced
by Eymard, Gallo&t and Herbin for the Cauchy Problemin [9]. The aim here
is to adapt the method of [9] in order to obtain the same results as Eymard,
Gallowet and Herbin in the case of the initial-boundary value problem. We
deduce from a theorem of uniqueness (Theorem 2 in this paper) that an
entropy process solution is actually a weak entropy solution. Let us highlight
a difference between the way measure-valued solution and entropy process
solution are handled: working in the framework of measure-valued solution,
it is necessary to suppose the existence of a weak entropy solution in order
to prove that any measure-valued solution is merely a weak entropy solution
(see [4]), while this hypothesis is no longer required to prove that an entropy



Convergence of finite volume monotone schemes 565

process solution is an entropy weak solution. Thisis why, here, existence and
uniqueness of a solution is established for a flux funcfianC' (or locally
Lipchitz continuous, under an additionnal hypothesis, see Remark 1).

Moreover, we intend to deal only with essentially bounded measurable
data. Consequently, a solution is soughEi (R, x §2) and this function-
nal context does not allow the definition of such a notion as the trace of the
solution. In theL > framework a notion of weak entropy solution has been
given by F. Otto, who achieved this work in his PhD. Thesis so that little bib-
liography is available: a summary is presented in [13] and a more complete
exposition appears in [12]. In this last reference, the existence of an entropy
solution is established under the hypothesis C? and the uniqueness is
proved under the hypothesfsc C'. The work of Otto relies on the use of
particular entropy-flux pairs, namely the boundary entropy-flux pairs. We
give a similar definition of solution of the problem (1)-(2)-(3), but merely
using the “semi Kruzkov entropies”, as they already appear in the work of
Carillo [5] and Serre [14] (see Sect. 2). These entropy functions admit very
simple algebraic definition, so that the study of the discrete entropy inequal-
ities satisfied by the numerical solution of the problem (1)-(2)-(3) defined
by a monotone finite volume scheme is quite straightforward.

The discrete (and local) entropy inequalities satisfied by the numerical
solution allows us to derive approximate continuous entropy inequalities.
Notice that, in the course of the proof of this result, a "weak BV estimate”
[9] on the numerical solution is needed. This weak BV estimate cannot yield
any compactness property on a family of approximate numerical solution
but is one of the key point of the proof of Theorem 3.

Notice also that monotone finite volume schemes are widely used in
practical application. For example, in oil reservoir engineering, an IMPES
scheme can be implemented to study the behaviour of the fluid in a column
(see [1] or [10]) and, in this case, comes down to a monotone finite volume
scheme.

1.2 Hypotheses and notations

We make the following hypotheses on the data and on the flux:

(i) u’ € L=(X) anduy € L>(£2),
(ii) f € CH (R4 x R? x R,R%) andgf
u
is locally Lipschitz continuous
(iii) divy f(t,z,u) =0 for a.e. (t,z,u) € Ry x R4 x R,

(4)
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Remark 1Assumption (iii) onf may be relaxed, and we can consider source
terms in (1)-(2)-(3) (see [7]). Assumption (ii) ghmay also be weakened,
in particular it is enough to suppose that
(ii)a f € Liploc(R'i‘ x RY x Rde) ;
of

(in which casea— is defined a.e. ok, x R? x R) provided that, for
u

every compacts; , C Ry x R, for every compack, C R, there exists
VK, ..k, > 0such that

0 0
L (5,9.0) = 9 (0,2,0)| < Vieyu, (15— o+ by = 2.
Notice that conditiongii), and(ii), are fulfilled if the functionf can be

written as

fora.ew € K, , fora.e.(s,y) € K;,, fora.e.(o,z) € K; 5,
()b

ft,z,u) =v(t, z)g(u)
with v € Lip;, (R, x R%; RY) andg € W1 (R).

loc

Notations:We denote byB and A the quantities

(5) B = max(esssup(ug) , ess sup(u’))
Q b

and

(6) A= min(es%inf(uo) ,esszinf(ub)) .

Thanks to assumption (4) ofy it is known that, for everyl’ > 0, f is
Lipschitz continuous of0, 7] x 2 x [ A, B]. Our work requiresf to be
Lipschitz continuous but, instead of fixirig > 0, then working on the set
[0,T] x 2 x [ A, B], and, at last, extending the solutions obtained (with
the help of a theorem of uniqueness), we already supptsée Lipschitz
continuous ofiR ;. x 2 x [ A, B]. We setLip( f) to be its Lipschitz constant.

1.3 Main results

In Sect. 2, we emphasize the definition of weak entropy solution; the class
of entropy-flux pairs considered in the definition of weak entropy solution
can be reduced to the one of the so-called “semi Kruzkov” entropies. It is
one of the keys of the result of convergence of the scheme. As in [9] and
[6], a notion of entropy process solution is defined.

In Sect. 3, we develop the proof of a uniquenessresult (thatis Theorem 2).
This theorem allows us to show that an entropy process solution of the
problem (1)-(2)-(3) is necessarily a weak entropy solution. It also ensures
the uniqueness of the weak entropy solution. Notice that, in the course of
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the proof of this theorem, it is not necessary to suppose the existence of a
weak entropy solution.

In Sect. 4, we define the finite volume scheme with monotone fluxes
associated to the problem (1)-(2)-(3) and the corresponding numerical so-
lution w7 . We prove thatfur ;) converges towards an entropy process
solution of problem (1)-(2)-(3). This yields, thanks to Theorem 2, the result
of existence of a weak entropy solution of the problem (1)-(2)-(3). Thenitis
proved thatur ;) converges to the weak entropy solutiorif) (R x £2)
for everyp € [1, +o0.

2 Weak entropy solution

It is well-known that the concept of weak solution is not accurate in the
study of hyperbolic problems, for uniqueness of such a solution may fail,
even if the data are regular functions. Thus, we turn to the notion of weak
entropy solution.

Notations:Let sgn™ denote the applicatioR — R defined by
1ifs>0,
sgn”(s) = {0 if s <0
and sgn~ the applications — —sgn*(—s). As usual, we set™ =
sgnt(s)sands™ = (—s)T.

Letx € [ A, B]. The entropy-flux paitn;, @) (respectively(n, , ®;))
is defined by

nE(s) = (s — W)*,
(7) {Qﬁ;f(t, 5,5) = sgu (s — &) (f(t, 2, 5) — f(t,,%)),

(8)
() = (s—r)7,
<respect|vely{q5 (t,z,s) =sgn (s — K)(f(t,z,s) — f(t,:c,,.@))> .

Definition 1 Letw be in L*°(Q). The functionu is said to be a weak en-
tropy solution of the problem (1)-(2)-(3) if it satisfies the following entropy
inequalities: for allx € [ A, B], forall ¢ € C* (R, x RY R),

//Q (i (u) @r + B (t,3,u) - Vi) dadt
+/ e (uo) (0, z) da
9) +Lip(f // e (u®) p(t, ) dy(r)dt >0,
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and

//Q (s (w) @ + D (t,z,u) - Vo) dadt
""/ Ny (uo) (0, x) dz
(10) +Lip(f // 0= (W) o (t,7) dry(r)dt > 0.

The semi Kruzkov entropies have rather simple algebraic expressions
that allows the study of the numerical problem associated to (1)-(2)-(3),
while, working with “boundary entropy-flux pairs”, this study may be much
more difficult. The boundary entropy-flux pairs are the entropy-flux pairs
used by Otto to define the notion of weak entropy solution. They are defined
in the following way:

Definition 2 Let (H, Q) be inC%(R?) x (C?(Ry x R? x R?))4, The pair
(H,Q) is said to be eboundary entropy-flux paifor the fluxf) if:

1. forallw € R, s — H (s, w) is a convex function,

2. Vw e R, 0:;Q(t, z,s,w) = 65H(s,w)g{:(t,x, S),

3. Yw e R, H(w,w) =0, Q(.,.,w,w) =0, 0sH(w,w) =0.

Thanks to the following lemma, Definition 1 of weak entropy solution
gives rise to exactly the same notion of solution as defined by Otto.

Lemmal Letn € C!(R,R) be a convex function such that: there exists
w € [A, B] with n(w) = 0 andn/(w) = 0. Thenyn can be uniformly
approximated on A, B] by applications of the kind

sy ails =)+ Y Bils —R)*
1,p 1,9

wherea; > 0, 8; > 0, k; € [A, Bl andk; € [ A, B].

We conclude this section by making some comments on weak entropy
solution.

Remark 2(see [12]) Ifu € L>°(Q) is a weak entropy solution of the prob-
lem (1)-(2)-(3) then: for almost every, x) €

A<u(t,z) < B.

Remark 3If u € L>°(Q) is a weak entropy solution of the problem (1)-(2)-
(3) thenu satisfies (see [12]): for all classical entropy-flux pajr®), for
all p € C°((0,+00) x £2, Ry),

(1) //Q n(w) e + Bt x,u) - Vo >0
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and
(12) ess lim / |u(t) — up| dx = 0;
Q

t—0+
moreover, the boundary condition is fulfilled in the following way: for all
boundary entropy-flux paitH,Q), for all 3 € L'(X) suchthat3 >

0 a.e.,

esslim/ / Qb r,u(t,r — sn(r), ub(t, 1))

s—0t

(13) r) B(t,r)dy(r)dt > 0.

Reciprocally, ifu € L>*(Q), with A < u < B a.e., andu satisfies (11),

(12), (13), thenu is a weak entropy solution of the problem (1)-(2)-(3).
Besides, ifu € L*>°(Q) is a weak entropy solution of the problem (1)-

(2)-(3) that admits a trace, meaning there exi§tén L>°(X) such that

esshm/ lu(t,r — sn(r)) —u"(t,r)|dy(r)dt = 0,

s—0t

then (13) is equivalent to the equation
Q(u",u’) - n>0 a.e. ony.

ChoosingQ(s,w) = &1 (s,max(w,k)) + &~ (s, min(w, k)) yields the
BLN condition ([2]), that is:
for a.e. (t,r) € X,k € [u"(t,r),u’(t,r)],

sgn(u’ (t,r) —u’(t,r)) (f(u"(t,7) = f(k)) -n(r) = 0.

Notice that, in the case whefe = R, it is well-known that the class of
Kruzkov entropies is wide enough to ensure the uniqueness of the solution. It
is the same here, except that we have to consider the semi Kruzkov entropies
and that working with the mere Kruzkov entropies would not be sufficient,
for uniqgueness would be lacking. Indeed, the classical Kruzkov entropy-flux
pairs are defined by:

Ns(s) = [s = &l
(14) Dy (t,x,s) =sgn(s —k)(f(t,z,s) — f(t,x,K)).

Now, suppose thaR =] 0, +oo[ and define the flux-functioffi : [0, 1] —
R by
f(u) =u(l = u);

then consider the solutianof the Riemann problem dR associated to the
equationu; + (f(u)), = 0 and to the datunu_, u. ). Letug = u, andu’
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be constant. Then € L*°(Q) and satisfies: foralp € C2°(Ry xR, R4 ),
forall x € [A, B],

/ /Q (Iu— w1l r + sgu(u— K)(F(w) — F())pn) dadt

4 [ o= sl p(O.0)do + Lin() [ =kl p(t.0)de > 0,
R, R,

if, and only if, for allx € [ A, B], forall ¢ > 0,
(15) —sgn(u(t,0+) — &)(f(u(t,0+) — f(x)) + Lip(f) |u" — x| > 0.

Now, choosingiy = uy = 0 andu® = 1, the data:! = 1/4andu?® = 1/2
define, through the Riemann problem, two distinct measurable bounded
functions which both satisfy (15).

2.1 Entropy process solution

The proof of the existence of a weak entropy solution to the problem (1)-
(2)-(3) lies in the study of the numerical solutior ;, defined by the finite
volume scheme associated to (1)-(2)-(3). H&relenotes the mesl, its
“size” andk the time step (see Sect. 4). Theorem 3 states that the numerical
solution satisfies the following approximate entropy inequalities:

VK € [AvB] ) VSO € CSO(R+ X Rd7R+)v
// (n:(UT,k)SDt + &tz ur ) - V@) dx dt
Q

(16) T /Q i (o) p(0)dx

4 / 0 (W) p(t, 2)dy () dt > —e7 4 ().
by

where
Vo € C°(Ry x RYRY), e 1(p) — 0 whenh — 0.

The same result holds when the entropy-flux gair, ;. ) is considered.

The numerical approximate soluti¢ns ) is also known to be bounded
in L*°(Q) but it is not enough to pass to the limit in Inequation (16). Thus,
owing to the non-linearity of the equation and to the lack of estimate on
the approximate solution, we have to turn to the notion of measure-valued
solution (see DiPerna, [4], Szepessy, [15]) or, equivalently, to the notion of
entropy process solution defined by Eymard, Gatotderbin in [9]. The
interest of this notion lies in the following result, which generalizes the
notion of weakx convergence itl.>° and free oneself from the problems of
non-linearity.



Convergence of finite volume monotone schemes 571

Theorem 1 Let O be a borelian subset &, let R be positive andu™)
be a sequence @ (O) < R.Thenthere
exists a sub-sequence still denotedby) and . € L>°(O x (0,1)) such
that:

Vg € C(R) —>/ ))da in L°(O) weak-x .

Now the notion of entropy process solution can be defined.

Definition 3 Lety be in L>(Q x (0,1)). The functiory is said to be an
entropy process solutido (1)-(2)-(3) if:

1. fora.e.(t,z,a) € Q@ x (0,1), A < u(t,z,a) < B,
v >

2. forallx € [A, B], forall p € C*(R; x RY), 0,

//Q /0 [U;j(ﬂ(t,az,a)) oi(t,x) + D (t,z, u(t, =, ) - Vgo(t,x)]
xda dx dt+/ 0t (ug) (0, x) dx

a7 +Lip(f // nt(u’) (t,x) dy(z)dt >0,

3. the same entropy inequality holds whejr ,®;.) is selected as an
entropy-flux pair.

Notice that ifu is an entropy process solution of the the problem (1)-(2)-
(3) and ifx does not depend on its last variable, that is to say: there exists
u € L*(Q) such that

fora.e.(t,z,a) € Q x (0,1), u(t,z,a) = u(t,x),

thenw is a weak entropy solution to (1)-(2)-(3).

We will now prove that if, € L*°(Q x (0, 1)) is an entropy process
solution then, in fact does not depend on its last variable and that the weak
entropy solution is unique.

3 Uniqueness of the entropy process solution

Theorem 2 (*uniqueness” of the entropy process solutid®t i1, v €
L>(Q x (0,1)) be two entropy process solutions. Then there exists
L*>(Q) such that:

u(t,z,a) = ult,x) = v(t,z,8) for ae. (tz,a,8) € Q x (0,1)%.

Corollary 1 The problem (1)-(2)-(3) admits at most one weak entropy so-
lution.
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Let us first prove some lemmas that will entail Theorem (2). In order
to clarify certain forthcoming expressions, the following notations will be
used: for(t, z) € @, for s andx € R,

O(t,x,s,k) =Py(t,z,s) =sgn(s —r)(f(t,x,s) — f(t,z,k),
&t (t,x,s,k) =P (t,x,5) =sgnt (s — k)(f(t,x,s) — f(t,z, k),
& (t,x,s,K) flt,z,s) — f(t,x, k).

)
)

& (t,z,s) =sgn (s — Kk
Notice thatd = (&4, ...,P,) takes its values iiR?.

Lemma?2 Letu, v € L*(Q x (0,1)) be two entropy process solutions.
Then:

Vi € CP(Ry x RY), o >0,

(18) //// 1t 7, ) — v(t, 2, B)|

+&(t, z, pu(t, z,a),v(t, B))-VQ/J] dBdadxdt > 0.

The set? was supposed to be an open polyhedral subs&foNotice
that the following proof would still be correct i2 were an open set witf!
boundary. Indeed, working locally (thanks to local maps covefygwe
can suppos€? = R? or 2 = RZ. What really requires care in the proof of
Lemma 2 is the study of the behaviour of an entropy process solution near
the boundary, so that we already suppose

2 =RL ={r=(7,2q4) €R,z4 >0}
and detail the following lemmas.

Lemma 3 LetaTb denotes the maximum value between two realadb
anda b denotes their minimum value. Lebe an entropy process solution
to (1)-(2)-(3) andx be in[ A, B]. Then:

1. there existg . € L>(X) such that: for allg € L'(X),

1
— ess lim /// @;(t,m,u(t,a?,a),ub(t,f)—l—/i)ﬁ(t,f)dadfdt

.Z’d—>07L

// o B(t,7)dz dt,

andej’n >(0a.e.
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2. there existd,, . € L>°(X) such that: for all3 € LY(Y),

—esslim // / C(t @, pt, x, a), ub(t,T) L) B(t, T) da dT dt

(td—>0+

:/A 0, T)B(t,7)dT dt,

andelj’,_i > 0a.e.
3. there exist§,, € L>°(X) such that: for all3 € L!(X),

1
—esslim/// @d(t,x,u(t,x,a),ub(t,f))ﬂ(t,f)dadfdt
rq—07F > Jo

- / 0,(t.7) A(t, 7) d dt
by

Lemma 4 Let i be an entropy process solution to (1)-(2)-(3) antbe in
[ A, B]. Thenthe following inequality holds: for all € C° (R, xR9) , ¢ >

[ [ (. = st + 0,2, p0,.0), 5 - Vit )
Q JO
xda dzx dt + /Q lug — k| (0, x) dx—l—/z 0.(t, @) p(t,7,0)

(19) xdwdt—i—// By(t, 7, 0,6 (1, T), 1) o(6,7,0) dzdt > 0.
X

Proof of Lemma 3 (see [12]L:et 3 be a function o£22°(] 0, +-co[xRI~1),

[
£ > 0, and define the functio@fwﬂ, h:’w’ﬁ (forw € [ A, B]) by:

g,{wﬁxd /// O (t,z, u(t,z, o), wTk) B(t,T)dadT dt

mu,ﬁ (zq) /// (t,z,a) — s Tw)" B(t, T) dodT dt + Z

i=1,d—1
x/// OF(t,x, u(t,z, ), kTw) By, (t,7) dadT dt .
zJo

Puttingy = (v in Inequation (17) where has been replaced by w and
v € C®([0,400[,Ry), we get, ify € C°(0, +00)

(20) ht

RVING

— (91 5(xa)) = 0 in D'(]0, +00])
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. X
and, ify(zq4) = x(0,e)(7a) (1 - f)

E /(: 9p.3(a) g > —Lip(f) //2 (u’(t,7) — s Tw)*

e
(21) xBdTdt + O(e).

Considering that,| , ; € L'(0, +-00), thatg,, 5 € L=(0, +00) and
the inequality (20), we gej:w g €L>N BV (0,1). Thus,ess 1%)111 g:w 5
W, N w,

(z4) exists and, by letting go to zero in the inequality (21), we get:
(22) esslim g7, 4(ea) > —Lip(f) / / (Wb(t,F) — Kk Tw)* Bdzdt.
zq—0t B B>

Using the continuous dependency @f , ; on 3 € L'(X¥) and the
density ofC>*(X) in L'(X), we deduce: for all3 € LY(X), 8 > 0,

ess 11111 g:wﬂ(md) exists and (22) still holds. Then, approaching in
z4—0 W

L>(X) by simple functionsu?, each of them taking a finite number of
valuesw; in Q, say:

p
u? = " wixa,, ((Ag); pairwise disjoints
i=1

and takingw = w;, x4, B instead of3 in (22), then summing with respect
to: € {1,...,p} and, at last, letting go to zero yields the first point of
Lemma 3. The same lines would be followed to prove the second point, or
to prove the third point (by taking = w at the beginning and by using the
formula(s — w)* + (s —w)™ = |s — w|).

Proor orF LEMMA 4: for € a positive number define the functian by

o xgfe FO0<zg<e
“’6(“)—{1 if £ < 2y '

Letp € C*(Ry x RY), ¢ > 0andx € [A, B]. As the functiony is an
entropy process solution to (1)-(2)-(3), it can easily be shown that it satisfies
the inequality:

// /1 [Iu(t,x,a) — klwe(xq) pe(t,z) + O(t, z, u(t, z, ), K)
Q JOo
Vo(t, ) Ws(xd)i| dadx dt + /Q o — K| ©(0, 7) we (2q) da

1 [¢ 1
+€/ // / Q4(t, T, xq, u(t, x, ), k) p(t, T, xq) da dT dt dzg > 0,
o JJ/sJo
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and, by lettings go to zero:
1
J[ [ (o) = slontt.o) + dit.antt.2,0), 0 - Viott, )]
Q Jo

X do dx dt + / luo — k| ©(0, ) dz + lim ess sup
2

:Ed~>0+

1
x/// Gy(t, T, xq, u(t,z, ), k) p(t, T, zq) dadT dt > 0.
= Jo

Moreover, using the formula
&(t,x,s,Kk) =2 [Q5+(t, T, s, /ﬂ’ub(t,f)) + & (t,z, s, /iJ_ub(t,E))
+&(t, x, K, ub(t,f)) — P(t,x, s, ub(t,f)) ,

we deduce from Lemma 3:

1
limesssup/// Dy(t, T, xq, u(t, x, ), k) p(t, T, xq) do dT dt
»Jo

$d~>0+
< // 0,.(t,7) p(t,7,0)dz dt
X

+ // Balt,7,0,u"(t, ), K) 9(t, 7, 0) dT dt
X

which proves the inequality (19).

3.1 Proof of Lemma 2

Working on the entropy inequality (19), the doubling variable technique
of Kruzkov (see [11]) is efficient. Let us detail it: letbe a function of
0

C (] —1,0[,Ry) such that/ p(t) dt = 1 (notice thatp has a compact

-1
support located to the left of zero). Classically, a sequence of mollifiefs
onRR can be defined by the formula

1 t
pe(t) = —p <> ,e>0,
g 9
and a sequence of mollifiefg.) on R? (¢ > 1) can be defined by the
formula

pe(x) = pe(@1) x -+ x pe(xq), v € RT.
We also defingr. by:

—t
R, : tr—)/ pe(s)ds.
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Letv be inC (R4 x R?), ¢ > 0 and definep by

@(t’ Z,$, y) = If)(t,l‘)pg(t - S)ﬁﬁ(x - y) :

We apply inequality (19) withx = v(s,y,3), (t,z) — ¢(t,z,s,y) as a
test function and integrate w.r(ts, y, 3). On the other hand, the functien
satisfies the inequation

1
// / (s, 8) — Kl 0s(5,y) + B(s, 9, (5,5, ), &)
Q JO
Vo(s,y) dB dy ds + /Q 0 (o) (0, ) do

@) +Liplh) [[ 1=l e(s.5.0)dgds > 0:

In (23), we sek = u(t, x, ), choosds, y) — ¢(t,z, s,y) asatestfunction
(notice thatp(t, z,0,y) = ¢(t, =, s,7,0) = 0) and integrate w.r.{¢, z, a).
Summing the two inequalities thus obtained yields the following result:

(24) Ay + Ay + Apy) + Ao + A} + A3 >0,
where:

aeo= [ [ // [ 1,20 = vl ),

X pe(x —y) pe(t — s)df dy ds da dx dt,

wa)_////// (t,2, ity ), (s, 1, B)) - Vib(t, 2)

X pe(x —y) pe(t — s) dB dy ds dadzx dt,

A(m////// B(t, 2, u(t, 7, 0), v(5,9, B)

—P(s, y, u(t,z, a),v(s,y,B8))] - Vpe(z —y)
X(t, x) pe(t — s) df dy ds dadzx dt,

Ao:////ruo — (5,3, B)] (0, 2)

X pe(x pe(—s)dp dydsdz,

- f oo

X pe(—yq) pe(t — s)dT dt dB dy ds ,

Az—/////qsdmowx) v(5,5, 8)) ¥(t,7,0)
X pe (T

pe(—ya) pe(t — s) dT dt dy df ds .
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Now, we study the behaviour of each of those terms @ses to zero.

TermsA ) andAy,). Fromthe theorem of continuity in means is deduced
the convergence dfA ) + A(y,)) to the right-hand side of the inequality
(18) of Lemma 2, that is to say:

Ay — Ay, andAw,) — Agy,)

where:

¢t) //// (t,z, ) — v(t,z, B)| ¢ dB dadz dt,
—//Q/O/O (t, 2, ut, @, @), v(t, @, 8)) - Vi df dovd dt .

Term A;,. Notice that, if f does not depend oft, z), thenA4 ;) = 0.
Actually, using the fact thadliv, f(¢,z,s) = 0 and the local Lipschitz

of

continuity ofg, we prove (see [6])
limsup A;,) < 0.
Term Ay. Let us consider Inequality (23) where= uo(z) and(s,y) —

¥(0,x) R-(s) p<(z — y) has been selected as a test function. Integrating the
result w.r.t.x € §2 yields an upper bound fofy:

—Ao+ B, +Bo >0,

//// (5,9, (5,9, B), uo(z))

-Vpe(x —y)(0,2) Re(s) dy ds df dzx
By = /Q /Q o ) — 1o (3)| (0, 2) fe(z — ) d dy

where:

The theorem of continuity in means allows us to prdxge — 0. Let us
denote byC;, the term defined by the expression8f;,) whereu(x)
has been replaced hy(y). An integration by parts (w.r.t. the variable)
shows that’(;,) — 0 and, from the theorem of continuity in means again
and the fact tha{ R.|| 1 < e we deduceC;,) — B(z,) — 0 whens — 0.

Eventually, we haveim sup Ay < 0.
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TermsA} and A5. Without any calculation, we have:

A’i=//29w|g-

Moreover, in view of Lemma 3 (applied tg), the following convergence

holds:
Ag - // 0V 1/}‘2 .
b))

Eventually, by letting: go to zero, is deduced from the inequality (24)
the following inequation:

?itﬁf“?izﬁ/é Ot —//Z 0,1, > 0.

Changing the roles gf andr and making the average of the two inequations
obtained this way yields Inequality (18) of Lemma 2.

3.2 Proof of Theorem 2

Recall that, in the course of the proof of Lemma 2, the @eltas been
supposed to be the half-plafé but that Inequality (18) still holds when

2 is an open bounded polyhedral subsefRdf the details of the opera-
tions of localization and of transport have been eluded, but, for example,
the dependance of the test-functipron the variabler has been carefully
maintained. Indeed, we come back now to the case wikeieany open
bounded polyhedral subsetRf and choose a test-function independant of
z in (18), which is the function)y defined by:

Yo(t,z) = (T —t)x(0,1)(t) ;
whereT > 0. This yields:

/OT/Q/; /01 |t , @) = v(t, x, B)| de dt dacdf < 0.

As T is any positive real number, the following equality holds:
fora.e.(t,z,a,4) € Q x (0,1) x (0,1), p(t,z,a) = v(t,z, ).

Now, define the functiom by the formula

1
u(t,:n):/o wu(t, z, o) de.

Taking into account the product structure of the measurable sRage
(0,1) x (0,1) we get:

pt,z, a) = u(t,z) = v(t,z,B) for ae. (t,z,0,3) € Q x (0,1)%
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4 Convergence of the finite volumes scheme
4.1 Presentation of the scheme

Let 7 be a family of disjoint connected polygonal subsetsfb{called
control volumes) such tha® is the union of the closures of the elements
of this family and such that the common interface of two control volumes
is included in an hyperplane &¢. Let 1 be the size of the mesth =
sup{diam(K), K € T}. Notice thath < +oc (for the set(? is bounded)
and suppose: there exists> 0 such that

{ahd < m(K),

(25) m(0K) < L1pd=1 VK e T,

wherem(K) is thed-dimensionnal Lebesgue measurefofandm (0K)

is the(d — 1)-dimensionnal Lebesgue measuredéf. If K andL are two
control volumes having an edgen common we say thdt is a neighbour of
K and denotd., € N (K). We sometimes denote ly| L the common edge
o betweenk andL and byn g , the unit normal tar, oriented from/i to L.
Moreover,€£ denotes the set of all edges afftithe set of boundary edges,
thatis:£% = {0 € £, m(c N 9N) > 0}.If K € T, E is defined as the set
of the edges determined IV, i.e..Ex = {o € £, m(c NOK) > 0}.

Remark 4Assumption (25) yields the following estimate on the number of
control volumes:

(26) 17| < m($2)
(6%

he.
Let £ be the time step. The numerical fluxé% , (for K € 7 and
o € &k) are functions inC(R? R) satisfying the following hypotheses

of monotony, conservativity, regularity and consistency (recall that
max (ess sup(up) , esssup(u?)) andA = min(essginf(uo) ,essEinf(ub)) ):
Q z

(i) on[A,B)?, (a,b) — F _(a,b) is nondecreasing w.r.
and nonincreasing w.r.lbf,
(i) foralloc = K|L € £\ &, for all
a,be [Av B] ,F}}’U(a, b) = _F[T,L,a(bﬂ a) )
(27) ¢« (iii) on[ A, B)?, F , is Lipschitz continuous and admits
m(o )Lip(f) as Lipschitz constant
(iv) forall s € |

(n+1)k
Fi ,(s,8) / / f(t,z,s) nkgqdy(x)dt.

Notation:If o = K'|L € £ we will denoteF7y ;.\, by Fig .
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Notice that the property of consisten€yv) above gives, owing to
div, f =0,
(28) Vse [A,B], VK €T, > Fi,(s5) =0.
o€fK

The discrete unknowns}, (forn € NandK < T) are defined by the
following set of equations:

1

29 k=—x dx, VK
( ) U m(K) /[( Uo(ZL') €z, € T7

1 (n+1)k
(30) ub™ = (o) /nk j ul(t,z) dy(z)dt, Vo € €%, ¥n €N,

uitt — up n n o, n
m(K)KTK + Z FK,O’(UK)UK,O') = 07
o€k

(31) VK €T, VneN,

where

UKo T\l if o e b,
The numerical solution is then defined by: forAlle T, foralln € N,
ur i (t,z) = ul forall (¢,z) € [nk, (n+ 1)k[x K.
Moreover, we will suppose that a CFL condition is fulfilled, that is to
say:

(32) 3¢ €]0,1[ suchthat < (1—¢)

n _{u}i if o=K|L,

a’h
2Lip(f)

Then, the monotony of the schemes is ensured. Indeed, we deduce from (31)
and (28)

it g,
(i) B ST (B ()
o€k
(33) _FI?,U(UTIL(7U?()) =0.
Therefore
un-l-l:(l_ k ZTn )un+ k ZTn u
K m(K) K,o K m(K) K,o0 “K,0»
oc€lk o€l

WhereT}é,o‘ = (FI?,J(U?(7UTIL(70) - F}é,o‘(ur’}(’ U}L())/(’LL?( - uTIl(,U) If U?( 7&
U o OT TR, =0 else. The monotony and the regularity of the fluxes (see
(77) of (27)) and the CFL condition ensurg@% Z Tko € [0,1]. Thus,

og€fK
the following remark holds.
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Remark 5For all K € 7, n € N, (31) can be rewritten in the following
way:

u}?—l = H?((u?ﬂ (u?{,a)aeé'[{)) ’
where the functiod/ 7, is nondecreasing with respect to each of its arguments
and satisfies

Hy (u, (u)pegy,)) =u forallu e R.

4.2 L*°-stability and weakBV estimate

The scheme defined by (29)-(30)-(31)i¥-stable and a weakV estimate
—that is a weak estimate on the time and space derivatives pf- holds.

Lemma 5 Assume that (27) and (32) hold. Then the approximate solution
ur 1, of (1)-(2)-(3) defined by (29), (30) and (31) satisfies:

A<urg(t,z) < B fora.e.(t,z) € Q.
Proof. We prove by induction on € N:
VK eT, A<uyx <B.

Itis true forn = 0 and the heredity of the proposition is a consequence of
the monotony of the scheme (see Remark 5).

Let us now detail the weakV estimate.

Lemma 6 Assume that(25), (27) and (32) hold. lgt;, be the approximate
solution of the problem (1)-(2)-(3) defined by (29), (30) and (31)1Lbt
positive and sefN = max{n € N,n < T/k} and&}, = {(K,L) €

T2,L € N(K) andu? > u?}. Then there exist§’ > 0 only depending
on £, ug, u’, Lip(f), T, a and¢ such that, ift < T,

N uzérglgafguz(FK old ) = Fig o (d, d)) .
(34) ILEDY <<
n=0 (K,L)e&r, |+  max (F}é’g(d, ) — F}é,o(C, ¢)) Vh

e ur <c<d<ul

and
N C
(35) S mE) ! — k| < N
n=0 KeT h
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Proof. In the following, we denote bg' various quantities that only depend
on £, ug, u®, Lip(f), T, a and§.

Multiplying (33) by k£ v, then summing oveK € 7 andn € {0, - - -,
N} yields the following equality:

(36) By + By =0,
where

n+1 n n
E : E uK)qu

n=0 KeT
N

By=) kY Y uk(Ff (uk, ufk,) = F o (uf,ui)) .
n=0 KeT o€k

The last two summations in the expressiorBafcan be gathered by edges,
according to the following lemma:

Lemma7 Letn € N. Letp be an application7 x £ — R such that

Pl ki = —PIkr If U = up. Then we have
DD ko= > Wk TPk T D Phe-
KeT o€k (K,L)e&n, oegd

(Notice that ifo € £° then there exists a uniquE € 7 such thatr =
OK N 042; therefore thepy,  in the last sum are well defined.)

The proof of this lemma is left to the reader.

From this result is deducell; = B3 + bs 3, where

N Wl (PR (0 ) = R (e, )
Bi=) k D, ,

n=0 (kLeep, | —up(Fg p(uf,up) — Fg p(uf, up))
baz = Zk Z ug FKU U, U 0' ") — FI@,J(U%U?())-
n=0 gcgb
An estimate on the quantity 3 of the kind:
(37) lbas| < C
is available since:

[b2,3] < 2NkLip(f) max(|Al,[B])* ) m(o)
oegb
= 2T Lip(f) max(|Al, | B|)*m(012).
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, . d
Now, define the functionZy ;, primitive of the functions — s—

. ds
FK,L(Sa s), by
5 od
U (s) :/ T—F¢ (1,7)dT.
) A dS )
From an integration by parts is deduced the formulda, b) € R?,

b(Fg 1 (b,0) — Fg 1 (a,b))
—a(Fg 1 (a,a) — F 1 (a,b)

b
- / (1 (5. 5) — FP (. b))ds

Vi (b) = ¥g (a) =

so that
(38) B3 =By +b34,

with

N
bia=—-3 S k(R (k) — U (})),

n=0 (K,L)e&"

int

B4—Z Z / (Fg r(ufe,up) — Fi (s, 5))ds.

n=0 (K,L)€En

int

The relation (28) ensures’; . v/(x) Yg,, = 0; from this and Lemma 7
(summation over the edges) it appears that reduces to a sum over the
edges of the boundary and, las;, satisfies

(39) b3 4|l < C.

Now, fix a,b,c,d € Rs.t.a < ¢ < d < b. Taking into account the
monotony ofF 7y ; , the following inequality holds:

b d
/ (FR(b,a) — FP (s, 5))ds > / (FR(d,¢) — FP(d,))ds.

MoreoverF}é’L(d, .) is Lipschitz continuous and nonincreasing so that (see

El)

d
/ (FRo(d ) — FP(d, 5)) ds

1 . .
> DKL Lip() o)~ PR (d D).
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Therefore, we get:

n

Up
/ (FP 1 (e ) — F 1 (5, 9))ds
un

L

1
> F2 o (d,c) — F2;(d,d))?
= om(K|L)Lip(f) u%ﬁ?ﬁadxgu";(( K,L( ;) K,L( ,d))”,

and

e
[ F i) = iy (s,9)ds
up
S 1
max
~ 2m(K|L)Lip(f) up <c<d<u?

(FIT(L',L(da C) - FIT(L',L(Ca C))2 )

so that
(40) B4 2 Ba

whereB is defined by:

4sz Z Z

n=0 (K,L)e&n

1
(T]L) max (Fﬁ,L(d,C)—Fﬁ,L(dadDZ

(41) uf <e<d<uly
(FI?,L(da C) - F&,L(Cv C))2

+

m(K|L) ugglglgaj{gug

Recalling the equality3, = B, + b2 3 + b3 4 and the estimates on the terms
by 3 andbs 4 described in (37) and (39), it appears that

(42) By >B-C.

On the other hand, the quantiB reads:

There exist€ > 0 such that-C is a lower bound for the last two terms of
the previous equality. Moreover, the Cauchy-Schwarz inequality and (31)



Convergence of finite volume monotone schemes 585

lead to:
k?
n+l _  n\2 <
(Wi —uf)? < ()2 (Uezg:K m(a))
1 mn n n n n n
X( Z W(FK,O’(UK’U’K,U) - FK,J(UK’UK))2> :
oefi

From this last inequality, from Lemma 7 (summation over the edges), from
the assumption (25) on the mesh and from the CFL condition (32) are de-
duced the following inequalities:

N
3 S M) ) < (1B +C

n=0 KeT
and:
(43) Bi1>-(1-¢B-C.

Now, as the equalitys; + B, = 0 holds and as (43) and (42) are satisfied,
we have¢B < C, that is to say (recall that' may depend o#):

(44) B<C.
Moreover, from the Cauchy-Schwarz inequality is deduced:
max (Fﬁ,a(dv C) - Fl%,a(da d))

N uf <c<d<up

LAY

o cmeen, |+ max  (FR(d¢) - Fi(c,0))

int uzgcgdgu?{
N 1/2
(45) <C (Z EoY m(K|L)) BY/?.
n=0 (K,L)e&"

int

and, taking into account the following estimate (deduced from (25) and (26))

N
k> m(K|L)<C/h,

n=0 (K,L)c&"

int

it appears that the wedkV estimate on space derivatives (34) holds. To get
the weakBV estimate on time derivatives (35), use (33) to get the following
estimate:

m(K)|uf —uk| <k Y |FR o (uhul ) = Ff o (uf, uf)]
ocefk

Summing the resultovel € 7 andn € {0, ---, N}, then using Lemma 7
and (34), yields Inequation (35).
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4.3 Entropy inequalities

We wish to prove that the approximate solution;, satisfies approximate
entropy inequalities that have already been discussed in the introduction of
the entropy process solution (see Sect. 2, relation (16)). To this purpose, we
will work with the semi Kruzkov entropies; that is one of the keys of the
following results (the other key being the weak BV estimate).

We recall some notations about it.

Notations:n;” denotes the function froi to R defined by

(46) me(s)=(s—r)",
and®; the associated flux-function frofd x R to R defined by
(47) @:(t’ Z, ‘9) = SgnJr(S - R)(f(tv x, S) - f(ta Zz, H)) :

Notice that, ifa Tb = max(a, b) anda_Lb = min(a, b), then we have
ni(s)=sTk -k,
and
D (t,x,8) = f(t,z,sTk) — f(t,x,K).
Therefore, the associated entropy numerical flux function is defined by the

formula
(48) (15;_(2 L(a,0) = F (aTr,bTK) — Fi 5 (K, K) .

If o = K|L, (K,L) € T?, then® > is denoted byp " .

KK|L

4.3.1 Discrete entropy inequalities

Lemma 8 Assumethat(25), (27) and (32) hold. Lgt;, be the approximate
solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Then, for
all k € [A,B],forall K € T,n € N, the following local discrete entropy
inequality holds:

(i) — it (uf)
k
1 n n ,n n n
o€k

Proof. From the monotony of the scheme (Remark 5) is deduced the fact
that Hy (uj Tk, (uf , TK)oes, ) IS @an upper bound fon’t! and«, thus

for w1 Tk too, that is to say:

k
n+1—|—/€ < UKT/Q m
(50) XY (FR (ke Tryule , Th) = Fit  (ufe T, ufe Tr)) .

o€lk
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Substracting from this inequality the equality

aliye) Y (FRo(r k) = Fgo(r8)),

o€EK

yields the result.

4.3.2 Continuous entropy inequality

Theorem 3 Assume that (25), (27) and (32) hold. Let ;. be the approxi-
mate solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Then
the following approximate continuous entropy inequalities hold:

Vk € [A7B]7 VSO € CCOO(R-F X Rd7R+)7
//Q (n,j(uik)got + @:(t, T, Ut k) - Vgo) dx dt
+ | e 0)ds

| +Linlf) [ w el adr(@) = —erale),

(51)

where:
Vo € C°(Ry x RYLRL), e x(p) — 0 whenh — 0.

The same result holds when the negative semi-Kruzkov entropies are con-
sidered.

Proof. Let p be inCX(Ry x RY R, ) andx be in[ A, B]. We fixT > 0
such thatp = 0 on [T, co[x (2 and setN = [T'/k + 1]. We also denote by
u- the application defined byfy-(x) = uf fora.e.x € K, and byu’- , the

application defined bbe’k(x) = %" for a.e.(t,zr) € [nk,(n+ 1)k[xo.
(n+1)k
Multiplying (49) by k m(K) ¢’ = / @ dz dt, and summing
nk K
overK € T, n € N, yields the inequality:

(52) T +1T5 <0,

where
N

(53) T => Y m(K)nup™) —n(ui)ek
n=0 KeT

and, by summing over the edgéds, = Ti" + T2, with

+, +,
N 907}( (QSK,TIL/,m(u?(’ “z) - QK,Z,K(U’”K’ unK))
-y Y ,
"0 (KDee, | —@h( B (uhul}) - @};’Zﬁ(ug,uz»
(54)
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(55) TQ _Zk Z QDK @;Zm uK’ a ) @}Z,ﬁ(u?ﬁu?{»
n=0 gcgb

Proving the approximate continuous entropy inequalities comes back to
prove

(56) To + Too < e1 k()

whereTy andTyg are defined by
To=— [t pudat = [ () o) e,
Too = — //Q & (t,z,ury) - Vodzdt

(57) ~Lip(f) [ )t drfa)dt.

To this purpose, we compaigg to 77 andTs to T5.

1 Estimate onTyo — T4
Using the definitions ofLOT andur , the quantityl’ reads:

77/1 u?;(—i-l (n+1)k
Tlo_zz / / L (n 4 1)k) da dt

n=0 KeT

+ [ ) = 1 (w0) ¢(0) dor
2

From the fact thay ™ is 1-Lipschitz continuous is deduced:
(58) [Tho = T1| < &7(¢) +e7u(%)

where

() = /UTk—UOW()d ,

’un-i-l
(59) Z >

n=0 KeT

(n+1)k
X/ / lp(z, (n+ 1)k) — o(z,t)| dr dt.
nk K

Before giving precise estimates on these quantities, we study the difference
T20 — T2.

_UK’
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2 Comparison ofi5g and7; We divide the study into two steps. Indeed, we
have to take care to what happens inside and on the bound#?yrom
the definition of the functiomr j, from the fact thatliv,, f = 0 and from
Lemma 7 is deduced the equality:

int b
where

ey ¥

n=0 (K,L)eEn

int

(n+1)k
/ / B (1) - i o dry (o) de
nk K|L

(n+1)k ’
/ / st 2, ul) g e dy(x) dt
KL

(n+1)k
T3 = — Z / / (t, @, uf) - ngopdy(x) dt

n=0 gc&b nk

~Lip(f) /2 i (u?) @ dn () dt

2.1 Estimate on|Tint — Tin|

In order to compar&@int to Ti™, let us introduce the average valugobn
an edge, defined by

o 1 (n+1)k
Yo = Fm (o) /n]C /Ugod'y(a:) dt .

Notice that,p being a regular function, its average valuegor. andK | L,
with (K, L) € &7, are “close” each to other. That is why we rewrite:

int

. N n+1
T =~k / /K PR
n

n=0 (KL )een

int

g, @ dy(w) dt — B (e, uf) B )

n+1
/ | o)
nk K|L

i dy(@) de— O (i, ut)Fh) |
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then

. (n+1)k
Tint — Zk / / Tt 2, ul)
=0 K|L

(KL )een

int

ng|ppdy(r)dt — @;r(% (U U?{)@%L)

+, +, =
(@I(h(ugz,u%) P (e ) ) B

n+1
/ / (1,0, }) i o dr () dt
nk KI|L

0 e ) )
(@37 (e, i) — BT (e, ) Pl
Now, let5" 1", e €229 be defined by
(60)

t (n+1)k
8$-ZZ Zk‘ Z / /K St @, ul) g

n=0 (K,L)cEm

int

1 n

n+1
—/ / £ (tx,up) - ng|L
n KI|L

m(K|L)q5JIQT£ n(uL,uL)) pdy(x) dt‘ ’

Bk S (i) - 2 o)
n=0 (K,L)e&r

int,

xN(soK ~ @) |

@ =3k Y (PR wud) - (k)
n=0 (K.L)eEn,

(v~ Sl )|

The following estimate holds:

(61) T3 — T3™| < e (@) + o7 it (0) + 75 (9).

c, mt

Notice thate>, " is a consistency error (it tends to zero witlthanks to
the property(w) of assumption (27) satisfied by the numerical fluxes). The
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int, + int

quantitiess- ;" ande-; are those which measure the difference between

Tint and T2‘”t. We will use the wealBV estimate (34) to prove that they
tend to zero aé does. But we first study the quantify — 7.

2.2 Comparison of ', and T2
Recall that the quantit§}, is defined by:

(n+1)k
T20— Zkz / / (t,xz,ufk) - ngopdy(z)dt

egb

n+1
62)  Lip(f / [ o).

nO oc&b

Now, let us denote bg@o the following quantity

T = - Zk > Pl uk) Pk

= oe&b
N

(63) =3 "k Y Lip(f)m(o) nt (ud™) o .
n=0 gcgb

ThenT? can be compared t6%:

TQO_Zk Z P @}Z,{ (ufe, u™) + Lip(f) m(o) gt (ul™)),

=0 e
and this quantity is nonnegative:

(64) TS — T8 > 0.
Indeed, the following lemma holds:

Lemma 9 Assume that (27) holds. Letbe in£? and K be in7T s.t.o =
0K NoSf2. ThenVk € [A,B], Va, b€ [A, B],

F}}’U(a—l—m, bTkK) — F}é’g(m, k) + Lip(f)m(a) (b— k)T >0.

Proof. The numerical fluxes being non-decreasing functions with respect
to their first variables, the following inequality holds:

Fg o (aTr,bTk) > Fg ,(K5,bTk).
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Moreover, from the fact thak7; ; is am(o) Lip(f)-Lipschitz continuous
function, is deduced the mequallty

Fi (1,bTr) = Fig o (1, 5) + Lip(f) m(0) (b— k)T >0,
which yields the result. O

Now, let us estimate the quantif, — 7%,. To compare the expressions
(62) and (63), we write

b n+1
s
UM (UU )SO?( = 772_(“0 )
n+1
/ / it um it ()
”(n+1)k )
u’)ep,
TL g
and get
T ,b ~c,b
(65) T30 — Tool < €74 () + €5 () + 874 (9)
where

n+1
e (o Zkz\/ / (t,, )
n=
MK o ¥ — QSKU/{(UK’uK)

B >=Lip / IUTk—ub!sodv(ﬂf)dt,

&2 () ZZLZP () 1 (ug™) |k — @31

n=0 gcgd

(66)

Eventually, from (52), (58), (61), (64) and (65) is deduced the approximate
continuous entropy inequality (16) with

t,+ t
(67) 87’k—87—k+87-+87-k+8177}k +€?k +eb g,

€T k being a consistency error defined by

(68) €Tk = EFh +Th T ERL

(see (60) and (66)).
Let us now turn to the study afr ;.
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3 Estimate oner i,

We first turn to the consistency errors, for exampleﬁtﬁt which, we recall,
is defined by

c znt

S PSUI SR N

n=0 (K,L)eEr

int

1 +n
MK|L — (K|L)®KL ,.;(UKa UK)) pdy(z)dt

(n+1)k 1
—— t T, U n -
o], /m L)L R

x@;?’z’ﬁ(u%, uﬁ)) pdy(z)dt|.

As the numerical fluxes, the numerical entropy fluxes are consistents: for all
€A, B],

n+1
@}ZH (s,5) / / Ot (t,x,8) niody(z)dt.
n o

Therefore, the quantity’ mt( ) can be rewritten as:

(n+1)k
Zk Z / /K st @, uf) - "K|L

n=0 (K,L)cE!

int

c znt

([1(|L) Q;z n(uK’ uK)) (‘10 - @7}(|L) dv(m) dt

(n+1)k
—/ / Tt @, ult) - nK|L
nk K|L

(K|L)@+n (“L’“ﬂ)(%@ — @) dy(@) dt|.

Now, writing

n+1
olt:2) = B = ey /. .
(69) x(p(t, ) — p(s,y)) dy(y) ds,

the following majoration holds: for allt, s, z,y) € [nk,(n + 1)k[*>x
(K|L)?

(10 lo(te) —pls,p)] < O+ 1)Vl + )|
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Besides, the functioff is Lipschitz continuous so that there exiéts> 0,
only depending o2, f, A, B, such that for alls € [ A, B], for all
(K,L) € Eing, forallt € [nk, (n + 1)k|

1
[(t2,8) g - D R s|<cm+r.

Discussing the respective positionsudf, 7 andx, we deduce from this
result the following estimate

n 1 ,n

which is still true whenu7. is replaced byu7.
From (69), (70) and (71), is deduced the estimate
) <2C ||Vl + ledd)| | (b + k)2 2Y Y kmin

7 n=0 (K,L)e&l,
m({2) -1
3 (T4 1) (ht k)R

<20||/(1vel +led)|| .

the second inequality being a consequence of assumption (25) on the mesh.
Eventually, the CFL condition (32) holding, we get

e (p) 0.

We would do the same to get an estlmate%ﬂ andeT ,.» iInorder to prove
that they are shrinking to zero whérdoes.

We now study the erroz«:é? anda‘”t defined by (60). Here, the weak
BV estimate on space derivatives (34) is required. Indeed, we have

G (U, ul) — O (ufe,ul)

< max (FK,O'(d7 C) - Fln(,a(d> d))

uf <c<d<u’y
and, thanks to the integral Taylor formula, we get an estimate on the differ-
ence between the average valuean a controle volume and on one of its
edge: there exists,, depending only upomp, such that

V(K. L) € & s ok — Pripl < Co(h+ k).
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Therefore, the following estimate @fﬂ ¢) holds

N

) < Co(h+h) Y kY

n=0 (K,L)c&r

u’LLSI?Sa;l};u?((FK’U (d’ C) o FK,U (da d))

* uESrcnSa;lxﬁu?((F}%’a(d7 C) o F}%,O'(Cv C))
h+k

<CpC—=,

RV

where the constaidt is given by (34). We would follow the same lines to get

int,—

a similar estimate o ;. (). Moreover, the continuity of the translations

in L}, ensures that the quantitie$(¢) andeb-, (¢) tend to zero whei
does.

X

Convergence of the scheme

We come back to the discussion preceding the introduction of the entropy
process solution (see Sect. 2): we know thay, is bounded in.>° (Lemma

5); the compacity result given in Theorem 1 proves that there exists
L>(Q x (0,1)) such that, up to a subsequence, forgadl C(R),

g(ur k) —>/ ))da in L(Q) weak— x whenh — 0.

Then, taking Theorem 3 into account, it is clear that an entropy process
solution to problem (1)-(2)-(3). Thus, the functiprdoes not depend on its
third variable (Theorem 2): there exists= L>°((Q) such thai(t, z, o) =
u(t,x) for a.e.(t,z,a) € Q x (0,1). Consequently, the function is a
weak entropy solution to problem (1)-(2)-(3) and the whole sequeneg)(
converges ta in L (Q) for everyp € [1, o0, as proved by the following
lemma.

Lemma 10 Let O be a bounded borelian subsetf* and let(v™) be a
bounded sequence 6f°(O) such that there exists € L>°(0O) satisfying:
forall g € C(R),

g(v") — g(v) in L>=(O) weak—

Then, for allp such thatl < p < 400, v™ — vin LP(O).
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Proof. The spacel.>(0) is continuously imbedded in the spaté(O);
taking g(z) = x we therefore haves” — v in L?(0) weak«. Taking
g(z) = 2*, we also prové|v”|| 120y — ||v]|2(0) @and the Hilbert structure
of the spacd.?(©) allows us to get the result when= 2, then, using the
fact that(v™) is bounded inL>°(O), for everyp.

Eventually, we have proven the following results.

Theorem 4 There exists a unique weak entropy solution to problem (1)-(2)-

).

Theorem 5 Leta € R and€ € (0, 1) be fixed. Assume that assumptions
(25), (27) and (32) hold. Lets ;. be the numerical approximate solution
of the problem (1)-(2)-(3) defined by (29), (30), (31). Then, for eyery
in [1,+o00[, ur ; converges to the weak entropy solution to (1)-(2)-(3) in

Lfoc(Q)'
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