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Summary. This paper is devoted to the study of the finite volume methods
used in the discretization of conservation laws defined on bounded domains.
General assumptions are made on the data: the initial condition and the
boundaryconditionaresupposed tobemeasurablebounded functions.Using
a generalized notion of solution to the continuous problem (namely the
notion of entropy process solution, see [9]) and a uniqueness result on this
solution, we prove that the numerical solution converges to the entropyweak
solution of the continuous problem inLploc for everyp ∈ [ 1,+∞). This also
yields a new proof of the existence of an entropy weak solution.

Mathematics Subject Classification (1991):65M60

1 Introduction

1.1 The initial-boundary value problem

LetΩ be an open bounded polyhedral subset ofRd. Let us denote byΓ its
boundary, byn the unit normal toΓ outward toΩ, by γ the measure onΓ ,
byQ the setQ =] 0,+∞[×Ω and byΣ the setΣ =] 0,+∞[×Γ .

We consider the following scalar conservation law:

ut(t, x) + divx f(t, x, u(t, x)) = 0, (t, x) ∈ Q ,(1)

with the initial condition

u(0, x) = u0(x), x ∈ Ω ,(2)
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and the boundary condition

u(t, r) = ub(t, r), (t, r) ∈ Σ .(3)

The way the boundary condition is satisfied has to be precised. Indeed,
lest the problem (1)-(2)-(3) should be overdetermined, Equality (3) cannot
be required to be assumed pointwise, even if the solution to (1) is a regular
function (see [12] for a complete description of an intuitive approach to
the nature of the boundary condition). Supposing thatu0 is BV and that
ub is C2-regular, Bardos, Le Roux and Nedelec [2] prove the existence and
uniqueness of a solution to (1)-(2)-(3), explaining the way the boundary
condition must be understood and detailing an inequality on the boundary
now known as the BLN condition (see Remark 3).

Following theworkofDiPerna [4],Szepessydefinesanotionofmeasure-
valued solution to (1) and, assuming the existence of aweak entropy solution
to the problem, proves the uniqueness of the measure-valued solution. The
existence of such a weak entropy solution is ensured by the work of Bardos,
Le Roux and Nedelec. Notice that the “BLN condition ” does make sense
only if the solutionu of (1)-(2)-(3) admits a trace onΣ. When handling
the BLN condition we thus need the solution to beBV , which implies,
in general, that the initial conditionu0 isBV and the minimum regularity
required on the data is ofBV type.

At any rate, the existence of a measure-valued solution is obtained
through weak estimates on approximate solutions of the problem (1)-(2)-(3)
and, under the hypothesesu0 ∈ BV (Ω) andub ∈ C2(Σ), this measure-
valued solution gives rise to a weak entropy solution; this allows several
authors to study the convergence of numerical schemes associated to the
continuous problem. In [15], Szepessy proves the convergence of a stream-
line diffusion finite elements method; in [8], Cockburn, Coquel and Lefloch
prove the convergence of the monotone finite volume method; in [3], Ben-
harbit, Chalabi and Vila prove the convergence of a class of E-schemes.

We will use here a generalized notion of solution, similar to the one of
measure-valued solution: the notion of entropy process solution introduced
byEymard,Galloüet andHerbin for theCauchyProblem in [9]. Theaimhere
is to adapt the method of [9] in order to obtain the same results as Eymard,
Galloüet and Herbin in the case of the initial-boundary value problem. We
deduce from a theorem of uniqueness (Theorem 2 in this paper) that an
entropy process solution is actually aweak entropy solution. Let us highlight
a difference between the way measure-valued solution and entropy process
solution are handled: working in the framework of measure-valued solution,
it is necessary to suppose the existence of a weak entropy solution in order
to prove that anymeasure-valued solution is merely a weak entropy solution
(see [4]), while this hypothesis is no longer required to prove that an entropy
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process solution is anentropyweak solution. This iswhy, here, existenceand
uniqueness of a solution is established for a flux functionf ∈ C1 (or locally
Lipchitz continuous, under an additionnal hypothesis, see Remark 1).

Moreover, we intend to deal only with essentially bounded measurable
data. Consequently, a solution is sought inL∞(R+×Ω) and this function-
nal context does not allow the definition of such a notion as the trace of the
solution. In theL∞ framework a notion of weak entropy solution has been
given by F. Otto, who achieved this work in his PhD. Thesis so that little bib-
liography is available: a summary is presented in [13] and a more complete
exposition appears in [12]. In this last reference, the existence of an entropy
solution is established under the hypothesisf ∈ C2 and the uniqueness is
proved under the hypothesisf ∈ C1. The work of Otto relies on the use of
particular entropy-flux pairs, namely the boundary entropy-flux pairs. We
give a similar definition of solution of the problem (1)-(2)-(3), but merely
using the “semi Kruzkov entropies”, as they already appear in the work of
Carillo [5] and Serre [14] (see Sect. 2). These entropy functions admit very
simple algebraic definition, so that the study of the discrete entropy inequal-
ities satisfied by the numerical solution of the problem (1)-(2)-(3) defined
by a monotone finite volume scheme is quite straightforward.

The discrete (and local) entropy inequalities satisfied by the numerical
solution allows us to derive approximate continuous entropy inequalities.
Notice that, in the course of the proof of this result, a ”weak BV estimate”
[9] on the numerical solution is needed. This weak BV estimate cannot yield
any compactness property on a family of approximate numerical solution
but is one of the key point of the proof of Theorem 3.

Notice also that monotone finite volume schemes are widely used in
practical application. For example, in oil reservoir engineering, an IMPES
scheme can be implemented to study the behaviour of the fluid in a column
(see [1] or [10]) and, in this case, comes down to a monotone finite volume
scheme.

1.2 Hypotheses and notations

We make the following hypotheses on the data and on the flux:


(i) ub ∈ L∞(Σ) andu0 ∈ L∞(Ω) ,

(ii) f ∈ C1(R+ × Rd × R,Rd) and
∂f

∂u
is locally Lipschitz continuous,

(iii) divx f(t, x, u) = 0 for a.e. (t, x, u) ∈ R+ × Rd × R,

(4)
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Remark 1Assumption (iii) onf maybe relaxed, andwecanconsider source
terms in (1)-(2)-(3) (see [7]). Assumption (ii) onf may also be weakened,
in particular it is enough to suppose that

(ii)a f ∈ Liploc(R+ × Rd × R,Rd) ;

(in which case
∂f

∂u
is defined a.e. onR+ × Rd × R) provided that, for

every compactKt,x ⊂ R+ × R, for every compactKu ⊂ R, there exists
VKt,x,Ku ≥ 0 such that

(ii)b

{
for a.e.v ∈ Ku , for a.e.(s, y) ∈ Kt,x , for a.e.(σ, z) ∈ Kt,x ,∣∣∣∂f
∂u

(s, y, v)− ∂f

∂u
(σ, z, v)

∣∣∣ ≤ VKt,x,Ku (|s− σ|+ |y − z|) .

Notice that conditions(ii)a and(ii)b are fulfilled if the functionf can be
written as

f(t, x, u) = v(t, x) g(u)

with v ∈ Liploc(R+ × Rd ; Rd) andg ∈W 1,∞
loc (R).

Notations:We denote byB andA the quantities

B = max(ess sup
Ω

(u0) , ess sup
Σ

(ub)) ,(5)

and
A = min(ess inf

Ω
(u0) , ess inf

Σ
(ub)) .(6)

Thanks to assumption (4) onf , it is known that, for everyT > 0, f is
Lipschitz continuous on[ 0, T ] × Ω × [A,B]. Our work requiresf to be
Lipschitz continuous but, instead of fixingT > 0, then working on the set
[ 0, T ] × Ω × [A,B], and, at last, extending the solutions obtained (with
the help of a theorem of uniqueness), we already supposef to be Lipschitz
continuous onR+×Ω× [A,B]. We setLip(f) to be its Lipschitz constant.

1.3 Main results

In Sect. 2, we emphasize the definition of weak entropy solution; the class
of entropy-flux pairs considered in the definition of weak entropy solution
can be reduced to the one of the so-called “semi Kruzkov” entropies. It is
one of the keys of the result of convergence of the scheme. As in [9] and
[6], a notion of entropy process solution is defined.

InSect. 3,wedevelop theproof of auniqueness result (that isTheorem2).
This theorem allows us to show that an entropy process solution of the
problem (1)-(2)-(3) is necessarily a weak entropy solution. It also ensures
the uniqueness of the weak entropy solution. Notice that, in the course of
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the proof of this theorem, it is not necessary to suppose the existence of a
weak entropy solution.

In Sect. 4, we define the finite volume scheme with monotone fluxes
associated to the problem (1)-(2)-(3) and the corresponding numerical so-
lution uT ,k. We prove that(uT ,k) converges towards an entropy process
solution of problem (1)-(2)-(3). This yields, thanks to Theorem 2, the result
of existence of a weak entropy solution of the problem (1)-(2)-(3). Then it is
proved that(uT ,k) converges to the weak entropy solution inL

p
loc(R+×Ω)

for everyp ∈ [ 1,+∞[.

2 Weak entropy solution

It is well-known that the concept of weak solution is not accurate in the
study of hyperbolic problems, for uniqueness of such a solution may fail,
even if the data are regular functions. Thus, we turn to the notion of weak
entropy solution.

Notations:Let sgn+ denote the applicationR −→ R defined by

sgn+(s) =
{

1 if s > 0 ,
0 if s ≤ 0 ,

and sgn− the applications �−→ −sgn+(−s). As usual, we sets+ =
sgn+(s) s ands− = (−s)+.

Letκ ∈ [A,B]. The entropy-flux pair(η+
κ , Φ

+
κ ) (respectively(η−

κ , Φ
−
κ ))

is defined by{
η+
κ (s) = (s− κ)+ ,
Φ+
κ (t, x, s) = sgn+(s− κ)(f(t, x, s)− f(t, x, κ)) ,(7)

(8)(
respectively

{
η−
κ (s) = (s− κ)− ,
Φ−
κ (t, x, s) = sgn−(s− κ)(f(t, x, s)− f(t, x, κ))

)
.

Definition 1 Let u be inL∞(Q). The functionu is said to be a weak en-
tropy solution of the problem (1)-(2)-(3) if it satisfies the following entropy
inequalities: for allκ ∈ [A,B], for all ϕ ∈ C∞

c (R+ × Rd, R+),∫∫
Q

(
η+
κ (u)ϕt + Φ+

κ (t, x, u) · ∇ϕ)
dxdt

+
∫
Ω
η+
κ (u0)ϕ(0, x) dx

+Lip(f)
∫∫

Σ
η+
κ (ub)ϕ(t, r) dγ(r)dt ≥ 0 ,(9)
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and ∫∫
Q

(
η−
κ (u)ϕt + Φ−

κ (t, x, u) · ∇ϕ)
dxdt

+
∫
Ω
η−
κ (u0)ϕ(0, x) dx

+Lip(f)
∫∫

Σ
η−
κ (ub)ϕ(t, r) dγ(r)dt ≥ 0 .(10)

The semi Kruzkov entropies have rather simple algebraic expressions
that allows the study of the numerical problem associated to (1)-(2)-(3),
while, working with “boundary entropy-flux pairs”, this studymay bemuch
more difficult. The boundary entropy-flux pairs are the entropy-flux pairs
used by Otto to define the notion of weak entropy solution. They are defined
in the following way:

Definition 2 Let (H,Q) be inC2(R2) × (C2(R+ × Rd × R2))d. The pair
(H,Q) is said to be aboundary entropy-flux pair(for the fluxf ) if:

1. for all w ∈ R, s �→ H(s, w) is a convex function,

2. ∀w ∈ R , ∂sQ(t, x, s, w) = ∂sH(s, w)
∂f

∂s
(t, x, s),

3. ∀w ∈ R, H(w,w) = 0 , Q(., ., w, w) = 0 , ∂sH(w,w) = 0.

Thanks to the following lemma, Definition 1 of weak entropy solution
gives rise to exactly the same notion of solution as defined by Otto.

Lemma 1 Let η ∈ C1(R,R) be a convex function such that: there exists
w ∈ [A,B] with η(w) = 0 and η′(w) = 0. Thenη can be uniformly
approximated on[A,B] by applications of the kind

s �−→
∑
1,p

αi(s− κi)− +
∑
1,q

βj(s− κ̃j)+

whereαi ≥ 0, βj ≥ 0, κi ∈ [A,B] andκ̃j ∈ [A,B].

We conclude this section by making some comments on weak entropy
solution.

Remark 2(see [12]) Ifu ∈ L∞(Q) is a weak entropy solution of the prob-
lem (1)-(2)-(3) then: for almost every(t, x) ∈ Q,

A ≤ u(t, x) ≤ B .

Remark 3If u ∈ L∞(Q) is a weak entropy solution of the problem (1)-(2)-
(3) thenu satisfies (see [12]): for all classical entropy-flux pair(η, Φ), for
all ϕ ∈ C∞

c ((0,+∞)×Ω, R+),∫∫
Q
η(u)ϕt + Φ(t, x, u) · ∇ϕ ≥ 0(11)
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and

ess lim
t→0+

∫
Ω
|u(t)− u0| dx = 0;(12)

moreover, the boundary condition is fulfilled in the following way: for all
boundary entropy-flux pair(H,Q), for all β ∈ L1(Σ) such that β ≥
0 a.e.,

ess lim
s→0+

∫ T

0

∫
Γ
Q(t, r, u(t, r − sn(r)), ub(t, r))

·n(r)β(t, r) dγ(r)dt ≥ 0.(13)

Reciprocally, ifu ∈ L∞(Q), with A ≤ u ≤ B a.e., andu satisfies (11),
(12), (13), thenu is a weak entropy solution of the problem (1)-(2)-(3).

Besides, ifu ∈ L∞(Q) is a weak entropy solution of the problem (1)-
(2)-(3) that admits a trace, meaning there existsuτ in L∞(Σ) such that

ess lim
s→0+

∫
Σ
|u(t, r − sn(r))− uτ (t, r)| dγ(r)dt = 0 ,

then (13) is equivalent to the equation

Q(uτ , ub) · n ≥ 0 a.e. onΣ .

ChoosingQ(s, w) = Φ+(s,max(w, k)) + Φ−(s,min(w, k)) yields the
BLN condition ([2]), that is:

for a.e. (t, r) ∈ Σ, ∀k ∈ [uτ (t, r), ub(t, r)],

sgn(uτ (t, r)− ub(t, r)) (f(uτ (t, r)− f(k)) · n(r) ≥ 0 .

Notice that, in the case whereΩ = Rd, it is well-known that the class of
Kruzkov entropies iswide enough to ensure the uniqueness of the solution. It
is the same here, except that we have to consider the semi Kruzkov entropies
and that working with the mere Kruzkov entropies would not be sufficient,
for uniquenesswould be lacking. Indeed, the classical Kruzkov entropy-flux
pairs are defined by:

ηκ(s) = |s− κ| ,
Φκ(t, x, s) = sgn(s− κ)(f(t, x, s)− f(t, x, κ)) .(14)

Now, suppose thatΩ =] 0,+∞[ and define the flux-functionf : [ 0, 1] �−→
R by

f(u) = u(1− u) ;

then consider the solutionu of the Riemann problem onR associated to the
equationut +(f(u))x = 0 and to the datum(u−, u+). Letu0 = u+ andub
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be constant. Thenu ∈ L∞(Q) and satisfies: for allϕ ∈ C∞
c (R+×R, R+),

for all κ ∈ [A,B],∫∫
Q

(|u− κ|ϕt + sgn(u− κ)(f(u)− f(κ))ϕx) dxdt

+
∫

R+

|u0 − κ|ϕ(0, x) dx + Lip(f)
∫

R+

|ub − κ|ϕ(t, 0) dt ≥ 0 ,

if, and only if, for allκ ∈ [A,B], for all t > 0,

−sgn(u(t, 0+)− κ)(f(u(t, 0+)− f(κ)) + Lip(f) |ub − κ| ≥ 0 .(15)

Now, choosingu0 = u+ = 0 andub = 1, the datau1− = 1/4 andu2− = 1/2
define, through the Riemann problem, two distinct measurable bounded
functions which both satisfy (15).

2.1 Entropy process solution

The proof of the existence of a weak entropy solution to the problem (1)-
(2)-(3) lies in the study of the numerical solutionuT ,k defined by the finite
volume scheme associated to (1)-(2)-(3). HereT denotes the mesh,h its
“size” andk the time step (see Sect. 4). Theorem 3 states that the numerical
solution satisfies the following approximate entropy inequalities:

∀κ ∈ [A,B] , ∀ϕ ∈ C∞
c (R+ × Rd,R+) ,∫∫

Q

(
η+
κ (uT ,k)ϕt + Φ+

κ (t, x, uT ,k) · ∇ϕ
)
dx dt

+
∫
Ω
η+
κ (u0)ϕ(0)dx

+
∫
Σ
η+
κ (ub)ϕ(t, x)dγ(x) dt ≥ −εT ,k(ϕ) ,

(16)

where

∀ϕ ∈ C∞
c (R+ × Rd,R+) , εT ,k(ϕ) −→ 0 whenh→ 0.

The same result holds when the entropy-flux pair(η−
κ , Φ

−
κ ) is considered.

The numerical approximate solution(uT ,k) is also known to be bounded
in L∞(Q) but it is not enough to pass to the limit in Inequation (16). Thus,
owing to the non-linearity of the equation and to the lack of estimate on
the approximate solution, we have to turn to the notion of measure-valued
solution (see DiPerna, [4], Szepessy, [15]) or, equivalently, to the notion of
entropy process solution defined by Eymard, Gallouët, Herbin in [9]. The
interest of this notion lies in the following result, which generalizes the
notion of weak-/ convergence inL∞ and free oneself from the problems of
non-linearity.
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Theorem 1 LetO be a borelian subset ofRm, letR be positive and(un)
be a sequence ofL∞(O) such that, for alln ∈ N, ||un||L∞ ≤ R. Then there
exists a sub-sequence still denoted by(un) andµ ∈ L∞(O × (0, 1)) such
that:

∀g ∈ C(R) , g(un) −→
∫ 1

0
g(µ(., α)) dα in L∞(O) weak-/ .

Now the notion of entropy process solution can be defined.

Definition 3 Letµ be inL∞(Q × ( 0, 1)). The functionµ is said to be an
entropy process solutionto (1)-(2)-(3) if:

1. for a.e.(t, x, α) ∈ Q× ( 0, 1),A ≤ µ(t, x, α) ≤ B,
2. for all κ ∈ [A,B], for all ϕ ∈ C∞

c (R+ × Rd) , ϕ ≥ 0,∫∫
Q

∫ 1

0

[
η+
κ (µ(t, x, α))ϕt(t, x) + Φ+

κ (t, x, µ(t, x, α)) · ∇ϕ(t, x)
]

×dα dx dt+
∫
Ω
η+
κ (u0)ϕ(0, x) dx

+Lip(f)
∫∫

Σ
η+
κ (ub)ϕ(t, x) dγ(x) dt ≥ 0 ,(17)

3. the same entropy inequality holds when(η−
κ , Φ

−
κ ) is selected as an

entropy-flux pair.

Notice that ifµ is an entropy process solution of the the problem (1)-(2)-
(3) and ifµ does not depend on its last variable, that is to say: there exists
u ∈ L∞(Q) such that

for a.e.(t, x, α) ∈ Q× ( 0, 1) , µ(t, x, α) = u(t, x),

thenu is a weak entropy solution to (1)-(2)-(3).
We will now prove that ifµ ∈ L∞(Q × ( 0, 1)) is an entropy process

solution then, in fact,µ does not depend on its last variable and that theweak
entropy solution is unique.

3 Uniqueness of the entropy process solution

Theorem 2 (“uniqueness” of the entropy process solution)Let µ , ν ∈
L∞(Q × ( 0, 1)) be two entropy process solutions. Then there existsu ∈
L∞(Q) such that:

µ(t, x, α) = u(t, x) = ν(t, x, β) for a.e. (t, x, α, β) ∈ Q× ( 0, 1)2 .

Corollary 1 The problem (1)-(2)-(3) admits at most one weak entropy so-
lution.
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Let us first prove some lemmas that will entail Theorem (2). In order
to clarify certain forthcoming expressions, the following notations will be
used: for(t, x) ∈ Q, for s andκ ∈ R,

Φ(t, x, s, κ) = Φκ(t, x, s) = sgn(s− κ)(f(t, x, s)− f(t, x, κ) ,

Φ+(t, x, s, κ) = Φ+
κ (t, x, s) = sgn+(s− κ)(f(t, x, s)− f(t, x, κ) ,

Φ−(t, x, s, κ) = Φ−
κ (t, x, s) = sgn−(s− κ)(f(t, x, s)− f(t, x, κ) .

Notice thatΦ = (Φ1, . . . , Φd) takes its values inRd.

Lemma 2 Letµ , ν ∈ L∞(Q × ( 0, 1)) be two entropy process solutions.
Then:

∀ψ ∈ C∞
c (R+ × Rd

+) , ψ ≥ 0,∫∫
Q

∫ 1

0

∫ 1

0

[
|µ(t, x, α)− ν(t, x, β)|ψt

+Φ(t, x, µ(t, x, α), ν(t, x, β)) · ∇ψ
]
dβ dα dx dt ≥ 0 .

(18)

The setΩ was supposed to be an open polyhedral subset ofRd. Notice
that the following proof would still be correct ifΩ were an open set withC1

boundary. Indeed, working locally (thanks to local maps coveringΩ), we
can supposeΩ = Rd orΩ = Rd

+. What really requires care in the proof of
Lemma 2 is the study of the behaviour of an entropy process solution near
the boundary, so that we already suppose

Ω = Rd
+ = {x = (x, xd) ∈ Rd , xd > 0}

and detail the following lemmas.

Lemma 3 Leta�b denotes the maximum value between two realsa andb
anda⊥b denotes their minimum value. Letµ be an entropy process solution
to (1)-(2)-(3) andκ be in[A,B]. Then:

1. there existsθ+
µ,κ ∈ L∞(Σ) such that: for allβ ∈ L1(Σ),

− ess lim
xd→0+

∫∫
Σ

∫ 1

0
Φ+
d (t, x, µ(t, x, α), ub(t, x)�κ)β(t, x) dα dx dt

=
∫∫

Σ
θ+
µ,κ(t, x)β(t, x) dx dt ,

andθ+
µ,κ ≥ 0 a.e.
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2. there existsθ−
µ,κ ∈ L∞(Σ) such that: for allβ ∈ L1(Σ),

− ess lim
xd→0+

∫∫
Σ

∫ 1

0
Φ−
d (t, x, µ(t, x, α), ub(t, x)⊥κ)β(t, x) dα dx dt

=
∫∫

Σ
θ−
µ,κ(t, x)β(t, x) dx dt ,

andθ−
µ,κ ≥ 0 a.e.

3. there existsθµ ∈ L∞(Σ) such that: for allβ ∈ L1(Σ),

− ess lim
xd→0+

∫∫
Σ

∫ 1

0
Φd(t, x, µ(t, x, α), ub(t, x))β(t, x) dα dx dt

=
∫∫

Σ
θµ(t, x)β(t, x) dx dt .

Lemma 4 Let µ be an entropy process solution to (1)-(2)-(3) andκ be in
[A,B]. Then the following inequality holds: for allϕ ∈ C∞

c (R+×Rd) , ϕ ≥
0, ∫∫

Q

∫ 1

0

[
|µ(t, x, α)− κ|ϕt(t, x) + Φ(t, x, µ(t, x, α), κ) · ∇ϕ(t, x)

]
×dα dx dt+

∫
Ω
|u0 − κ|ϕ(0, x) dx+

∫∫
Σ
θµ(t, x)ϕ(t, x, 0)

×dx dt+
∫∫

Σ
Φd(t, x, 0, ub(t, x), κ)ϕ(t, x, 0) dx dt ≥ 0 .(19)

Proof of Lemma 3 (see [12]):Let β be a function ofC∞
c (] 0,+∞[×Rd−1),

β ≥ 0, and define the functionsg+
κ,w,β , h

+
κ,w,β (for w ∈ [A,B]) by:

g+
κ,w,β(xd) = −

∫∫
Σ

∫ 1

0
Φ+
d (t, x, µ(t, x, α), w�κ)β(t, x) dα dx dt ,

h+
κ,w,β(xd) =

∫∫
Σ

∫ 1

0
(µ(t, x, α)− κ�w)+ βt(t, x) dα dx dt+

∑
i=1,d−1

×
∫∫

Σ

∫ 1

0
Φ+
i (t, x, µ(t, x, α), κ�w)βxi(t, x) dα dx dt .

Puttingϕ = βγ in Inequation (17) whereκ has been replaced byκ�w and
γ ∈ C∞([ 0,+∞[ ,R+), we get, ifγ ∈ C∞

c (0,+∞)

h+
κ,w,β − (g+

κ,w,β(xd))
′ ≥ 0 in D′

(]0,+∞[)(20)
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and, ifγ(xd) = χ(0,ε)(xd)
(
1− xd

ε

)
,

1
ε

∫ ε

0
g+
κ,w,β(xd) dxd ≥ −Lip(f)

∫∫
Σ

(ub(t, x)− κ�w)+

×β dx dt +O(ε) .(21)

Considering thath+
κ,w,β ∈ L1(0,+∞), thatg+

κ,w,β ∈ L∞(0,+∞) and
the inequality (20), we getg+

κ,w,β ∈ L∞ ∩ BV (0, 1). Thus,ess lim
xd→0+

g+
κ,w,β

(xd) exists and, by lettingε go to zero in the inequality (21), we get:

ess lim
xd→0+

g+
κ,w,β(xd) ≥ −Lip(f)

∫∫
Σ

(ub(t, x)− κ�w)+ β dx dt .(22)

Using the continuous dependency ofg+
κ,w,β on β ∈ L1(Σ) and the

density ofC∞
c (Σ) in L1(Σ), we deduce: for allβ ∈ L1(Σ), β ≥ 0,

ess lim
xd→0+

g+
κ,w,β(xd) exists and (22) still holds. Then, approachingub in

L∞(Σ) by simple functionsubε, each of them taking a finite number of
valueswi in Q, say:

ubε =
p∑
i=1

wi χAi , ((Ai)i pairwise disjoints)

and takingw = wi, χAi β instead ofβ in (22), then summing with respect
to i ∈ {1, . . . , p} and, at last, lettingε go to zero yields the first point of
Lemma 3. The same lines would be followed to prove the second point, or
to prove the third point (by takingκ = w at the beginning and by using the
formula(s− w)+ + (s− w)− = |s− w|).
Proof of Lemma 4: for ε a positive number define the functionωε by

ωε(xd) =
{
xd/ε if 0 ≤ xd ≤ ε
1 if ε ≤ xd

.

Let ϕ ∈ C∞
c (R+ × Rd) , ϕ ≥ 0 andκ ∈ [A,B]. As the functionµ is an

entropy process solution to (1)-(2)-(3), it can easily be shown that it satisfies
the inequality:∫∫

Q

∫ 1

0

[
|µ(t, x, α)− κ|ωε(xd)ϕt(t, x) + Φ(t, x, µ(t, x, α), κ)

·∇ϕ(t, x)ωε(xd)
]
dα dx dt+

∫
Ω
|u0 − κ|ϕ(0, x)ωε(xd) dx

+
1
ε

∫ ε

0

∫∫
Σ

∫ 1

0
Φd(t, x, xd, µ(t, x, α), κ)ϕ(t, x, xd) dα dx dt dxd ≥ 0,
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and, by lettingε go to zero:∫∫
Q

∫ 1

0

[
|µ(t, x, α)− κ|ϕt(t, x) + Φ(t, x, µ(t, x, α), κ) · ∇ϕ(t, x)

]
×dα dx dt+

∫
Ω
|u0 − κ|ϕ(0, x) dx+ lim ess sup

xd→0+

×
∫∫

Σ

∫ 1

0
Φd(t, x, xd, µ(t, x, α), κ)ϕ(t, x, xd) dα dx dt ≥ 0 .

Moreover, using the formula

Φ(t, x, s, κ) = 2
[
Φ+(t, x, s, κ�ub(t, x)) + Φ−(t, x, s, κ⊥ub(t, x))

]
+Φ(t, x, κ, ub(t, x))− Φ(t, x, s, ub(t, x)) ,

we deduce from Lemma 3:

lim ess sup
xd→0+

∫∫
Σ

∫ 1

0
Φd(t, x, xd, µ(t, x, α), κ)ϕ(t, x, xd) dα dx dt

≤
∫∫

Σ
θµ(t, x)ϕ(t, x, 0) dx dt

+
∫∫

Σ
Φd(t, x, 0, ub(t, x), κ)ϕ(t, x, 0) dx dt ,

which proves the inequality (19).

3.1 Proof of Lemma 2

Working on the entropy inequality (19), the doubling variable technique
of Kruzkov (see [11]) is efficient. Let us detail it: letρ be a function of

C∞
c (] − 1, 0[,R+) such that

∫ 0

−1
ρ(t) dt = 1 (notice thatρ has a compact

support located to the left of zero). Classically, a sequence of mollifiers(ρε)
onR can be defined by the formula

ρε(t) =
1
ε
ρ

(
t

ε

)
, ε > 0 ,

and a sequence of mollifiers(ρ̃ε) on Rq (q ≥ 1) can be defined by the
formula

ρ̃ε(x) = ρε(x1)× · · · × ρε(xq) , x ∈ Rq .

We also defineRε by:

Rε : t �−→
∫ −t

−∞
ρε(s) ds .
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Letψ be inC∞
c (R+ × Rd), ψ ≥ 0 and defineϕ by

ϕ(t, x, s, y) = ψ(t, x)ρε(t− s)ρ̃ε(x− y) .

We apply inequality (19) withκ = ν(s, y, β), (t, x) �→ ϕ(t, x, s, y) as a
test function and integrate w.r.t.(s, y, β). On the other hand, the functionν
satisfies the inequation∫∫

Q

∫ 1

0
|ν(s, y, β)− κ|ϕs(s, y) + Φ(s, y, ν(s, y, β), κ)

·∇ϕ(s, y) dβ dy ds+
∫
Ω
η+
κ (u0)ϕ(0, y) dx

+Lip(f)
∫∫

Σ
|ub − κ|ϕ(s, y, 0) dy ds ≥ 0 ;(23)

In (23),we setκ = µ(t, x, α), choose(s, y) �→ ϕ(t, x, s, y)asa test function
(notice thatϕ(t, x, 0, y) = ϕ(t, x, s, y, 0) = 0) and integrate w.r.t.(t, x, α).
Summing the two inequalities thus obtained yields the following result:

A(ψt) +A(ψx) +A(ρ̃x) +A0 +Ab1 +Ab2 ≥ 0,(24)

where:

A(ψt) =
∫∫

Q

∫ 1

0

∫∫
Q

∫ 1

0
|µ(t, x, α)− ν(s, y, β)|ψt(t, x)

×ρ̃ε(x− y) ρε(t− s) dβ dy ds dα dx dt,

A(ψx) =
∫∫

Q

∫ 1

0

∫∫
Q

∫ 1

0
Φ(t, x, µ(t, x, α), ν(s, y, β)) · ∇ψ(t, x)

×ρ̃ε(x− y) ρε(t− s) dβ dy ds dα dx dt,

A(ρ̃x) =
∫∫

Q

∫ 1

0

∫∫
Q

∫ 1

0
[Φ(t, x, µ(t, x, α), ν(s, y, β))

−Φ(s, y, µ(t, x, α), ν(s, y, β))] · ∇ρ̃ε(x− y)
×ψ(t, x) ρε(t− s) dβ dy ds dα dx dt,

A0 =
∫∫

Q

∫ 1

0

∫
Ω
|u0(x)− ν(s, y, β)|ψ(0, x)

×ρ̃ε(x− y) ρε(−s) dβ dy ds dx,
Ab1 =

∫∫
Q

∫ 1

0

∫∫
Σ
θµ(t, x)ψ(t, x, 0) ρ̃ε(x− y)

×ρε(−yd) ρε(t− s) dx dt dβ dy ds ,

Ab2 =
∫∫

Q

∫ 1

0

∫∫
Σ
Φd(t, x, 0, ub(t, x), ν(s, y, β))ψ(t, x, 0)

×ρ̃ε(x− y) ρε(−yd) ρε(t− s) dx dt dy dβ ds .
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Now, we study the behaviour of each of those terms asε goes to zero.

TermsA(ψt) andA(ψx). From the theoremof continuity inmeans is deduced
the convergence of(A(ψt) +A(ψx)) to the right-hand side of the inequality
(18) of Lemma 2, that is to say:

A(ψt) −→ A∞
(ψt) andA(ψx) −→ A∞

(ψx) ,

where:
A∞

(ψt) =
∫∫

Q

∫ 1

0

∫ 1

0
|µ(t, x, α)− ν(t, x, β)|ψt dβ dα dx dt ,

A∞
(ψx) =

∫∫
Q

∫ 1

0

∫ 1

0
Φ(t, x, µ(t, x, α), ν(t, x, β)) · ∇ψ dβ dα dx dt .

TermA(ρ̃x). Notice that, iff does not depend on(t, x), thenA(ρ̃x) = 0.
Actually, using the fact thatdivxf(t, x, s) = 0 and the local Lipschitz

continuity of
∂f

∂s
, we prove (see [6])

lim supA(ρ̃x) ≤ 0 .

TermA0. Let us consider Inequality (23) whereκ = u0(x) and(s, y) �→
ψ(0, x)Rε(s) ρ̃ε(x− y) has been selected as a test function. Integrating the
result w.r.t.x ∈ Ω yields an upper bound forA0:

−A0 +B(ρ̃x) +B0 ≥ 0 ,

where:

B(ρ̃x) = −
∫
Ω

∫∫
Q

∫ 1

0
Φ(s, y, ν(s, y, β), u0(x))

·∇ρ̃ε(x− y)ψ(0, x)Rε(s) dy ds dβ dx ,

B0 =
∫
Ω

∫
Ω
|u0(x)− u0(y)|ψ(0, x) ρ̃ε(x− y) dx dy .

The theorem of continuity in means allows us to proveB0 −→ 0. Let us
denote byC(ρ̃x) the term defined by the expression ofB(ρ̃x) whereu0(x)
has been replaced byu0(y). An integration by parts (w.r.t. thex variable)
shows thatC(ρ̃x) −→ 0 and, from the theorem of continuity in means again
and the fact that||Rε||L1 ≤ εwe deduce:C(ρ̃x)−B(ρ̃x) −→ 0whenε→ 0.

Eventually, we have:lim supA0 ≤ 0.
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TermsAb1 andA
b
2. Without any calculation, we have:

Ab1 =
∫∫

Σ
θµ ψ|Σ .

Moreover, in view of Lemma 3 (applied toν), the following convergence
holds:

Ab2 −→ −
∫∫

Σ
θν ψ|Σ .

Eventually, by lettingε go to zero, is deduced from the inequality (24)
the following inequation:

A∞
(ψt) +A∞

(ψx) +
∫∫

Σ
θµ ψ|Σ −

∫∫
Σ
θν ψ|Σ ≥ 0 .

Changing the roles ofµ andν andmaking the average of the two inequations
obtained this way yields Inequality (18) of Lemma 2.

3.2 Proof of Theorem 2

Recall that, in the course of the proof of Lemma 2, the setΩ has been
supposed to be the half-planeRd

+ but that Inequality (18) still holds when
Ω is an open bounded polyhedral subset ofRd: the details of the opera-
tions of localization and of transport have been eluded, but, for example,
the dependance of the test-functionψ on the variablex has been carefully
maintained. Indeed, we come back now to the case whereΩ is any open
bounded polyhedral subset ofRd and choose a test-function independant of
x in (18), which is the functionψ0 defined by:

ψ0(t, x) = (T − t)χ(0,T )(t) ,

whereT > 0. This yields:∫ T

0

∫
Ω

∫ 1

0

∫ 1

0
|µ(t, x, α)− ν(t, x, β)| dx dt dα dβ ≤ 0 .

As T is any positive real number, the following equality holds:

for a.e.(t, x, α, β) ∈ Q× ( 0, 1)× ( 0, 1) , µ(t, x, α) = ν(t, x, β) .

Now, define the functionu by the formula

u(t, x) =
∫ 1

0
µ(t, x, α) dα .

Taking into account the product structure of the measurable spaceQ ×
( 0, 1)× ( 0, 1) we get:

µ(t, x, α) = u(t, x) = ν(t, x, β) for a.e. (t, x, α, β) ∈ Q× ( 0, 1)2.
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4 Convergence of the finite volumes scheme

4.1 Presentation of the scheme

Let T be a family of disjoint connected polygonal subsets ofΩ (called
control volumes) such thatΩ is the union of the closures of the elements
of this family and such that the common interface of two control volumes
is included in an hyperplane ofRd. Let h be the size of the mesh:h =
sup{diam(K), K ∈ T }. Notice thath < +∞ (for the setΩ is bounded)
and suppose: there existsα > 0 such that{

αhd ≤ m(K),
m(∂K) ≤ 1

αh
d−1 , ∀K ∈ T ,(25)

wherem(K) is thed-dimensionnal Lebesgue measure ofK andm(∂K)
is the(d− 1)-dimensionnal Lebesgue measure of∂K. If K andL are two
control volumes having an edgeσ in commonwe say thatL is a neighbour of
K and denoteL ∈ N (K). We sometimes denote byK|L the common edge
σ betweenK andL and bynK,σ the unit normal toσ, oriented fromK toL.
Moreover,E denotes the set of all edges andEb the set of boundary edges,
that is:Eb = {σ ∈ E ,m(σ ∩ ∂Ω) > 0}. If K ∈ T , EK is defined as the set
of the edges determined by∂K, i.e.:EK = {σ ∈ E , m(σ ∩ ∂K) > 0}.
Remark 4Assumption (25) yields the following estimate on the number of
control volumes:

|T | ≤ m(Ω)
α

h−d .(26)

Let k be the time step. The numerical fluxesFn
K,σ (for K ∈ T and

σ ∈ EK) are functions inC(R2,R) satisfying the following hypotheses
of monotony, conservativity, regularity and consistency (recall thatB =
max(ess sup

Ω
(u0) , ess sup

Σ
(ub)) andA = min(ess inf

Ω
(u0) , ess inf

Σ
(ub)) ) :



(i) on [A,B]2 , (a, b) �→ Fn
K,σ(a, b) is nondecreasing w.r.t.a

and nonincreasing w.r.t.b ,
(ii) for all σ = K|L ∈ E \ Eb , for all

a , b ∈ [A,B] , Fn
K,σ(a, b) = −Fn

L,σ(b, a) ,
(iii) on [A,B]2 , Fn

K,σ is Lipschitz continuous and admits
m(σ)Lip(f) as Lipschitz constant,

(iv) for all s ∈ [A,B] ,

Fn
K,σ(s, s) =

1
k

∫ (n+1)k

nk

∫
σ
f(t, x, s) · nK,σ dγ(x) dt .

(27)

Notation:If σ = K|L ∈ E we will denoteFn
K,K|L by Fn

K,L.
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Notice that the property of consistency(iv) above gives, owing to
divxf = 0,

∀s ∈ [A,B] , ∀K ∈ T ,
∑
σ∈EK

Fn
K,σ(s, s) = 0 .(28)

The discrete unknownsunK (for n ∈ N andK ∈ T ) are defined by the
following set of equations:

u0
K =

1
m(K)

∫
K
u0(x) dx , ∀K ∈ T ,(29)

ub,nσ =
1

km(σ)

∫ (n+1)k

nk

∫
σ
ub(t, x) dγ(x) dt , ∀σ ∈ Eb , ∀n ∈ N ,(30)

m(K)
un+1
K − unK

k
+

∑
σ∈EK

Fn
K,σ(u

n
K , u

n
K,σ) = 0 ,

∀K ∈ T , ∀n ∈ N ,(31)

where

unK,σ =
{
unL if σ = K|L ,
ub,nσ if σ ∈ Eb .

The numerical solution is then defined by: for allK ∈ T , for all n ∈ N,
uT ,k(t, x) = unK for all (t, x) ∈ [nk, (n+ 1)k[×K.

Moreover, we will suppose that a CFL condition is fulfilled, that is to
say:

∃ ξ ∈ ] 0, 1[ such thatk ≤ (1− ξ)
α2h

2Lip(f)
.(32)

Then, themonotony of the schemes is ensured. Indeed, we deduce from (31)
and (28)

m(K)
un+1
K − unK

k
+

∑
σ∈EK

(Fn
K,σ(u

n
K , u

n
K,σ)

−Fn
K,σ(u

n
K , u

n
K)) = 0 .(33)

Therefore

un+1
K =

(
1− k

m(K)

∑
σ∈EK

τnK,σ

)
unK +

k

m(K)

∑
σ∈EK

τnK,σ u
n
K,σ ,

whereτnK,σ = (Fn
K,σ(u

n
K , u

n
K,σ) − Fn

K,σ(u
n
K , u

n
K))/(unK − unK,σ) if u

n
K �=

unK,σ, or τ
n
K,σ = 0 else. The monotony and the regularity of the fluxes (see

(iii)of (27)) and theCFLcondition ensureskm(K)

∑
σ∈EK

τnK,σ ∈ [ 0, 1]. Thus,

the following remark holds.
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Remark 5For allK ∈ T , n ∈ N, (31) can be rewritten in the following
way:

un+1
K = Hn

K(unK , (u
n
K,σ)σ∈EK

)) ,

where the functionHn
K is nondecreasingwith respect toeachof itsarguments

and satisfies

Hn
K(u, (u)σ∈EK

)) = u for all u ∈ R .

4.2L∞-stability and weakBV estimate

The schemedefined by (29)-(30)-(31) isL∞-stable and aweakBV estimate
– that is a weak estimate on the time and space derivatives ofuT ,k – holds.

Lemma 5 Assume that (27) and (32) hold. Then the approximate solution
uT ,k of (1)-(2)-(3) defined by (29), (30) and (31) satisfies:

A ≤ uT ,k(t, x) ≤ B for a.e.(t, x) ∈ Q .

Proof. We prove by induction onn ∈ N:

∀K ∈ T , A ≤ unK ≤ B .

It is true forn = 0 and the heredity of the proposition is a consequence of
the monotony of the scheme (see Remark 5).

Let us now detail the weakBV estimate.

Lemma 6 Assume that (25), (27) and (32)hold. LetuT ,k be theapproximate
solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). LetT be
positive and setN = max{n ∈ N , n < T/k} and Enint = {(K,L) ∈
T 2 , L ∈ N (K) andunK > unL}. Then there existsC ≥ 0 only depending
onΩ, u0, ub, Lip(f), T , α andξ such that, ifk < T ,

N∑
n=0

k
∑

(K,L)∈En
int


max

un
L≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

+ max
un

L≤c≤d≤un
K

(Fn
K,σ(d, c)− Fn

K,σ(c, c))

 ≤ C√
h
,

(34)

and
N∑
n=0

∑
K∈T

m(K)|un+1
K − unK | ≤

C√
h
.(35)
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Proof. In the following, we denote byC various quantities that only depend
onΩ, u0, ub, Lip(f), T , α andξ.

Multiplying (33) byk unK , then summing overK ∈ T andn ∈ {0, · · · ,
N} yields the following equality:

B1 +B2 = 0,(36)

where

B1 =
N∑
n=0

∑
K∈T

m(K)(un+1
K − unK)unK ,

B2 =
N∑
n=0

k
∑
K∈T

∑
σ∈EK

unK(Fn
K,σ(u

n
K , u

n
K,σ)− Fn

K,σ(u
n
K , u

n
K)) .

The last two summations in the expression ofB2 can be gathered by edges,
according to the following lemma:

Lemma 7 Let n ∈ N. Let ρ be an applicationT × E → R such that
ρnK,K|L = −ρnL,K|L if unK = unL. Then we have∑

K∈T

∑
σ∈EK

ρnK,σ =
∑

(K,L)∈En
int

(ρnK,K|L + ρnL,K|L) +
∑
σ∈Eb

ρnK,σ .

(Notice that ifσ ∈ Eb then there exists a uniqueK ∈ T such thatσ =
∂K ∩ ∂Ω; therefore theρnK,σ in the last sum are well defined.)

The proof of this lemma is left to the reader.

From this result is deducedB2 = B3 + b2,3, where

B3 =
N∑
n=0

k
∑

(K,L)∈En
int

unK(Fn
K,L(unK , u

n
L)− Fn

K,L(unK , u
n
K))

−unL(Fn
K,L(unK , u

n
L)− Fn

K,L(unL, u
n
L))

 ,

b2,3 =
N∑
n=0

k
∑
σ∈Eb

unK(Fn
K,σ(u

n
K , u

b,n
σ )− Fn

K,σ(u
n
K , u

n
K)) .

An estimate on the quantityb2,3 of the kind:

|b2,3| ≤ C(37)

is available since:

|b2,3| ≤ 2NkLip(f) max(|A|, |B|)2
∑
σ∈Eb

m(σ)

= 2TLip(f) max(|A|, |B|)2m(∂Ω) .
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Now, define the functionΨnK,L, primitive of the functions �−→ s
d

ds
Fn
K,L(s, s), by

ΨnK,L(s) =
∫ s

A
τ
d

ds
Fn
K,L(τ, τ) dτ .

From an integration by parts is deduced the formula:∀ (a, b) ∈ R2,

ΨnK,L(b)− ΨnK,L(a) =

 b(Fn
K,L(b, b)− Fn

K,L(a, b))

−a(Fn
K,L(a, a)− Fn

K,L(a, b)


−

∫ b

a
(Fn

K,L(s, s)− Fn
K,L(a, b))ds ,

so that

B3 = B4 + b3,4 ,(38)

with

b3,4 = −
N∑
n=0

∑
(K,L)∈En

int

k(ΨnK,L(unK)− ΨnK,L(unL)) ,

B4 =
N∑
n=0

∑
(K,L)∈En

int

k

∫ un
K

un
L

(Fn
K,L(unK , u

n
L)− Fn

K,L(s, s))ds .

The relation (28) ensures
∑

L∈N (K) Ψ
n
K,L = 0; from this and Lemma 7

(summation over the edges) it appears thatb3,4 reduces to a sum over the
edges of the boundary and, asb2,3, satisfies

|b3,4| ≤ C .(39)

Now, fix a , b , c , d ∈ R s.t. a ≤ c ≤ d ≤ b. Taking into account the
monotony ofFn

K,L, the following inequality holds:∫ b

a
(Fn

K,L(b, a)− Fn
K,L(s, s))ds ≥

∫ d

c
(Fn

K,L(d, c)− Fn
K,L(d, s))ds.

MoreoverFn
K,L(d, .) is Lipschitz continuous and nonincreasing so that (see

[9]) ∫ d

c
(Fn

K,L(d, c)− Fn
K,L(d, s)) ds

≥ 1
2m(K|L)Lip(f)

(Fn
K,L(d, c)− Fn

K,L(d, d))2 .
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Therefore, we get:∫ un
K

un
L

(Fn
K,L(unK , u

n
L)− Fn

K,L(s, s))ds

≥ 1
2m(K|L)Lip(f)

max
un

L≤c≤d≤un
K

(Fn
K,L(d, c)− Fn

K,L(d, d))2 ,

and ∫ un
K

un
L

(Fn
K,L(unK , u

n
L)− Fn

K,L(s, s))ds

≥ 1
2m(K|L)Lip(f)

max
un

L≤c≤d≤un
K

(Fn
K,L(d, c)− Fn

K,L(c, c))2 ,

so that

B4 ≥ B ,(40)

whereB is defined by:

B =
1

4Lip(f)

N∑
n=0

k
∑

(K,L)∈En
int

×


1

m(K|L)
max

un
L≤c≤d≤un

K

(Fn
K,L(d, c)− Fn

K,L(d, d))2

+
1

m(K|L)
max

un
L≤c≤d≤un

K

(Fn
K,L(d, c)− Fn

K,L(c, c))2

 .(41)

Recalling the equalityB2 = B4 + b2,3 + b3,4 and the estimates on the terms
b2,3 andb3,4 described in (37) and (39), it appears that

B2 ≥ B − C .(42)

On the other hand, the quantityB1 reads:

B1 = −1
2

N∑
n=0

∑
K∈T

m(K)(un+1
K − unK)2 +

1
2

∑
K∈T

m(K)(uN+1
K )2

−1
2

∑
K∈T

m(K)(u0
K)2.

There existsC ≥ 0 such that−C is a lower bound for the last two terms of
the previous equality. Moreover, the Cauchy-Schwarz inequality and (31)
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lead to:

(un+1
K − unK)2 ≤ k2

m(K)2
( ∑
σ∈EK

m(σ)
)

×
( ∑
σ∈EK

1
m(σ)

(Fn
K,σ(u

n
K , u

n
K,σ)− Fn

K,σ(u
n
K , u

n
K))2

)
.

From this last inequality, from Lemma 7 (summation over the edges), from
the assumption (25) on the mesh and from the CFL condition (32) are de-
duced the following inequalities:

1
2

N∑
n=0

∑
K∈T

m(K)(un+1
K − unK)2 ≤ (1− ξ)B + C

and:

B1 ≥ −(1− ξ)B − C .(43)

Now, as the equalityB1+B2 = 0 holds and as (43) and (42) are satisfied,
we haveξB ≤ C, that is to say (recall thatC may depend onξ):

B ≤ C .(44)

Moreover, from the Cauchy-Schwarz inequality is deduced:

N∑
n=0

k
∑

(K,L)∈En
int


max

un
L≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

+ max
un

L≤c≤d≤un
K

(Fn
K,σ(d, c)− Fn

K,σ(c, c))


≤ C

( N∑
n=0

k
∑

(K,L)∈En
int

m(K|L)
)1/2B1/2 ;(45)

and, taking into account the following estimate (deduced from (25) and (26))

N∑
n=0

k
∑

(K,L)∈En
int

m(K|L) ≤ C/h,

it appears that the weakBV estimate on space derivatives (34) holds. To get
the weakBV estimate on time derivatives (35), use (33) to get the following
estimate:

m(K)|un+1
K − unK | ≤ k

∑
σ∈EK

|Fn
K,σ(u

n
K , u

n
K,σ))− Fn

K,σ(u
n
K , u

n
K)| .

Summing the result overK ∈ T andn ∈ {0, · · · , N}, then using Lemma 7
and (34), yields Inequation (35).
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4.3 Entropy inequalities

We wish to prove that the approximate solutionuT ,k satisfies approximate
entropy inequalities that have already been discussed in the introduction of
the entropy process solution (see Sect. 2, relation (16)). To this purpose, we
will work with the semi Kruzkov entropies; that is one of the keys of the
following results (the other key being the weak BV estimate).

We recall some notations about it.

Notations:η+
κ denotes the function fromR toR defined by

η+
κ (s) = (s− κ)+ ,(46)

andΦ+
κ the associated flux-function fromQ× R toR defined by

Φ+
κ (t, x, s) = sgn+(s− κ)(f(t, x, s)− f(t, x, κ)) .(47)

Notice that, ifa�b = max(a, b) anda⊥b = min(a, b), then we have

η+
κ (s) = s�κ− κ ,

and
Φ+
κ (t, x, s) = f(t, x, s�κ)− f(t, x, κ) .

Therefore, the associated entropy numerical flux function is defined by the
formula

Φ+,n
K,σ,κ(a, b) = Fn

K,σ(a�κ, b�κ)− Fn
K,σ(κ, κ) .(48)

If σ = K|L, (K,L) ∈ T 2, thenΦ+,n
K,K|L,κ is denoted byΦ

+,n
K,L,κ.

4.3.1 Discrete entropy inequalities

Lemma 8 Assume that (25), (27) and (32)hold. LetuT ,k be theapproximate
solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Then, for
all κ ∈ [A,B], for all K ∈ T , n ∈ N, the following local discrete entropy
inequality holds:

η+
κ (un+1

K )− η+
κ (unK)

k

+
1

m(K)

∑
σ∈EK

(Φ+,n
K,σ,κ(u

n
K , u

n
K,σ)− Φ+,n

K,σ,κ(u
n
K , u

n
K)) ≤ 0.(49)

Proof. From the monotony of the scheme (Remark 5) is deduced the fact
thatHn

K(unK�κ, (unK,σ�κ)σ∈EK
) is an upper bound forun+1

K andκ, thus

for un+1
K �κ too, that is to say:

un+1
K �κ ≤ unK�κ−

k

m(K)

×
∑
σ∈EK

(Fn
K,σ(u

n
K�κ, unK,σ�κ)− Fn

K,σ(u
n
K�κ, unK�κ)) .(50)
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Substracting from this inequality the equality

κ = κ− k

m(K)

∑
σ∈EK

(Fn
K,σ(κ, κ)− Fn

K,σ(κ, κ)) ,

yields the result.

4.3.2 Continuous entropy inequality

Theorem 3 Assume that (25), (27) and (32) hold. LetuT ,k be the approxi-
mate solution of the problem (1)-(2)-(3) defined by (29), (30) and (31). Then
the following approximate continuous entropy inequalities hold:

∀κ ∈ [A,B] , ∀ϕ ∈ C∞
c (R+ × Rd,R+) ,∫∫

Q

(
η+
κ (uT ,k)ϕt + Φ+

κ (t, x, uT ,k) · ∇ϕ
)
dx dt

+
∫
Ω
η+
κ (u0)ϕ(0)dx

+Lip(f)
∫
Σ
η+
κ (ub)ϕ(t, x)dγ(x) dt ≥ −εT ,k(ϕ) ,

(51)

where:

∀ϕ ∈ C∞
c (R+ × Rd,R+) , εT ,k(ϕ) −→ 0 whenh→ 0 .

The same result holds when the negative semi-Kruzkov entropies are con-
sidered.

Proof. Let ϕ be inC∞
c (R+ × Rd,R+) andκ be in [A,B]. We fix T ≥ 0

such thatϕ ≡ 0 on [T,∞[×Ω and setN = [T/k + 1]. We also denote by
u0

T the application defined byu0
T (x) = u0

K for a.e.x ∈ K, and byubT ,k the
application defined byubT ,k(x) = ub,nσ for a.e.(t, x) ∈ [nk, (n+ 1)k[×σ.

Multiplying (49) bykm(K)ϕnK =
∫ (n+1)k

nk

∫
K
ϕdx dt, and summing

overK ∈ T , n ∈ N, yields the inequality:

T1 + T2 ≤ 0 ,(52)

where

T1 =
N∑
n=0

∑
K∈T

m(K) (η(un+1
K )− η(unK))ϕnK ,(53)

and, by summing over the edges,T2 = T int
2 + T b2 , with

T int
2 =

N∑
n=0

k
∑

(K,L)∈En
int

ϕ
n
K(Φ+,n

K,L,κ(u
n
K , u

n
L)− Φ+,n

K,L,κ(u
n
K , u

n
K))

−ϕnL(Φ+,n
K,L,κ(u

n
K , u

n
L)− Φ+,n

K,L,κ(u
n
L, u

n
L)

)
 ,

(54)
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T b2 =
N∑
n=0

k
∑
σ∈Eb

ϕnK(Φ+,n
K,σ,κ(u

n
K , u

n,b
σ )− Φ+,n

K,σ,κ(u
n
K , u

n
K)) .(55)

Proving the approximate continuous entropy inequalities comes back to
prove

T10 + T20 ≤ εT ,k(ϕ)(56)

whereT10 andT20 are defined by

T10 = −
∫∫

Q
η+
κ (uT ,k)ϕt dx dt −

∫
Ω
η+
κ (u0)ϕ(0) dx ,

T20 = −
∫∫

Q
Φ+
κ (t, x, uT ,k) · ∇ϕdx dt

−Lip(f)
∫
Σ
η+
κ (ub)ϕ(t, x) dγ(x) dt .(57)

To this purpose, we compareT10 to T1 andT20 to T2.

1 Estimate onT10 − T1

Using the definitions ofu0
T anduT ,k, the quantityT10 reads:

T10 =
N∑
n=0

∑
K∈T

η+
κ (un+1

K )− η+
κ (unK)

k

∫ (n+1)k

nk

∫
K
ϕ(x, (n+ 1)k) dx dt

+
∫
Ω

(η+
κ (u0

T )− η+
κ (u0))ϕ(0) dx .

From the fact thatη+
κ is 1-Lipschitz continuous is deduced:

|T10 − T1| ≤ ε0T (ϕ) + ε1T ,k(ϕ) ,(58)

where

ε0T (ϕ) =
∫
Ω
|u0

T ,k − u0|ϕ(0) dx ,

ε1T ,k(ϕ) =
N∑
n=0

∑
K∈T

|un+1
K − unK |

k

×
∫ (n+1)k

nk

∫
K
|ϕ(x, (n+ 1)k)− ϕ(x, t)| dx dt .

(59)

Before giving precise estimates on these quantities, we study the difference
T20 − T2.
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2Comparison ofT20 andT2 We divide the study into two steps. Indeed, we
have to take care to what happens inside and on the boundary ofΩ. From
the definition of the functionuT ,k, from the fact thatdivx f = 0 and from
Lemma 7 is deduced the equality:

T20 = T int
20 + T b20 ,

where

T int
20 = −

N∑
n=0

∑
(K,L)∈En

int

×


∫ (n+1)k

nk

∫
K|L

Φ+
κ (t, x, unK) · nK|L ϕdγ(x) dt

−
∫ (n+1)k

nk

∫
K|L

Φ+
κ (t, x, unL) · nK|L ϕdγ(x) dt

 ,

T b20 = −
N∑
n=0

∑
σ∈Eb

∫ (n+1)k

nk

∫
σ
Φ+
κ (t, x, unK) · nK,σϕdγ(x) dt

−Lip(f)
∫
Σ
η+
κ (ub)ϕdγ(x) dt .

2.1 Estimate on|T int
20 − T int

2 |

In order to compareT int
20 to T int

2 , let us introduce the average value ofϕ on
an edge, defined by

ϕ̃nσ =
1

km(σ)

∫ (n+1)k

nk

∫
σ
ϕdγ(x) dt .

Notice that,ϕ being a regular function, its average values onK,L andK|L,
with (K,L) ∈ Enint are “close” each to other. That is why we rewrite:

T int
20 = −

N∑
n=0

k
∑

(K,L)∈En
int

[(1
k

∫ (n+1)k

nk

∫
K|L

Φ+
κ (t, x, unK)

·nK|L ϕdγ(x) dt− Φ+,n
K,L,κ(u

n
K , u

n
L)ϕ̃nK|L

)
−

(1
k

∫ (n+1)k

nk

∫
K|L

Φ+
κ (t, x, unL)

·nK|L ϕdγ(x) dt− Φ+,n
K,L,κ(u

n
K , u

n
L)ϕ̃nK|L

) ]
,
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then

T int
20 = −

N∑
n=0

k
∑

(K,L)∈En
int

[(1
k

∫ (n+1)k

nk

∫
K|L

Φ+
κ (t, x, unK)

·nK|L ϕdγ(x) dt− Φ+,n
K,L,κ(u

n
K , u

n
K)ϕ̃nK|L

)
+

(
Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)
ϕ̃nK|L

−
(1
k

∫ (n+1)k

nk

∫
K|L

Φ+
κ (t, x, unL) · nK|L ϕdγ(x) dt

−Φ+,n
K,L,κ(u

n
l , u

n
L)ϕ̃nK|L

)
−

(
Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)
ϕ̃nK|L

]
.

Now, letεc,intT ,k , εint,+T ,k , εint,−T ,k be defined by

(60)

εc,intT ,k (ϕ) =
N∑
n=0

k
∑

(K,L)∈En
int

∣∣∣1
k

∫ (n+1)k

nk

∫
K|L

(
Φ+
κ (t, x, unK) · nK|L

− 1
m(K|L)

Φ+,n
K,L,κ(u

n
K , u

n
K)

)
ϕdγ(x) dt

−1
k

∫ (n+1)k

nk

∫
K|L

(
Φ+
κ (t, x, unL) · nK|L

− 1
m(K|L)

Φ+,n
K,L,κ(u

n
L, u

n
L)

)
ϕdγ(x) dt

∣∣∣ ,
εint,+T ,k (ϕ) =

N∑
n=0

k
∑

(K,L)∈En
int

∣∣∣(Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)
×

(
ϕnK − ϕ̃nK|L

)∣∣∣ ,
εint,−T ,k (ϕ) =

N∑
n=0

k
∑

(K,L)∈En
int

∣∣∣(Φ+,n
K,L,κ(u

n
L, u

n
L)− Φ+,n

K,L,κ(u
n
K , u

n
L)

)
×

(
ϕnL − ϕ̃nK|L

)∣∣∣ .
The following estimate holds:

|T int
20 − T int

2 | ≤ εint,cT ,k (ϕ) + εint,+T ,k (ϕ) + εint,−T ,k (ϕ) .(61)

Notice thatεc,intT ,k is a consistency error (it tends to zero withh thanks to
the property(iv) of assumption (27) satisfied by the numerical fluxes). The
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quantitiesεint,+T ,k andεint,−T ,k are those which measure the difference between

T int
20 andT int

2 . We will use the weakBV estimate (34) to prove that they
tend to zero ash does. But we first study the quantityT b2 − T b20.

2.2 Comparison ofT b
20 and T b

2

Recall that the quantityT b20 is defined by:

T b20 = −
N∑
n=0

k
∑
σ∈Eb

1
k

∫ (n+1)k

nk

∫
σ
Φ+
κ (t, x, unK) · nK,σϕdγ(x) dt

−Lip(f)
N∑
n=0

∑
σ∈Eb

∫ (n+1)k

nk

∫
σ
η+
κ (ub)ϕdγ(x) dt .(62)

Now, let us denote bỹT b20 the following quantity

T̃ b20 = −
N∑
n=0

k
∑
σ∈Eb

Φ+,n
K,σ,κ(u

n
K , u

n
K)ϕnK

−
N∑
n=0

k
∑
σ∈Eb

Lip(f)m(σ) η+
κ (ub,nσ )ϕnK .(63)

ThenT b2 can be compared tõT b20:

T b2 − T̃ b20 =
N∑
n=0

k
∑
σ∈Eb

ϕnK(Φ+,n
K,σ,κ(u

n
K , u

b,n
σ ) + Lip(f)m(σ) η+

κ (ub,nσ )) ,

and this quantity is nonnegative:

T b2 − T̃ b20 ≥ 0 .(64)

Indeed, the following lemma holds:

Lemma 9 Assume that (27) holds. Letσ be inEb andK be inT s.t.σ =
∂K ∩ ∂Ω. Then:∀κ ∈ [A,B] , ∀a , b ∈ [A,B],

Fn
K,σ(a�κ, b�κ)− Fn

K,σ(κ, κ) + Lip(f)m(σ) (b− κ)+ ≥ 0 .

Proof. The numerical fluxes being non-decreasing functions with respect
to their first variables, the following inequality holds:

Fn
K,σ(a�κ, b�κ) ≥ Fn

K,σ(κ, b�κ) .
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Moreover, from the fact thatFn
K,σ is am(σ)Lip(f)-Lipschitz continuous

function, is deduced the inequality

Fn
K,σ(κ, b�κ)− Fn

K,σ(κ, κ) + Lip(f)m(σ) (b− κ)+ ≥ 0 ,

which yields the result. � 

Now, let us estimate the quantityT b20− T̃ b20. To compare the expressions
(62) and (63), we write

η+
κ (ub,nσ )ϕnK = η+

κ (ub,nσ )
(
ϕnK − 1

km(σ)

∫ (n+1)k

nk

∫
σ
ϕ
)

+
1

km(σ)

∫ (n+1)k

nk

∫
σ

(η+
κ (ubT ,k)− η+

κ (ub))ϕ

+
1

km(σ)

∫ (n+1)k

nk

∫
σ
η+
κ (ub)ϕ ,

and get

|T b20 − T̃ b20| ≤ εc,bT ,k(ϕ) + εbT ,k(ϕ) + ε̃c,bT ,k(ϕ) ,(65)

where

εc,bT ,k(ϕ) =
N∑
n=0

k
∑
σ∈Eb

∣∣∣1
k

∫ (n+1)k

nk

∫
σ
Φ+
κ (t, x, unK)

·nK,σ ϕ− Φ+,n
K,σ,κ(u

n
K , u

n
K)ϕnK

∣∣∣ ,
εbT ,k(ϕ) = Lip(f)

∫
Σ
|ubT ,k − ub|ϕdγ(x) dt ,

ε̃c,bT ,k(ϕ) =
N∑
n=0

∑
σ∈Eb

Lip(f) km(σ) η+
κ (ub,nσ ) |ϕnK − ϕ̃nσ| .

(66)

Eventually, from (52), (58), (61), (64) and (65) is deduced the approximate
continuous entropy inequality (16) with

εT ,k = εcT ,k + ε0T + ε1T ,k + εint,+T ,k + εint,−T ,k + εbT ,k ,(67)

εcT ,k being a consistency error defined by

εcT ,k = εc,intT ,k + εc,bT ,k + ε̃c,bT ,k(68)

(see (60) and (66)).
Let us now turn to the study ofεT ,k.
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3 Estimate onεT ,k

Wefirst turn to the consistency errors, for example toεc,intT ,k which, we recall,
is defined by

εc,intT ,k (ϕ) =

∣∣∣∣∣
N∑
n=0

k
∑

(K,L)∈En
int

1
k

∫ (n+1)k

nk

∫
K|L

(
Φ+
κ (t, x, unK)

·nK|L −
1

m(K|L)
Φ+,n
K,L,κ(u

n
K , u

n
K)

)
ϕdγ(x) dt

−1
k

∫ (n+1)k

nk

∫
K|L

(
Φ+
κ (t, x, unL) · nK|L −

1
m(K|L)

×Φ+,n
K,L,κ(u

n
L, u

n
L)

)
ϕdγ(x) dt

∣∣∣∣∣ .
As the numerical fluxes, the numerical entropy fluxes are consistents: for all
s ∈ [A,B],

Φ+,n
K,σ,κ(s, s) =

1
k

∫ (n+1)k

nk

∫
σ
Φ+
κ (t, x, s) · nK,σ dγ(x) dt .

Therefore, the quantityεc,intT ,k (ϕ) can be rewritten as:

εc,intT ,k (ϕ) =

∣∣∣∣∣
N∑
n=0

k
∑

(K,L)∈En
int

1
k

∫ (n+1)k

nk

∫
K|L

(
Φ+
κ (t, x, unK) · nK|L

− 1
m(K|L)

Φ+,n
K,L,κ(u

n
K , u

n
K)

)
(ϕ− ϕ̃nK|L) dγ(x) dt

−1
k

∫ (n+1)k

nk

∫
K|L

(
Φ+
κ (t, x, unL) · nK|L

− 1
m(K|L)

Φ+,n
K,L,κ(u

n
L, u

n
L)

)
(ϕ− ϕ̃nK|L) dγ(x) dt

∣∣∣∣∣ .
Now, writing

ϕ(t, x)− ϕ̃nK|L =
1

km(K|L)

∫ (n+1)k

nk

∫
K|L

×(ϕ(t, x)− ϕ(s, y)) dγ(y) ds ,(69)

the following majoration holds: for all(t, s, x, y) ∈ [nk, (n + 1)k[2×
(K|L)2

|ϕ(t, x)− ϕ(s, y)| ≤ (k + h)
∣∣∣∣∣∣(|∇ϕ|+ |ϕt|)

∣∣∣∣∣∣
L∞

.(70)
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Besides, the functionf is Lipschitz continuous so that there existsC ≥ 0,
only depending onΩ , f , A , B, such that for alls ∈ [A,B], for all
(K,L) ∈ Eint, for all t ∈ [nk, (n+ 1)k[ and allx ∈ K|L,∣∣∣f(t, x, s) · nK|L −

1
m(K|L)

Fn
K,L(s, s)

∣∣∣ ≤ C(h+ k) .

Discussing the respective positions ofunK , u
n
L andκ, we deduce from this

result the following estimate∣∣∣Φ+
κ (t, x, unK) · nK|L −

1
m(K|L)

Φ+,n
K,L,κ(u

n
K , u

n
K)

∣∣∣ ≤ 2C(h+ k) ,(71)

which is still true whenunK is replaced byunL.
From (69), (70) and (71), is deduced the estimate

εc,intT ,k (ϕ) ≤ 2C
∣∣∣∣∣∣(|∇ϕ|+ |ϕt|)

∣∣∣∣∣∣
L∞

(h+ k)2
N∑
n=0

∑
(K,L)∈En

int

km(K|L)

≤ 2C
∣∣∣∣∣∣(|∇ϕ|+ |ϕt|)

∣∣∣∣∣∣
L∞

m(Ω)
α2 (T + 1) (h+ k)2h−1 ,

the second inequality being a consequence of assumption (25) on the mesh.
Eventually, the CFL condition (32) holding, we get

εc,intT ,k (ϕ) h→0−→ 0 .

Wewould do the same to get an estimate onεb,cT ,k andε̃
b,c
T ,k, in order to prove

that they are shrinking to zero whenh does.
We now study the errorsεint,+T ,k andεint,−T ,k defined by (60). Here, theweak

BV estimate on space derivatives (34) is required. Indeed, we have∣∣∣∣Φ+,n
K,L,κ(u

n
K , u

n
K)− Φ+,n

K,L,κ(u
n
K , u

n
L)

∣∣∣∣
≤ max

un
L≤c≤d≤un

K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

and, thanks to the integral Taylor formula, we get an estimate on the differ-
ence between the average value ofϕ on a controle volume and on one of its
edge: there existsCϕ, depending only uponϕ, such that

∀(K,L) ∈ Enint , |ϕnK − ϕ̃nK|L| ≤ Cϕ (h+ k) .
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Therefore, the following estimate onεint,+T ,k (ϕ) holds

εint,+T ,k (ϕ) ≤ Cϕ (h+ k)
N∑
n=0

k
∑

(K,L)∈En
int

×
 max
un

L≤c≤d≤un
K

(Fn
K,σ(d, c)− Fn

K,σ(d, d))

+ max
un

L≤c≤d≤un
K

(Fn
K,σ(d, c)− Fn

K,σ(c, c))


≤ CϕC

h+ k√
h

,

where the constantC is given by (34).Wewould follow the same lines to get
a similar estimate onεint,−T ,k (ϕ). Moreover, the continuity of the translations
in L1

loc ensures that the quantitiesε0T (ϕ) andεbT ,k(ϕ) tend to zero whenh
does.

Convergence of the scheme

We come back to the discussion preceding the introduction of the entropy
process solution (see Sect. 2): we know thatuT ,k is bounded inL∞ (Lemma
5); the compacity result given in Theorem 1 proves that there existsµ ∈
L∞(Q× (0, 1)) such that, up to a subsequence, for allg ∈ C(R),

g(uT ,k) −→
∫ 1

0
g(µ(., α)) dα in L∞(Q) weak− / whenh→ 0 .

Then, taking Theorem 3 into account, it is clear thatµ is an entropy process
solution to problem (1)-(2)-(3). Thus, the functionµ does not depend on its
third variable (Theorem 2): there existsu ∈ L∞(Q) such thatµ(t, x, α) =
u(t, x) for a.e.(t, x, α) ∈ Q × ( 0, 1). Consequently, the functionu is a
weak entropy solution to problem (1)-(2)-(3) and the whole sequence (uT ,k)
converges tou in Lploc(Q) for everyp ∈ [ 1,∞[, as proved by the following
lemma.

Lemma 10 LetO be a bounded borelian subset ofRm and let(vn) be a
bounded sequence ofL∞(O) such that there existsv ∈ L∞(O) satisfying:
for all g ∈ C(R),

g(vn) −→ g(v) in L∞(O) weak− / .

Then, for allp such that1 ≤ p < +∞, vn −→ v in Lp(O).
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Proof. The spaceL∞(O) is continuously imbedded in the spaceL2(O);
taking g(x) = x we therefore have:vn −→ v in L2(O) weak-/. Taking
g(x) = x2, we also prove||vn||L2(O) → ||v||L2(O) and the Hilbert structure
of the spaceL2(O) allows us to get the result whenp = 2, then, using the
fact that(vn) is bounded inL∞(O), for everyp.

Eventually, we have proven the following results.

Theorem 4 There exists a uniqueweak entropy solution to problem (1)-(2)-
(3).

Theorem 5 Letα ∈ R+ andξ ∈ ( 0, 1) be fixed. Assume that assumptions
(25), (27) and (32) hold. LetuT ,k be the numerical approximate solution
of the problem (1)-(2)-(3) defined by (29), (30), (31). Then, for everyp
in [ 1,+∞[, uT ,k converges to the weak entropy solution to (1)-(2)-(3) in
Lploc(Q).
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