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Abstract—With specific flora and fauna, regional landscapes
and forests constitute an important part of the cultural heritage.
Several natural environments have already been classified as
national or regional parks. The UNESCO World Heritage covers
13% of the protected forests in the world. Thus, preserving those
sites represents a crucial issue. Such a safeguarding involves
a detailed knowledge of the sites and forestry management
plans. The management of a natural forest is traditionally
based on forest plot inventories in which several features of
the trees are measured. The set of data collected during these
inventories represents the starting point of forest monitoring, flora
preservation and risks prevention. Traditionally, measurements
are made manually by operators. However, during the last decade,
terrestrial laser scanning has become a new and promising
way of measuring such attributes. This instrument provides a
fine three dimensional point cloud virtual representation of the
scanned scene. Trees location, stem diameter, and stem taper can
be extracted from these point clouds using pattern recognition
algorithms. In this paper we present a novel two steps way
to improve the quality of tree branching detection in a three
dimensional point cloud acquired by terrestrial laser scanner.
This method was developped in order to enhance the results of a
previous study. Our approach is based on the combination of a
simplification step (using particle simulation), followed by a shape
detection (discrete arcs of circle detection). It identifies the lack
of accuracy in tree stem diameter measurements at branching
junctions for further more detailled analysis.

I. INTRODUCTION

Forests and wooded areas are part of the national and
regional cultural heritages because of their impact on ecologi-
cal, societal and economical assets. One of the specificities of
forests with respect to their contribution to the natural heritage
lies in their long renewal and evolution cycle as well as in their
lively and dynamic nature. As a consequence, a quantitative
and regular monitoring of this evolution is necessary for the
knowledge, the preservation and the promotion of this heritage.
This is true not only for preservation spaces such as natural
parks or wilderness areas, but also for managed forests (as
shown by the “Forêt d’exception” label created by the ONF in
2007 or the numerous wooded areas classified by the UNESCO
as world heritage).

Trees constitute an important factor of forests development
and play a major role in environment preservation. Thus, they

are given a particular attention. Many studies are related to
forest inventories which are essential to manage and preserve
forest environment. Traditional inventories consist in manually
measuring several attributes of trees such as diameter at breast
height (DBH, diameter of the trunk 1.30m above the ground)
or tree height.

Recently, terrestrial laser scanning has proven to be a
promising tool for forest inventories measurements ([1], [2]).
This instrument provides a three dimensional point cloud
of the scene and allows automatic treatments as well as
temporal follow-up of forest inventory plots. From these data,
the position, DBH and stem taper of the scanned tree can
be estimated ([3], [4]). This also permits the extraction of
branching attributes of the trees ([5]) as well as biomass
measurements ([6]).

Lately, Othmani et al. developed an efficient method to
automatically extract the location of trees, their DBH and
stem taper ([7]). However, this methodology may lead to
inaccurate results at branches junctions. In this paper we
propose a two steps enhancement of this methodology to
improve measurement accuracy at these points. Our approach
is based on the combination of a point cloud simplification and
the introduction of a new tree cross-section model (discrete
arcs of circle) to be extracted by a shape detection algorithm.

This paper is organized as follows. After discussing pre-
vious work of Othmani et al. ([7]) in section II, we present
the developed enhancement in section III. Experimental results
are explained in section IV. Conclusion and future work are
finally presented in section V.

II. RELATED WORK

The method developed by Othmani et al. ([7]) assumes that
tree cross-sections are circular ([3]). This justifies the use of
pattern recognition in the point cloud. Their work is divided
into four main steps.

First the point cloud is classified into soil points and
vegetation points. The second step consists in clustering points
according to the surface they lie on, and extracting the tree
stem clusters by filtering them with a pattern recognition
algorithm. The third step creates a skeleton of each detected



tree. Finally trees positions and DBH are calculated in the
fourth step.

A. Soil Extraction and DTM Generation

Determining for each point whether it is a soil point or a
vegetation point is used as a pretreatment filter in several stud-
ies ([8]). Indeed, this classification allows further algorithms to
focus on on the vegetation points for tree detection, and thus
speeds up the chain of processes. Based on soil points a DTM
is generated, giving a base reference for calculating the height
at which DBH should be measured and total tree height.

The classification is done by calculating the minimum
height in each cell of a horizontal regular grid. Then the
density of points between the minimum height and 32 cm
above is calculated and grid cells having a low density are
filtered. The smoothness of the terrain is also analysed for
filtering grid cells. Each cell containing in its neighbourhood
a minimum height forming a zenithal angle with it lower than
45 degrees are eliminated. A digital terrain model (DTM) is
generated from the previous grid by interpolating the minimum
heights with a Delaunay triangulation. Interpolated values are
considered to be the base height of the terrain. Because of the
potential presence of low plants and noise and the possible
variations of soil height in a cell of the horizontal grid, the
points up to 32cm from the base height are classified as soil
points whereas other points are classified as vegetation.

B. Clustering and Circle Fitting

In this step, points belonging to the same tree stem are
clustered. A circle will then be fitted to each cluster in order
to filter non-stem clusters.

The cloud of vegetation points is sliced into 1cm thick
horizontal layers. In each layer, points are clustered according
to their proximity: two points are clustered together if their
are close enough one from another. Othmani et al. ([7]) used
a FARO Focus3D terrestrial laser scanner with a scanning
resolution of 0.036 degrees. They usually work on a 20m
radius circular forest plot. Spacing between two consecutive
beams is around 1.2cm at 20m. According to this value, and
to overcome some occlusion issues, the clustering distance
was fixed to 3cm. Clusters containing too few points to be
representative are filtered.

A circle is then fitted to each cluster by a least square
routine. Clusters leading to a circle fitting error above a
threshold are filtered. Because tree stems are assumed to have
a vertical continuity, vertical alignment of the fitted circle is
used as an additional filter. For each circle C detected, if no
circle with a similar radius (empirically between 2

3 and 3
2 times

the radius of C) located in the 50 upper and lower layers has
its center in C, then the circle it is filtered.

At the end of this step only the clusters of points having
a high degree of circularity and vertical coherence, and thus
describing a tree stem, should remain.

C. Skeletonization

Obtaining the skeleton of a natural tree is an important
issue that can be achieved in different ways ([9],[10]). In the
work of Ohtmani et al. ([7]), this is done by aggregating tree

stem clusters into virtual tree stems. First virtual sections are
created according to vertical alignment of the circles. Virtual
sections are then merged into virtual stems from which a
skeleton is extracted.

Two clusters are affected to the same virtual section if
their bounding box intersect horizontally and the difference
between their height is lower than 50 cm. For each virtual
section, a skeleton is computed. Virtual sections are finally
merged into virtual stems by analyzing their vertical extend
and the alignment of their skeleton extremities. After merging
the sections, the final skeleton of each virtual stem is computed
and smoothed with a mobile-mean routine.

D. Extraction of Tree’s Attributes

For each virtual stem, a circle is fitted to the stem points
in a horizontal layer 1.30m above the base height. The tree
location is considered to be the center of this circle. Then,
a serie of circles is fitted to the virtual tree stem points
perpendicularly to the stem skeleton below 3.30m from the
DTM. For a better accuracy on the DBH measurement, it
is deducted from the linear interpolation of the extracted
diameters in which outliers are iteratively removed.

III. METHODS AND MATERIALS

The method presented above reaches its limits in the case
of branch junctions of a tree as the hypothesis made on the
tree cross-sections shape becomes invalid. Indeed, at branches
junctions, cross-sections smoothly deform into a two circles
shape. Fitting a single circle in this case leads to inaccurate
measurements of stem position and diameter (results often
become aberrant) and thus to errors while calculating stem
taper. We therefore decided to introduce a new tree cross-
section model, shifting from circles to arcs of circle.

We developed a two steps method in order to extract arcs of
circle from three dimensional point clusters. First, we simplify
each point cluster previously classified as tree stem. Reducing
the amount of data allows an efficient use of further analysis
and homogenizes the points cloud resolution. Another major
effect of simplification is the smoothing of data, facilitating
shape extraction. In the second step, each simplified cluster is
analysed and those which are not classified as arc of circle are
filtered.

A. Clusters Simplification

In this step, each cluster containing a sufficient amount
of points is simplified. We adopted a simplification algorithm
based on particle simulation inspired by Turk ([11]). This
choice was motivated by its adaptability to point clouds as
well as its flexibility, and the possible adaptation of the level
of simplification to local surface features. The first main issue
consists in finding the number of particles to be spread over
the cluster. These particles are then randomly positioned in the
three dimensional space. Then, an iterative process equalises
their position over the surface using a point repulsion step
followed by a relaxing step.

Each particle spread will repulse others in its neighbour-
hood so they won’t aggregate but will disperse in the point
cluster uniformly. This so-called repulsion step ensures an



equalised description of the surface. We use the same linear
repulsion force as in [12] and [11]. The force vectors are
computed as:

Fi(p) = k(r − ‖p− pi‖)· (p− pi) (1)

where Fi(p) is the repulsive force exerted on particle p by
particle pi, k is a force constant and r is the repulsion radius.
At each iteration, the total repulsion applied to a particle p is
given by

F (p) =
∑
i∈Np

Fi(p) (2)

where Np is the set of spread particles at distance less than
r from p.

After each repulsion step,a relaxation stage takes back the
particles on the described surface. In our study, for the resulting
simplified point cluster to be a subset of the original data, the
relaxation is done by positioning every particles at the nearest
point of the centroid of its neighbours.

The initial number of particles spread into each cluster is
chosen to homogenize the resulting resolution. Otherwise, in
order to get rid of the influence of density variations according
to the distance to the scanner, this initial number is computed
as a function of the bounding box of the cluster :

if |C| ≥ nmin and
p

2 · d
≥ nmin

n =
p

2 · d
else

no simplification

(3)

where n is the number of particles to spread, |C| is the size of
the cluster, nmin is the minimal resulting number of particles
set by the user, p is the perimeter of the bounding box of the
cluster to simplify, and d is the particle spacing in the ideal
case of a perfect and noiseless arc of circle. nmin has to be set
according to the minimum number of points needed to describe
a recognizable arc of circle. The ideal distance between two
particles is set to the distance between two consecutive beams
at the plot extremity. This ensure a homogenized sampling
density.

B. Shape Analysis

Once clusters are simplified, they are analysed and filtered
by a pattern recognition algorithm. Clusters are filtered if they
do not fit a discrete arc of circle. The arc of circle detection
we use was presented in [13]. Since this algorithm needs an
ordinated set of points as input data, we first create, as a
pretreatment, such polylines.

In order to create a polyline from a point cluster, a starting
point is selected randomly as the polyline initialisation. The
closest point to the extrema of the polyline is then added at
the corresponding position and becomes the new extrema. This
process is repeated until all the points in the cluster have been
added to the polyline.

Each polyline is then transformed in the tangent space
described in [13]. Let C = {Ci}ni=0 be a polyline,
where {Ci}ni=0 are the n points composing the line. Let
αi = ](

−−−−→
Ci−1Ci,

−−−−→
CiCi+1) and li = |CiCi+1|. The follow-

ing transformation maps the polyline onto the tangent space
by creating segments [Ti2T(i+1)1] and [T(i+1)1T(i+1)2] for
i ∈ [0, n− 1]

T02 =(0, 0) (4)
Ti1 =(T(i−1)2.x+ li−1, T(i−1)2.y) ∀i ∈ [1, n] (5)
Ti2 =(Ti1.x, Ti1.y + αi) ∀i ∈ [1, n− 1] (6)

Arcs of circle show interesting properties in this tangent space.
Polylines can be considered as arcs of circle if, and only if:

sinαi ' αi ∀i (7)
l1 + l2
α1

' l2 + l3
α2

' · · · ' ln−1 + ln
αn−1

(8)

Hence, in the tangent space, the mid-points of the segments
[Ti2T(i+1)1] and [T(i+1)1T(i+1)2] are aligned and form a fuzzy
line ([13]). Thus, arc of circle recognition is reduced to a line
detection problem.

Therefore, we use a simple linear regression to fit a line
to the mid-points of the tangent space. The simplified point
clusters leading to a residual error above a threshold are
filtered. This value must be adapted according to the data set,
especially the type of bark of the trees. A low value is sufficient
for smooth barks while rough barks are more difficult to
segment as an arc and needs a higher value. According to this,
values between 20o and 50o represent a compromise between
the quality of the filter and the number of false negatives.

IV. RESULTS

In order to validate our approach, we inserted our filtering
step in the tree extraction process described by Othmani et al.
in [7] and compared the models obtained with and without the
present filter. Figures (1) (a), (b) and (c) show the experimental
results obtained on two individual trees extracted from natural
forest plots. As can be seen, the initial methodology leads to
aberrant cylinders at branching junctions as well as in branches
and/or foliage merging areas. Filtering such data was the main
objective of our filter as in such a setting, the resulting tree
models can be unrealistic and lead to automatic measurement
errors.

As shown in figure (1) (a), (b) and (c), inserting our filter
in the reconstruction process efficiently reduces the number of
aberrant cylinders and hence improves the accuracy of the final
models and of automatic extractions (such as DBH extraction).

Our filter mostly operates at branching junctions and re-
moves aberrant cylinders created by unwanted foliage data in
horizontal clusters. However it may lead to the elimination of
good clusters since the pattern recognition algorithm we use
is more restrictive than the filtering in [7]. Let us mention that
however, it does not fully filter any noise in the data.

The threshold on line fitting residual error in the tangent
space for arc of circle recognition is a crucial parameter since
it strongly influences the quality of results. Its value has to



(a)

(b)

(c)

Fig. 1. Result of tree stem modeling - (left) Othmani results, (center) initial
cloud, (right) Othmani reconstruction with our filter.

be set with precaution and might be slightly adjusted to the
number of points contained by each analysed cluster in order
to reduce statistical effects.

V. CONCLUSION AND PERSPECTIVES

In this paper we propose a two steps enhancement for
tree stem reconstruction processes (in particular, we tested our
approach by integrating it to [7]). Our work constitutes a novel
combination and application of two point cloud processing
algorithms: namely a particles simulation simplification and
an arc of circles pattern recognition algorithm. This approach
leads to an improvement of the automatic extraction of natural
tree stems attributes based on circle fitting (such as in [7]).

Indeed, most aberrant cylinders are successfully filtered
which highly improves constructed tree models. As mentioned
earlier, such a digital modelling is a central issue in order
to preserve, control and promote our forest and wooded
areas heritage. But obviously, accuracy is the primary quality
expected from such a digitalisation.

In further work, we intend to use the arc of circle detection
to segment the clusters according to the branches position
by segmenting each fuzzy line in the tangent space. Fuzzy
line extraction will reduce the sensitivity to the choice of the
threshold in the line fitting used in the present work. It will
therefore lead to a better separation of branches at branching
junctions and hence will allow the filter to keep stem points
of a cluster while filtering foliage points it contains.

We also intend to improve our usage particle simulation
simplification. On the one hand, it should better handle the
local geometry of the objects. On the other hand, a simplifica-
tion step producing smoother resulting point sets would help
further pattern recognition.
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[6] M. Béland, J.-L. Widlowski, R. Fournier, J.-F. Côté, and M. Verstraete,
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