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Abstract

This paper deals with the building of a gradient-based metamodel using a dedicated strategy for

solving structural assemblies problems. This work is the first part of a two-levels global optimization

strategy. The general objective is to reduce computation costs; here, we focus on the costs which are

associated with the generation of the metamodel. Our goal is achieved through the introduction of two

main elements: what we call a “multiparametric strategy” based on the LATIN method, which reduces

the computation costs when the parameters vary, and the use of a cokriging metamodel taking gradients

into account. Several examples illustrate the efficiency of these two elements.

Keywords: metamodel, cokriging, multiparametric strategy, LATIN method, assemblies, two-levels

optimization.

1. Introduction

Structural optimization involves two very different domains of expertise: numerical simulation and

optimization. Of the two, simulation is the only one which generates high computation costs. The main

difficulty in the context of optimization is that the optimizer often requires a large number of simulations

to locate the optimum of an objective function. (In contact and friction problems, these simulations

are nonlinear and, thus, even more costly.) Therefore, new methods for the resolution of complex

optimization problems are needed. In this context we proposed to use a two-levels model optimization.

Here, we focus on the first level. Thus, this paper deals with the aim of reducing the computational cost

associated to the building of kriging metamodels. Therefore we introduced a gradient-based kriging

metamodel and a MultiParametric Strategy.

In the first part of this paper, the context of two-levels model optimization is reviewed. In the second

part, a specific mechanical resolution process is introduced and its performance is discussed in detail.

The third part concerns the kriging class of metamodels. Finally, the last part presents the application

of the coupled multiparametric-metamodel approach to a mechanical test case.

2. Two-level model optimization

The proposed multilevel model strategy is based on the approach developed in [1]. In our case, we

consider the two-levels strategy illustrated in Figure 1. The first level consists in a metamodel defined

1



using a limited amount of data. The zones where the optimum can be located are determined using,

for example, a genetic algorithm. This information is transferred to the second level, where a precise

search of the minimum is carried out. Therefore, the second level consists in an optimization process

based on the full mechanical model. Two elements contribute to the computation cost: the construction

of the metamodel from the responses of the full mechanical model, and the direct optimization based

on the full mechanical model. Both elements are involved both levels of the two-levels model strategy.

Therefore, the strategy proposed here leads to a reduction in the computation cost of both phases.

Simulator Metamodel
Optimizer

Simulator
Optimizer

Optimization using the metamodel

Direct optimization

Figure 1: The multilevel optimization

The first step of our two-level optimization is a classical approach that is often designated as

surrogate-based optimization and, overall, our work fits in the context of parametric optimization. More

details on the use of metamodels in the context of parametric optimization can be found in [2, 3, 4, 5].

The scope of this paper is limited to a study of the cost associated with the generation of the meta-

model.

Many types of metamodels can be used to find an approximate solution: polynomial regression [6],

methods based on neural networks [7], radial basis functions [8], etc... We chose to use a particular

category of metamodels called kriging approximations and, more precisely, a cokriging metamodel

using derivatives. These approximations are presented in Section 4.

3. The multiparametric strategy

This chapter introduces the dedicated strategy called multiparametric strategy for solving problems

on structural assemblies. Due to a judicious reinitialisation of the LATIN algorithm - described in

Sect. 3.2 - multiparametric strategy enables one to reduce significantly the computation cost. The

multiparametric strategy is presented in Sect 3.3.1 and example of 2D mechanical benchmark with two,

three and four design variables is used for showing the performance of the multiparametric strategy (See

Sect. 3.3.3).

3.1. The context

We are considering assemblies of linear elastic structures under the assumption of small perturba-

tions. The only nonlinearities are considered to be due to contact or friction between parts. The strategy

we use to solve this type of problem, based on twenty years of development at LMT-Cachan, relies on

an iterative algorithm introduced by P. Ladevève [9, 10].

In the context of assemblies, this strategy remains on three main points:

• the structure being studied is divided into substructures and interfaces. In the context of assembly

problem, the natural way is to considering substructures as the parts of the assembly and inter-

faces as the contact zones among parts. Moreover a mixed domain decomposition is considered

(force and displacement are unknows at the interfaces)
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• a dedicated iterative algorithm is used to solve the mechanical problem;

• the operators of the method remain constant and depend neither on the loading nor on the param-

eters (friction coefficient, gap) of the interface.

3.2. The resolution process

The resolution strategy, known as the LATIN (LArge Time INcrement) approach [10], consists

of alternative resolutions of two groups of equations. The first group contains the local equations Γ

(which may be nonlinear) related to the interfaces, and the second group contains the linear equations

Ad related to the substructures. The iterations between the two groups are handled through the use

of search directions which are parameters of the method. This resolution process, shown in Figure 2,

leads to the solution defined as the intersection of spaces Γ and Ad.

Ad

Γ

E− E+

ŝn+1/2

s sn+1 sn

Figure 2: Schematic representation of the LATIN process

Friction and contact problems along with their specific approaches and laws [11] are part of equation

group Γ. The schematic linear representation of Ad is due to the linear behavior of the substructures.

In the context of elastic assemblies, the boundary conditions (forces Fi and displacements Wi) at

each interface i between two substructures are sufficient to define the solution: the internal behavior

is the result of a classical elastic problem. Thus, an approximate solution is described entirely by

s =
⋃

all the interfaces

(Wi,Fi).

Readers can found additional details in [9, 10] for the LATIN method and in [11, 12] for its appli-

cation to assemblies.

3.3. A method for reducing computation costs

A parametric optimization involves many calculations, each carried out with a different set of the

parameters of the problem (design variables such as friction coefficients, preloads, gaps, etc...). This

leads to the resolution of many similar problems in the sense that only the parameters of the problems

vary. Therefore, it is essential to find a method to accelerate these calculations. The method we use,

called the Multiparametric Strategy (MPS), was introduced in [13, 14], then studied and applied to

various sample problems in [15, 16, 17].

3.3.1. Principle of the method

The main idea of the multiparametric strategy is to take advantage of a feature of the LATIN algo-

rithm: at each iteration, the solver yields an approximate solution over the whole loading path and at

all points in the structure. Then, if a new calculation associated with other values of the parameters is

requested, the algorithm can be reinitialized using a previously converged solution. Here, we assume
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that the only parameters which are different are the interface parameters, so space Γ alone is affected

by the change.

Each new converged solution enriches a database of possible restart solutions. Figure 3 illustrates

the use of the multiparametric strategy to obtain an approximate solution starting from a previous cal-

culation: the schematic representation shows that the required number of iterations to carry out the

converged solution s1 is bigger than the required number of iterations to obtain the other converged

solutions s2 or s3. Moreover, in order to obtain the solution s3, the LATIN algorithm can be reinitial-

ized with one of the two available converged solutions s1 or s2. We observe that the benefit depends

on the choice of the starting point. Here, we will use only a ”closest point” strategy: for each new

requested solution the LATIN algorithm is reinitialized with the converged solution associated with the

set of design parameters which is closest to the one being considered. Some indications for choosing

the best initialization strategy were given in [18].

Ad

Γ1
Γ2 Γ3

s1

s2

s1s3

Variation of parameters

Figure 3: The multiparametric strategy using the LATIN algorithm

With this approach, the solution converges in fewer iterations of the algorithm and, therefore, in less

time.

3.3.2. One Reduced Order Model: the Proper Generalized Decomposition (PGD)

Each converged solution used for reinitializing the LATIN algorithm can be considered as a reduced

order model (ROM) of the solution in the sense that, as we deals here with elastic assemblies, the whole

solution can be only described by the boundary conditions (more details can be found in [13]). In case

of problems with nonlinear material behaviour for example this idea must be extended with the use of

a PGD basis as ROM.

The Proper Generalized Decomposition is initially based on the space-time separated representa-

tions as a part of the LATIN method which was designed to deal with non-linearities such as plasticity

or viscoplasticity. Then many developments has been achieved during the past three decades. Readers

can found details in [19, 20] for the developpments of the PGD approximations and applications. Re-

cently the PGD was used on parametric models and this approach is initiated the use of the PGD to deal

with parametric problems such as parametric optimization problems, inverse identification problems

or real time simulation. In order to achieve these parametric problems the classical time-space sepa-

rated approximation presented by the Equation 1 can be rewritten as presented by Equation 2 where

k denoted a parameter of the model. The PGD can also be used as space-parameter decomposition as

presented by Equation 3.

u(x, t) ≈

Q∑

i=1

Xi(x) · Ti(t) (1)

u(x, t, k) ≈

Q∑

i=1

Xi(x) · Ti(t) ·Ki(k) (2)
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u(x, k) ≈

Q∑

i=1

Xi(x) ·Ki(k) (3)

Such a decomposition allows to reduce significantly the CPU time associated to the computation

of the responses of the model on requested values of the time, space and/or parameter. Examples of

the use of the parametric modelling can be found in [21, 22, 23, 24, 25]. PGD was also carried out in

the context of Multiparametric Strategy [26]. Finally the PGD was also used to build response surface

models [27]. Actually, wether it is for optimization, the building of a reponse surface or, more generally,

the building of a metamodel, it requires values of an objective function obtained for different values of

the parameters of the model. The PGD enables to reduce significantly the computation cost associated

to these required values.

3.3.3. Illustration of the performance of the method

A two design variables example.

The example considered here is a quasi-static academic problem which was presented in [16]. Fig-

ure 4 shows the geometry of the problem, which consists of three square parts (h = 50mm, Young’s

modulus E = 2 · 105MPa and Poisson’s coefficient ν = 0.3) which are in contact with friction. Each

part was represented by a single substructure discretized into 24 × 24 bilinear quadrangles. The para-

metric study consisted in varying the friction coefficients µ1 and µ2 of the two contact interfaces. The

loading consisted of two stages: first, a progressive vertical pressure P1 up to a maximum of 50MPa
applied at the top of substructure Ω3 (the preloading stage); then, a progressive horizontal load from 0
to 30MPa applied to substructure Ω2.

h

h
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Ω3

µ1

µ2
P2(MPa)
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t

P1(MPa)

50

t

0
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0.4
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0

0.2
0.4

0.6

0
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1,000
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F

Figure 4: The geometry of the problem and the response surface

In this test case, variations of the friction coefficients µ1 and µ2 between 0 and 0.6 were considered,

and the function studied was the reaction force on the rigid wall. Figure 4 shows the response surface

of this function obtained with 18× 18 values of the friction coefficients.

In order to illustrate the performance of the multiparametric strategy, the two-variable design space

was sampled with a 4× 4 regular grid. For each sample, the force and gradients were calculated (using

a classical finite difference method for the gradients). Table 1 summarizes the characteristics of these

calculations:
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The gain obtained with our method (compared to a classical calculation without the multiparametric

strategy) was estimated using the following expression:

Gain =
Number of calculations × CPU time of the first calculation

CPU time using the multiparametric strategy
(4)

We considered that the time of each calculation without the multiparametric strategy was almost con-

stant and equal to the time of the first calculation (8.2s).

Eval. Eval. gradients Total

Number of evaluations 16 2× 16 48

Total CPU time 42.3s 58.1s 100.4s

Avg CPU time per calc. 2.7s 1.8s 2.1s

Min CPU time 0.2s 0.2s 0.2s

Max CPU time 8.2s 6s 8.2s

Nb. of iterations 1,896 2,580 4,476

Avg nb. of iterations (per calc.) 118.5 80.6 93.3

Min nb. of iterations 5 5 5

Max nb. of iterations 381 260 381

Gain 3.11 4.54 3.94

Table 1: The mechanical calculations using the multiparametric strategy

The results presented in Table 1 show that the solver can reuse a previously converged solution

to accelerate the resolution of similar problems. The most remarkable point is the gain obtained in

the evaluation of the gradients. These were calculated using a finite difference method: each gradient

required the value of the response at 3 points (a sample point plus 2 points obtained by very small

variations of the parameters). The results show that for the same number of evaluations the cost was

less when the gradients were calculated along with the responses than when the responses alone were

calculated: in our example, 16 evaluations took 42.3s whereas 16 gradients (32 evaluations) took 58s.

A four design variables example.

In this paragraph we proposed a modified version of the previous two-variables example. By mod-

ifying the substructure Ω1 and replace it with two new substrucures, a four-variables is introduced.

Figure 5 shows the geometry of the problem. The material characteristics and the loading are retained

and two new interfaces are introduced: a gap between substructures Ω1 and Ω4 and a new interface with

friction between substructures Ω2 and Ω4 are introduced. In this context, two new design variables are

added to the two existing design variables: thus we consider three friction coefficients µ1, µ2 and µ3

(between 0 and 0.6) and one gap j1 (between −28µm and 48µm).
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Figure 5: The geometry of the problem of the four-variables example

Figure 6 shows the computational cost and the gain of the MPS associated to the computation of the

responses on few sets of values of the design parameters (from 5 to 50 sample points are considered).

Although we use a first-order finite difference method to compute the gradients and the fact that nd

responses (in addition to the first calculation) of the objective function are needed to obtain the gradient

on one sample point, the required time to evaluate the gradients is the same than the time required to

evaluate all responses. For this example we obtain a gain around 4.5 for computing the responses and

the gradients.

Total (w/o grad.) Total (w/- grad.) Responses Gradients
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Figure 6: CPU time and gain of the MPS associated two different sets of sample points for the four-variables test-case
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Thus, the MPS is particularly efficient in calculating the gradients, thanks to the ability of the

method to reduce the computation time for sample points which are close together. This led to our

decision to use a dedicated gradients metamodel.

4. The cokriging metamodel

This type of metamodel is similar to the kriging metamodel proposed by [28] and developed by

[29, 30]. The cokriging strategy stems from multivariate geostatistics [31]. In our case, the cokriging

metamodel is built using not only the responses, but also their gradients [32, 33, 34].

4.1. Notations

In this section, we will use the following notations: x(i) denotes a point in the design space D (x(i)

is one of the ns sample points, while x
(0) is a non-sample point); xi denotes the ith coordinate of a

point x; Y (x) and Ỹ (x) denote respectively the response of the analytical function (or the response of

the mechanical model) and the approximate response given by the metamodel; finally, R(x(i),x(j)) is

a correlation function.

4.2. Principle

The model can be viewed as the sum of two components: a linear model (which represents the trend

of the data) and a departure from the linear model (which represents the fluctuations around the trend).

Ỹ (x(0)) = µ(x(0)) + Z(x(0)), ∀x(0) ∈ D (5)

E(Z) = 0, Cov[Z
(
x
(i)
)
, Z
(
x
(i)
)
] 6= 0, ∀

(
x
(i),x(j)

)
∈ D2 (6)

where E and Cov denote the classical statistical expected value and covariance.

The main idea is to consider a covariance relation between the discrete responses of the deterministic

function. This covariance depends only on the distances among the samples. Thus the departure is

represented by a zero-mean, second-order stationary process. (The mean and the variance are constant,

with a correlation depending on the distance.) Depending on the definition of the function µ, one can

build different types of kriging or cokriging metamodels (simple kriging, where µ is the average of

the response at sample design points; ordinary kriging, where µ is an unknown constant; or universal

kriging, where µ is a polynomial function).

Function Z has a zero expected value and its covariance structure is a function of a generalized

distance among the sample responses. The covariance structure can be written as:

∀
(
x
(i),x(j)

)
∈ D2, cov

[
Z
(
x
(i)
)
, Z
(
x
(j)
)]

= σ2R
(
x
(i),x(j)

)
= σ2cij (7)

In our case, the correlation function chosen is a Gaussian function or a Matérn function[35, 36].

In the case of a cokriging metamodel, additional covariance relations involving the different vari-

ables are introduced [32]. In our case, the primary variables are the evaluations of the function being

studied, and the secondary variables are the gradients:

Cov

[
∂Z

∂xk

(
x
(i)
)
, Z
(
x
(j)
)]

= −σ2 ∂R

∂xk

(
x
(i),x(j)

)
= σ2ckij (8)

Cov

[
Z
(
x
(i)
)
,
∂Z

∂xk

(
x
(j)
)]

= −σ2 ∂R

∂xk

(
x
(i),x(j)

)
= σ2ckij (9)

Cov

[
∂Z

∂xk

(
x
(i)
)
,
∂Z

∂xl

(
x
(j)
)]

= −σ2 ∂2R

∂xk∂xl

(
x
(i),x(j)

)
= σ2ckilj (10)

With this relation, one can also build the kriging or cokriging metamodel by considering the

following linear predictors of the non-sample point x(0):
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Kriging Ỹ
(
x
(0)
)
=

ns∑

i=1

λi

(
x
(0)
)
Y
(
x
(i)
)

Cokriging Ỹ
(
x
(0)
)
=

ns∑

i=1

λ0i

(
x
(0)
)
Y
(
x
(i)
)
+

nd∑

j=1

ns∑

i=1

λij

(
x
(0)
) ∂Y

∂xj

(
x
(i)
)

Thus, the determination of the Best Linear Unbiased Predictor (BLUP) leads to the λ’s which, for a

kriging metamodel, minimize the Mean Square Error:

MSE
[
Ỹ (x(0))

]
= E




(

ns∑

i=1

λi

(
x
(0)
)
Yi − Y

(
x
(0)
))2



 (11)

subject to the unbiasedness condition:

E

[
ns∑

i=1

λi

(
x
(0)
)
Y
(
x
(i)
)]

= E

[
Y
(
x
(0)
)]

(12)

The construction of a cokriging metamodel follows the same process.

In the universal kriging case, the best linear predictor of Y
(
x
(0)
)

can be written in matrix form [37]

as:

Ỹ
(
x
(0)
)
= x0

T β̂ + c
T
0 C

−1(Ys −Xβ̂) (13)

where

β̂ = (XT
C

−1
X)−1

X
T
C

−1
Ys

x0 =
[
f1
(
x
(0)
)

f2
(
x
(0)
)

· · · fk
(
x
(0)
)]

c0 =
[
c01 c02 · · · c0ns

]

(X)ij = fj

(
x
(j)
)

(C)ij = cij

The regressor vector β̂ is the generalized least-squares approximation of β. Thus, the first part of

Equation 13 is the generalized least-squares prediction at point x(0). The second part can be viewed as

a correction of the generalized least-squares response surface to obtain the interpolating kriging model.

The formulation of the cokriging metamodel is very similar to that of the kriging metamodel. For

simplicity’s sake, following the idea in [34], we propose to use only an ordinary cokriging metamodel:

Ỹ
(
x
(0)
)
= β̂c + c

T
c0C

−1
c (Ysc −Xcβ̂c) (14)

where

β̂c =(XT
c C

−1
c Xc)

−1
X

T
c C

−1
c Ysc

cc0 =
[
c01 c02 · · · c0ns

c110 c210 · · · cndns0

]

Xc =
[
1, 1, · · · , 1, 0, 0, · · · , 0

]T

Cc =

[
C Cd

Cd
T

Cdd

]

9



and where

(C)ij = cij

(Cd)ij =




c111 c211 · · · cnd11 c121 · · · cndns

c112 c212 · · · cnd12 c122 · · · cndns2

c113 c213 · · ·
...

. . .
...

c11ns
· · · cndnsns




(Cdd)ij =




c1111 c1121 · · · c11nd1 c1112 · · · c11ndns

c2111 c2121 · · ·
...

...
. . .

cnd1nd1 cnd112 · · ·
. . .

cndns11 · · · cndnsndns




In the kriging case, vector Ys contains only the responses of the function at the sample point,

whereas in the cokriging case vector Ysc contains both the responses and the gradients.

With these formulations, the models can supply approximate responses of the actual function at all

the points in the design space. In our case, we consider the response of the function to be deterministic

and we obtain both of the interpolating models. This type of metamodel has other advantages: for

example, it provides statistical information (the expected value and the variance of the process). Due

to the use of the unbiasedness condition, the expected value of Ỹ is given by the trend model µ and the

mean square error of Ỹ [37]:

MSE
[
Ỹ
(
x
(0)
)]

= σ2

[
1−

[
x0 c0

] [0 X
T

X C

]−1 [
x0

c0

]]
(15)

This relation also holds in the cases of simple or ordinary kriging or cokriging models, provided the

appropriate forms of vectors and matrices x0, c0, X and C are used.

4.3. Estimation of the parameters

The model’s parameters (such as the characteristic correlation length scale l, the variance σ of the

random process Z or the regression coefficients) can be determined by maximizing the likelihood [38].

In our case, we use this technique to determine l and σ:

(l, σ2) = argmin
l,σ2

[
−
N

2
log(2πσ2)−

1

2
log(|C(l)|)−

1

2σ2
(Ys −Xβ̂)TC(l)−1

(Ys −Xβ̂)
] (16)

with

N =

{
ns for kriging

ns(nd + 1) for cokriging

The variance σ2 can be determined analytically through the derivation of the likelihood function:

σ̂2 =
1

N
(Ys −Xβ̂)TC(l)−1(Ys −Xβ̂) (17)

One can also use an optimizer to determine the value of the correlation length scale. This method has

some drawbacks [39, 40, 41]: in many cases with very few points, the log-likelihood is monotonous;

often, the correlation matrix is affected by conditioning problems which make finding the minimum

difficult. When such problems arise, one sets the parameters (in particular the correlation length scale)

to fixed values.
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4.4. Analytical applications

In this section, we apply kriging and cokriging to one- and two-dimensional analytical test functions.

We will use the abbreviations OK and OCK to designate respectively Ordinary Kriging and Ordinary

CoKriging.

4.4.1. The one-dimensional test function

First, we applied the two types of metamodels to an analytical function, chosen to be y(x) =
exp(−x/10) cos(x) + x/10. We used 5 sample responses of the analytical function to build the OK

metamodel, and an additional 5 sample derivatives to build the OCK metamodel. The correlation

function was the Matérn function. The sample points were obtained using Latin Hypercube Sampling.

0 2 4 6 8 10 12 14

−0.5

0

0.5

1

1.5

Real response

Sample reponses

CoKriging

Kriging

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

Real derivative

Sampled derivatives

Derivative of CoKriging

Derivative of Kriging

Figure 7: The ordinary kriging and cokriging metamodels and their derivatives

Figure 7 illustrates the capability of the cokriging metamodel to interpolate not only the values of

the responses, but also the sample derivatives. In this example, the quality of the cokriging metamodel

was better. This statement remained true as long as we worked with only a few points. We can also

observe that for a relatively smooth function the kriging metamodel converges quickly toward a good

approximation of the real function when the number of points becomes large enough.

The characteristics of the two metamodels are summarized in Table 2.

R2 RAAE RMAE Q1 Q2 Q3

OK 0.4442 0.5036 1.726 0.4192 23.46 7.796 · 10−2

OCK 0.9719 0.1153 0.4087 2.351 · 10−2 1.186 3.940 · 10−3

Table 2: Characteristics of the two previous metamodels

Criteria RAAE and RMAE stand for Relative Average Absolute Error and Relative Maximum Ab-

solute Error. Criteria Qi, which compare the actual response and the responses of the metamodels at

11



nc points with nc >> ns, were calculated as follows:

Q1 = sup
i∈{1,2,...,nc}

ei

Q2 =

nc∑

i=1

ei

Q3 =
Q2

nc

where ∀i ∈ {1, 2, ..., nc}, ei =
(Y
(
x
(i)
)
− Ỹ

(
x
(i)
)
)2

sup
j∈{1,2,...,nc}

Y
(
x(j)

)2

Based on the statistical information from the kriging and cokriging metamodels, one can derive

confidence intervals. The two diagrams of Figure 8 show the 95% Confidence Intervals (CIs) obtained

with Expression 18. In these types of metamodels, the size of the confidence envelopes is determined

mainly by the distance between each pair of neighboring points.

CI±(x) = Ỹ (x)± 2

√
MSE

[
Ỹ (x)

]
(18)
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Sampled responses

Kriging

CI 95%

0 2 4 6 8 10 12 14
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3 Real response

Sampled responses

CoKriging

CI 95%

Figure 8: The confidence envelopes for the kriging and cokriging metamodels

4.4.2. The two-dimensional test function

The same two types of metamodels were used to approximate an analytical function of two vari-

ables. In order to illustrate the performance of the cokriging metamodel, we chose a very bumpy

function: the six-hump camel back function (∀(x1, x2) ∈ [−3, 3]× [−2, 2], f(x1, x2) = (4− 2.1x2
1 +

x4
1)x

2
1+x1x2+4(x2

2−1)x2
2). Figure 9 shows the response surface of this function. The two metamod-

els were constructed using 16 evaluations of the function for the kriging metamodel, and an additional

16 evaluations of the gradients for the cokriging metamodel. In both cases the correlation function was

the Matérn function.
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Figure 9: The actual function and its gradients (blue arrows)
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Figure 10: The kriging function and its gradients (blue arrows)
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Figure 11: The cokriging function and its gradients (blue arrows)

The characteristics of these two metamodels are given in Table 3.
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R2 RAAE RMAE Q1 Q2 Q3

OK 0.6991 0.4042 2.845 0.3946 13.192 1.466 · 10−2

OCK 0.9958 3.027 · 10−2 5.330 · 10−1 1.391 · 10−2 0.1824 2.027 · 10−4

Table 3: Characteristics of the two previous metamodels (Figure 10-11)

For this 2D test function, the cokriging metamodel led to a relatively accurate approximation of the

actual function using only a few sample points. Taking into account the gradients, we were able to

develop more efficient approximate models. But for a problem involving the evaluation of mechanical

responses the computation cost for the determination of ns responses and ns gradients is, of course,

higher than that required to obtain ns responses alone. (In the former case, due to the use of finite differ-

ences to obtain gradients, the construction of the metamodel requires 3ns evaluations of the mechanical

model.)

Now let us take another approach: the idea is to build metamodels using the same number of

evaluations. In the following case, we used the same six-hump function, but the kriging metamodel

was constructed based on the responses at 27 sample points (Figure 12), while the cokriging metamodel

was still constructed using the responses and the gradients at 9 sample points (Figure 13).
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Figure 12: The kriging surface obtained with 27 responses (27 evaluations of the function)
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Figure 13: The cokriging surface obtained with 9 responses and 9 gradients (27 evaluations of the function)
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R2 RAAE RMAE Q1 Q2 Q3

OK 0.8175 0.2566 2.933 0.4195 8.001 8.890 · 10−3

OCK 0.8160 0.2580 2.541 0.3150 8.066 8.9627 · 10−3

Table 4: Characteristics of the two previous metamodels (Figure 12-13)

Table 4 shows that the quality of the prediction achieved with the two metamodels was similar,

but a very important advantage of the cokriging metamodel was that it led to more zones where a

minimum could be found than the kriging metamodel. If the problem involved the calculation of

mechanical responses, the computation cost associated with the 9 points and their gradients, thanks

to the multiparametric strategy and as shown in Table 1, would be much lower than that associated with

the 27 points.

4.4.3. The five- and ten-dimensional test functions

In this section, we consider two analytical functions defined for nd variables:

• the Rosenbrock function, which is a smooth function, can be defined as follow:

∀x ∈ [−2, 2]nd, f(x) =

nd−1∑

i=1

[100(x2
i − xi+1)

2 + (xi − 1)2] (19)

• the Schwefel function, which is a very irregular function, can be defined as follow:

∀x ∈ [−500, 500]nd, f(x) = 418.9829× nd −

nd∑

i=1

[xi sin(
√
|xi|)] (20)

Here, we only use these analytical function with 5 or 10 variables (i.e. nd = 5 or nd = 10). Using a

Latin Hypercube Sampling 10 (for nd = 5) and 2 (for nd = 10) sets of sample points are generated

for each number of sample points. Here we consider the number of sample points in the horizontal

axis, thus for ns sample points the kriging metamodel is built from ns responses and the cokriging

metamodels is built from ns responses and ns gradients (each gradient comprises nd components).

The mean of the criteria R2 and Q3 is calculated for each number of sample points: metamodels are

built with responses (and gradients) for each set of sample points obtained for each number of sample

points; then for each metamodel the quality criteria are computed and finally for each number of sample

points we compute the means of the two criteria.

Figures 14 and 15 show the means of the quality criteria versus the number of sample points for

the kriging and cokriging metamodels built using responses and gradients provided by the Rosenbrock

and Schwefel functions with 5 variables. Figures 16 and 17 show the same results obtained with the

ten-dimensional functions.
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Figure 14: Quality of kriging and cokriging metamodels applied on five-dimensional Rosenbrock function
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Figure 15: Quality of kriging and cokriging metamodels applied on five-dimensional Schwefel function

We can observe on the Figures 14 and 16 that the cokriging metamodel provides a better approxi-

mation than kriging metamodel. Due to the fact that the Rosenbrock function is a very smooth function,

kriging reachs an acceptable quality of approximation. However on a very irregular function (See

Fig. 15 and 17) only cokriging metamodel provides a good approximation of the analytical test func-

tion.
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Figure 16: Quality of kriging and cokriging metamodels applied on ten-dimensional Rosenbrock function
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Figure 17: Quality of kriging and cokriging metamodels applied on ten-dimensional Schwefel function

Moreover, if we consider the case of the five-dimensional Schwefel function with the same total

number of evaluations (i.e., if we consider ns responses and 5×ns gradients for the cokringing, we can

use ns + 5 × ns responses for the kriging), the quality is always better with the cokriging metamodel

as soon as ns is greater than 30. As we have shown before that the MPS is particularly efficient in

calculating the gradients, coupling a cokriging metamodel with the MPS should lead to a very efficient

strategy to build metamodels. This is what we illustrate in the next part.

5. Application to a mechanical problem

In this section, we present the construction of the two previous metamodels (kriging and cokriging)

using the multiparametric strategy presented in the first part of this paper and the actual responses of

a mechanical model. The test case being considered is the three-squares example presented in Page 5.

We carried out two studies: one with a fixed number of mechanical calls, and the other with a fixed

quality of the metamodels.

5.1. Case of a fixed number of mechanical calls

Both metamodels were constructed using 15 mechanical evaluations. The kriging metamodel was

determined using 15 values of the force, and the cokriging metamodel was determined with 5 values of
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the force and 5 gradients. The sample points were obtained through Latin Hypercube Sampling. Our

calculations led to the following two response surfaces (Figures 18 and 19) to be compared with the

actual response surface of Figure 4:
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Figure 18: The kriging response surface of the three-squares test case (using 15 responses)
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Figure 19: The cokriging response surface of the three-squares test case (using 5 responses and 5 gradients)

Tables 5 and 6 show the characteristics of the calculations and of the metamodels.

Gradients without with

Total CPU Time 44.3s 36.4s

Avg CPU Time (/calc) 2.95s 2.13s

Min CPU Time 0.6s 0.2s

Max CPU Time 8.8s 8.2s

LATIN iterations 2,031 1,611

Avg iterations (/calc) 135 107

Min iterations 25 5

Max iterations 411 391

Gain 2.97 3.40

Table 5: Characteristics of the mechanical calculations
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R2 RAAE RMAE Q1 Q2 Q3

OK 0.9865 8.751 · 10−2 0.6624 2.746 · 10−2 0.3385 8.463 · 10−4

OCK 0.9822 0.1015 0.4024 1.014 · 10−2 0.4441 1.110 · 10−3

Table 6: Characteristics of the metamodels (OK: ordinary kriging/OCK: ordinary cokriging)

In this case, the cokriging metamodel led to a much better approximation of the mechanical model

than the kriging metamodel. Moreover, this result was obtained at a lower computation cost.

5.2. Case of a fixed metamodel quality

Another way to study the cost of the metamodels consists in constructing kriging and cokriging

metamodels with the same quality. For this study, we constructed the metamodels using sample points

obtained through full factorial sampling. We chose to build the kriging metamodel with 9× 9 samples

and the cokriging metamodel with 3× 3 and 5× 5 samples. The results are shown in Table 7.

5 × 5 full factorial sampling led to a cokriging metamodel with the same quality as the 9 × 9
kriging metamodel. As in the previous case with a fixed number of mechanical calls, the cost with the

cokriging metamodel was lower. In the case of more complex problems and more parameters, one can

expect even better gains.

OK OCK OCK

9× 9 3× 3 5× 5
Total CPU Time 154.7s 61.6s 127s

Avg CPU Time (/calc) 1.9s 2.3s 1.7s

Min CPU Time 0.2s 0.2s 0.2s

Max CPU Time 8.9s 8.1s 9.1s

LATIN iterations 6,576 2,731 5,436

Avg iterations (/calc) 81.2 101 72.5

Min iterations 5 5 5

Max iterations 381 381 381

Gain 4.65 3.53 5.39

R2 0.9878 0.9702 0.9942

RAAE 2.511 · 10−2 0.1234 5.147 · 10−2

RMAE 0.1442 0.5703 0.3243

Q1 1.301 · 10−3 2.036 · 10−2 6.585 · 10−3

Q2 3.044 · 10−2 0.7439 0.1450
Q3 7.610 · 10−5 1.860 · 10−3 3.626 · 10−4

Table 7: The metamodels constructed using full factorial sampling

6. Conclusion

In this paper, we associated a cokriging metamodel with a dedicated multiparametric strategy. These

two elements enabled us to achieve a significant reduction in the computation cost of constructing the

metamodel.

Our multiparametric strategy takes advantage of a property of the LATIN method which is that the

result of a previous calculation constitutes an efficient starting point for a subsequent calculation. This

property is particularly advantageous for the evaluation of gradients, which are obtained using finite

differences (i.e. with very small variations of the parameters). Thus, our strategy lends itself naturally

to the use of a gradient-based metamodel such as the cokriging model presented in the paper.

Moreover, since this metamodel is part of a multilevel model optimization strategy, besides reducing

the computation cost associated with the construction of the cokriging metamodel, one can a lso reduce
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the cost of the second level, in which algorithms based on gradient descent are used. This will be the

subject of an upcoming work.
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