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Abstract Generally speaking, the objective and con-

straint functions of a structural optimization problem

are implicit with respect to the design variables; their

evaluation requires finite element analyses which con-

stitute the most expensive steps of the optimization

algorithm. The work presented in this paper concerns

the implementation of a two step optimization strategy

which consists in optimizing first an empirical model

(metamodel), then the full model. In the framework of

multilevel model optimization, the computation costs

are related, on the one hand, to the construction of

global approximations and, on the other hand, to the

optimization of the full model. Thus, many numerical

simulations are required in order to perform a multilevel

optimization. In this context, the objective of associat-

ing a multiparametric strategy based on the nonincre-
mental LATIN method with the two step optimization

process is to reduce these computation costs. The per-

formance gains thus achieved will be illustrated through

the optimization of structural assemblies involving con-

tact with friction. The results obtained will show that

the savings associated with the multiparametric proce-

dure can reach a factor of 30.

Keywords two step optimization · Metamodel ·
LATIN method · Multiparametric strategy

B. Soulier · P.A. Boucard
LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES Univer-
Sud Paris), 61 avenue du Président Wilson, 94235 Cachan
Cedex, France
E-mail: soulier@lmt.ens-cachan.fr

1 Introduction

Optimum and robust product design relies massively

on numerical simulations in which the phenomena be-

ing simulated are becoming increasingly detailed. In or-

der to assist the design engineer in optimization tasks

which, today, are becoming more and more complex due

to their multilevel and multidisciplinary nature, numer-

ical methods are being developed for the exploration of

the design space through global approximations.

Many works relative to the global approximation

concept have focused on the reduction of computation

costs, which constitute a real stumbling block for opti-

mization problems.

Barthelemy and Haftka (1993) identified various ap-

proximation categories, including global approximations

defined over all or part of the design space and lo-

cal approximations defined only in the vicinity of a

point. They distinguished the approximation of a func-

tion, leading to the substitution of an explicit expres-

sion of the parameters for the objective function, which

is usually implicit, from the approximation of a prob-

lem, which consists in replacing an optimization prob-

lem by a series of approximate problems which can be

solved much more easily. Local approximation func-

tions are usually based on Taylor series. First-order

approximations, which consist in evaluating the func-

tions and their first derivatives at all points, are used

in many works, particularly by Braibant and Fleury

(1985); Fleury and Braibant (1986) who proposed a

dual approach to the resolution of convex problems. A

comparison of first-order approximations with second-

order approximations (which include the quadratic term

of the Taylor series) was presented by Haftka (1988).

Pritchard and Adelman (1990, 1991) proposed approx-

imations based on differential equations.
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Then, the solution of the optimization problem can

be carried out using classical algorithms, such as the

simplex algorithm (Dantzig et al, 1955) for linear prob-

lems or the SLP (Sequential Linear Programming) al-

gorithm for the resolution of nonlinear problems using

Taylor series to linearize the objective and constraint

functions (Zienkiewicz and Campbell, 1973; Pedersen,

1981).

The most efficient optimization methods rely on mul-

tilevel optimization concepts, which can be divided into

three categories: parallel model optimization based on

domain decomposition methods (El-Sayed and Hsiung,

1991; Umesha et al, 2005), multilevel parameter opti-

mization, which consists in replacing an optimization

problem by several subproblems (each with a reduced

set of parameters) (Liu et al, 2004; Kravanja et al, 2003;

Chen and Yang, 2005; Bendsoe, 1995), and multilevel

model optimization, which introduces several modeling

levels (Robinson and Keane, 1999; Keane and Petruzzeli,

2000; Engels et al, 2004). The proposed two-step hy-

brid optimization aproach can be classified in the mul-

tilevel model optimization. A major difficult in direct

optimization with the FE model is to find the global

optimum. It is well known that the direct global opti-

mization with the FE model increases the computation

time significantly and a local optimization led us to lo-

cal optima. To increase the chance of finding the global

optimum the two step optimization method used here

is based on successive global optimization of a meta-

model, representing the first modeling level, and local

optimization on the full mechanical model, which con-

stitutes the second level. Cutting the computation costs

in the whole optimization process requires not only the

reduction of the computation costs inherent to the con-

struction of the metamodel, which involves simulations

of the full mechanical model, but also their reduction in

the full model’s optimization stage. In order to reduce

these costs, we associate what we call a “multiparamet-

ric” strategy based on the LATIN method with a meta-

model constructed by diffuse interpolation. The method

is illustrated through examples of optimization of as-

semblies in contact with friction (Hilding et al, 2001; Li

et al, 2005).

The first part of the paper puts multilevel modeling

in the context of a full multidisciplinary optimization

scheme in which, starting from a series of exact ana-

lyzes, an explicit global approximation is developed in

the form of a response surface. Besides the construc-

tion of continuous and differentiable global approxi-

mations over the whole design space, the metamodel

should enable updating the approximation iteratively

throughout the optimization procedure. Among many

kind of metamodels with these properties like polyno-

mial regression (Box and Wilson, 1951), neural net-

works (Haykin, 1994), radial basis functions (Hardy,

1971), kriging (Cressie, 1990), this paper focuses on cu-

mulative interpolation (Soulier et al, 2003).

The second part reviews the fundamentals of the multi-

parametric method based on the LATIN approach and

emphasizes its advantages in the optimization context.

In particular, this multiparametric method takes ad-

vantage of the capability, with the LATIN method, to

reuse already available calculation results in order to

improve computation times.

In the third part, these developments are applied to the

optimization of the connection parameters between the

different parts of an assembly.

2 The two step optimization strategy

Multilevel optimization is generally used when the prob-

lem to be solved is relatively complex and, therefore,

divided into several steps (i.e. on several levels). Con-

sequently, from one study to the next, the meaning of

the term multilevel optimization can be quite different.

Nevertheless, to summarize what can be found in the

literature, one can point out the following two main def-

initions. In what is classically called multilevel parame-

ter optimization (Liu et al, 2004; Kravanja et al, 2003;

Chen and Yang, 2005; Bendsoe, 1995), one considers an

initial model which remains unchanged during the op-

timization process, but is treated with varying levels of

accuracy. In what we will now call multilevel model op-

timization, which is at the heart of the approach we are
proposing, the initial model is allowed to evolve during

the optimization. Two main types of enrichment can be

found in the literature.

Hierarchical descriptions (Robinson and Keane, 1999;

Keane and Petruzzeli, 2000) are based on different mod-

els defined successively by increasing the refinement of

the model. Generally, the required information is car-

ried only from Level i to Level i+ 1, which enables one

to forget the more primitive models (e.g. a more or less

empirical analytical functional, a beam model, a linear

3D model, then a nonlinear 3D model) permanently.

For example, this is typically the underlying idea in

a global-local approach. Conversely, in nested descrip-

tions (Engels et al, 2004), the basic model is always

preserved and is actually enriched from one level to the

next so the information can be carried back and forth

among the different levels. This leads to a multiscale

description of the problem which can take into account

the various modeling levels (or scales) simultaneously

and can be enriched during the optimization process.
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2.1 The two step model optimization strategy

The optimization scheme we chose, shown in Figure 1,

is based on the successive optimizations of a meta-

model and of the full mechanical model. First of all

an initial data set is selected with a random strategy or

a design of experiment (DOE) strategy (Montgomery,

1997). Starting from this initial data set a metamodel

is built and its parameters are estimated with cross-

validation (Currin et al, 1991) and the R2 criterion is

used to assessing the quality of the metamodel. Then in

the first step, a global optimization of the metamodel

using a genetic algorithm (Goldberg, 1989) enables one

to locate areas corresponding to extrema of the ob-

jective function. Different algorithms like genetic algo-

rithm (GA) (Goldberg, 1989), particle swarm optimisa-

tion (PSO) (Kennedy and Eberhart, 1995) or simulated

annealing (SA) (Kirkpatrick et al, 1983) are often used

in global optimization. GA is used in this study mainly

because of its ease of implementation and its ability to

solve optimization of nonlinear problems. Finally, from

the optimum found at the previous step, a local opti-

mization phase is carried out using the full mechanical

model. In this second step optimization and simulation

are decoupled and exchange information through data

files. During the n iterations of the optimization pro-

cedure, n2 simulations are performed in order to eval-

uate objective function and its derivatives. The local

optimization in this second step is performed with a se-

quential quadratic programming (Han, 1977) algorithm

(the fmincon function in matlab). This two step opti-

mization strategy requires n0 numerical simulations for

the construction of the metamodel plus n2 additional

simulations during the second phase. These simulation

phases are usually very expensive in terms of CPU time

and constitute one of the main stumbling blocks of the

method. The numerical simulation strategy we intend

Definition of the range of variation of the parameters

n  simulations0

n  measurement points0

global optimization 
with the metamodel

(n   evaluations)1

Generation of the metamodel

Approximate minimum

Approximate minimum point

from approximate minimum point

n optimizations
wait during the

simulation procedure

n  simulations2

wait during the 
optimization procedure

Parameters

Objectives

Exact minimum

Optimization with the metamodel

Optimization with the mechanical model

STEP 1

STEP 2

Fig. 1 The two step optimization scheme

to use is perfectly suitable for the treatment of these

very costly phases. Indeed, the multiparametric strat-

egy we are about to present enables the computation

costs to be reduced both for the calculations needed to

build the metamodel and for the optimization of the full

model. Each calculation corresponds to a set of values

of the variable parameters are introduced into the me-

chanical analysis. As an alternative to carrying out full

computation for each set of parameters, multiparame-

tric strategy is based on the capability of the LATIN

method (Ladevèze, 1999) to re-use the solution to a

given problem (for one set of parameters) in order to

solve similar problems (for the other sets of parame-

ters) (Boucard and Champaney, 2003). In this manner,

except for the first computation, an approximation of

the solution to the new set of parameters with a strong

mechanical content is immediately available from the

start in order to decrease the CPU time.

For the implementation of the two step model opti-

mization strategy, we used the cumulative interpolation

metamodel presented in the following section.

2.2 Construction of the metamodel by cumulative

approximation

The metamodel presented in this paper was inspired

by Smooth Particle Hydrodynamics (SPH) techniques

(Gingold and Monaghan, 1977; Nayrolles et al, 1992),

which were introduced in the 1980’s in the field of as-

trophysics. The principle of these methods consists in

approximating a function y using a weighted sum ỹ

of exponential-type or spline-type shape functions de-

noted φi. Rasmussen (1998) proposed a model called

Cumulative Approximation (1) defined by a weighted

sum:

ỹR(x) =

∑
i

φi(x)yi∑
i

φi(x)
(1)

where yi is the magnitude of the measured response y

at point xi and φi(x) is the shape function associated

with the observation points.

This approximation is not exact at the simulation

points. Here, we use an interpolation model based on

a cumulative approach. This cumulative interpolation

model (Soulier et al, 2003), which can be called diffuse

interpolation, is defined by:

ỹ(x) =

∑
i

φi(x)ai∑
i

φi(x)
with φi(x) = e−k||x−xi||2 (2)
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where the φi are Gaussian-type shape functions. The

coefficients ai are obtained through a collocation method

and are solutions of the linear system:


φ1(x1)∑
i
φi(x1)

. . . φn(x1)∑
i
φi(x1)

...
. . .

...
φ1(xn)∑
i
φi(xn)

. . . φn(xn)∑
i
φi(xn)


 a1

...

an

 =

 y(x1)
...

y(xn)

 (3)

The vector (x1, ..., xn) represents the set of the sim-

ulation points at which function y is evaluated, and

φi(x) is the value of the shape function at point x.

The proposed metamodel generates continuous and

differentiable response surfaces over the design space,

which enables one to calculate their gradients explic-

itly. Moreover, the flexibility of this metamodel makes

the updating of the interpolation surfaces during the

optimization process easier, which enables one to im-

prove the quality of the approximations locally.

Let us illustrate the construction of global approxi-

mation models using Rosenbrock’s function. This ana-

lytical function, which is highly nonlinear and presents

a very elongated, arc-shaped trough, is defined by:

f(x1, x2) = 100(x1 − x22)2 + (1− x1)2 (4)

The cumulative interpolation model enables one to

improve the quality of the model incrementally by up-

dating the model during the addition of new simula-

tions. Figure 2 shows the model differentiated for an

orthogonal factorial design of experiment (Montgomery,

1997), (Box and Hunter, 1957) with 3 levels per factor.
A three-level design is a design of experiment (DOE)

whose each factors are considered at 3 levels. These

are (usually) referred to as low, intermediate and high

levels. A factorial design of experiments is built by tak-

ing on all possible combinations of these levels across

all such factors. One can verify that the approxima-

tion provides a good representation of the actual shape

of Rosenbrock’s function thanks to the additional data

points introduced in the zone with the highest nonlin-

earities.

Some one-dimensional correlation functions classi-

cally used to build statistical models like kriging (Cressie,

1990) in the field of the analysis of computer experi-

ments (Currin et al, 1991) (Sacks et al, 1989) are the

following:

– linear correlation function{
r (d) = 1− (1− ρ) |d| if |d| < 1

1−ρ

r (d) = 0 otherwise
(5)
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Fig. 2 Comparison metamodel vs. actual surface

– exponential correlation function

r (d) = ρ|d| (6)

– Gaussian correlation function

r (d) = ρd
2

(7)

where d represents the one-dimensional distance and

ρ the correlation between two points.

These three types of correlation functions lead to

different interpolation models. In the case of linear cor-

relation functions, the resulting models are not differen-

tiable at the measurement points due to |d|. We choose

Gaussian correlation functions, which produce differen-

tiable surfaces over the whole design space. Extension

to more dimensions is obtained with the product corre-

lation rule which consists to multiply one-dimensional

correlation function. The shape functions are of the

Gaussian type:

φi(x) = e−k||x−xi||2 (8)

where ||x−xi|| denotes the Euclidian distance between

points x and xi, and k is a strictly positive standard-

ization parameter.

Parameter k controls the shape of the surrogate sur-

face by modifying the size of the support of the shape

functions (Figure 3). Small values of k produce very

smooth surfaces. Large values of k produce strongly non

linear surfaces.
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Fig. 3 Influence of parameter k: left, k = 2; right, k = 10
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3 The multiparametric strategy using the

LATIN method

Since the optimization process generates numerous cal-

culations, it is crucial to introduce a suitable reanalysis

strategy leading to reduced computation times when

the parameters change. In order to do that, we use

the LATIN iterative algorithm developed by Ladevèze

(1999) along with a multiparametric strategy (Boucard

and Champaney, 2003).

3.1 Review of the LATIN method for contact

problems with friction

The basic principle of the LATIN method consists in

isolating difficulties by solving two groups of equations

successively: the local (possibly nonlinear) equations

and the linear (possibly global) equations. An assem-

bly is a set of substructures (parts) which communicate

through interfaces (Figure 4). Each interface is a me-

chanical entity in its own right with its unknowns and

constitutive relations. In order to simplify the presenta-

tion, let us consider only two substructures ΩE and ΩE′

connected by an interface ΓEE
′
. The interface variables

are two force fields (fE , fE
′
) and two dual velocity fields

(ẇE , ẇE′) (Figure 4). By convention, (fE , fE
′
) are the

actions of the interface on the substructures and (ẇE ,

ẇE′) are the velocities of the substructures viewed from

the interface.

E E ’

ΓE
�

E'¹

W
� E'¹

FE
�

'¹F
� E

W
� E

Fig. 4 Decomposition of an assembly; interface variables

The displacement field at any point M of ΩE and at

any time t in [0, T ] is uE(M, t) and U [0,T ]
ad is the associ-

ated space. Then, the problem to be solved in each sub-

structure is to find the evolutions of the displacement

field uE(M, t) and stress field σE(M, t) which verify:

– kinematic admissibility:

ε = ε(uE); uE ∈ U [0,T ]
ad (9)

uE(M, t)|∂ΩE
= wE(M, t) (10)

– static admissibility: one consider u̇? a virtual veloc-

ity field and U the set of finite-energy velocity fields

on ΩE which vanish on ∂ΩE , ∀u̇? ∈ U∫
ΩE

Tr(σE ε(u̇?))dΩE −
∫
ΩE

fd.u̇
?dΩ+

−
∫
∂ΩE

fE .u̇?dS = 0
(11)

– elastic behavior: ∀M ∈ ΩE , ∀t ∈ [0, T ],

σE(M, t) = Keε(uE(M, t)) (12)

(Ke being Hooke’s operator)

The problem to be solved at the interface is to find

the evolutions of the force fields (fE(M, t), fE
′
(M, t))

and velocity fields (ẇE(M, t), ẇE′(M, t)) which verify:

– equilibrium: ∀M ∈ ΓEE′ and ∀t ∈ [0, T ],

fE(M, t) + fE
′
(M, t) = 0 (13)

– the behavior described as a nonlinear evolution law

R between the forces and the rate ẇEE′ = ẇE′−ẇE

of jump in velocity across the interface (typically:

contact, friction, etc.) (Blanzé et al, 1995): ∀M ∈
ΓEE

′
and ∀t ∈ [0, T ],

fE(M, t) = R(ẇEE′(M, τ), τ ∈ [0, t]) (14)

The solution s is described a priori as a set of time-

dependent fields relative to both the interface and the

substructures. Here, the substructures have linear elas-

tic behavior and the interior solution (i.e. the displace-

ment uE(M, t) and the stress σE(M, t)) can be easily

calculated from the boundary quantities (ẇE(M, t) and

fE(M, t)). The solution s can be represented using only

the force and velocity fields on both sides of the inter-

face.

s =
∑
E

sE , sE =
{
ẇE(M, t), fE(M, t)

}
,

∀t ∈ [0, T ] (15)

The equations are divided into two groups such that

the substructures are considered to be elastic and all the

nonlinearities are concentrated at the interface:
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– The set Ad of the solutions sE which verify the lin-

ear equations relative to the substructures (Equa-

tions (10) to (12));

– The set Γ of the solutions sE which verify the local

(possibly nonlinear) equations relative to the inter-

face (Equations (13) and (14)).

E-

G

Ad

S

Sn+1 Sn

Sref

E+

Fig. 5 Diagram of an iteration of the LATIN method

Then, the solution of the problem is determined iter-

atively by seeking successive approximations s which

verify the two groups of equations alternatively, using

search directions E+ and E− (Figure 5). Thus, the two

steps of the iterative algorithm are:

– local step: given sn ∈ Ad, find ŝ such that:

ŝ ∈ Γ (interfaces) (16)

ŝ− sn ∈ E+ (search direction) (17)

– global step: given ŝ ∈ Γ , find sn+1 such that:

sn+1 ∈ Ad (substructures) (18)

sn+1 − ŝ ∈ E− (search direction) (19)

Here, we use conjugate search directions which depend

on a single scalar parameter k0:

ŝ− sn ∈ E+ ≡ (̂fE − fEn ) = k0( ̂̇wE − ẇE
n ) (20)

sn+1 − ŝ ∈ E− ≡ (fEn+1 − f̂E) = −k0(ẇE
n+1 − ̂̇wE)

(21)

The solution of the problem is independent of the

value of parameter k0, which affects only the conver-

gence rate of the algorithm. In the case of quasi-static

calculations such as those we are concerned with, k0 is

given by:

k0 =
E T

Lc
(22)

where E is Young’s modulus, [0, T ] the time interval

being considered and Lc the largest dimension of the

structure.

3.2 The multiparametric strategy

The multiparametric approach (Boucard and Cham-

paney, 2003, 2004) is based on the fact that the LATIN

algorithm can be initialized using any solution which

verifies the admissibility conditions. In the case of a

parametric study, for a given set of parameters, one

reinitializes the LATIN loop with the converged solu-

tion corresponding to another set of parameters (Fig-

ure 6). If a parameter changes only slightly, so does

the global solution of the FE problem. Thus, thanks to

the multiparametric strategy, convergence is achieved

more rapidly and after a reduced number of iterations.

Typically, the parameters involved here are prescribed

AdS1S2

G1
G2

G3

S3

?

Fig. 6 Reinitialization of the LATIN method

loads/displacements, gaps, friction parameters, preloads

or tightening loads, i.e. all the parameters which de-

scribe the nonlinear behavior of the interface. The es-

sential point which leads to an efficient strategy is that

in the particular case of elastic substructures the inter-

faces play a fundamental role. Indeed, they enable one

to initialize the calculation of the problem associated

with a new set of parameters without having to save

all the data for the substructures. Moreover, the infor-

mation concerning the interfaces obtained from the ref-

erence calculation enables the method to be initialized

using a first approximation with a strong mechanical

content which is suitable for the problem being consid-

ered. Thus, if the solution of the reference problem is

not too different from the solution of the new target

problem, one can expect to achieve the latter at low

cost. For a calculation associated with a new set of pa-

rameters, several other results (associated with other

sets of parameters) may be available. Then, one can

use any of these results for the initialization. In our

study, we chose to initialize each new calculation with

the converged solution obtained for the closest set of

parameters, in the sense of the Euclidian distance in

the parametric space.
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4 Parametric study of contact with friction in

an assembly

In this final part, the capabilities of the multiparametric

strategy in the context of two step model optimization

are illustrated using a technological example of a force-

fit assembly.

The objective of our study was to optimize the per-

formance of shaft-pinion connections achieved by cone

clamping as a function of the binding parameters. A

shrink disk (Figure 7) is a technological component

which consists of a biconical inner ring fitted to the

pinion and two external conical pressure flanges, one

of which is threaded. A clamping load is applied be-

tween the external flanges through a series of screws dis-

tributed along the circumference. The tightening of the

screws presses the conical surfaces against each other

and generates radial forces which create the adhesion

binding which is necessary to transmit the torque Ma

and axial load Fa between the shaft and the pinion.

INNER RING

OUTER RING

GEAR SHAFT

TIGHTENING BOLTS (x6)

Fig. 7 A shrink disk

Here, the optimization concerns the binding param-

eters, i.e. the gaps, tightening forces and friction coef-

ficients between the different elements of the assembly.

The objective functions studied were the transmissible

torque Ma and axial load Fa between the pinion (or

the hub) and the shaft. The strategy known as two

step optimization consists in carrying out first a global

optimization using the metamodel, then a local opti-

mization based on that first optimum using the full FE

model and a multiparametric strategy (see Figure 1).

The global optimization based on the metamodel

was performed at low cost using a genetic algorithm

(Goldberg, 1989) (the ga function in MATLAB) which

generated n1 evaluations of the objective function. This

first step enabled us to localize the trough in which

the global optimum of the objective function was to

be sought. The metamodel was built in a preliminary

phase using n0 evaluations of the full mechanical model.

The settings of the GA algorithm were specified as fol-

low : a population size equal to 20, a crossover rate

of 0.8, a mutation rate of 0.2 and a number of gener-

ations equal to 100. The local optimization using the

full mechanical model was performed with a sequen-

tial quadratic programming (Han, 1977) algorithm (the

fmincon function in MATLAB) which generated n2
evaluations of the objective function.

The total optimization time tmultilev+multipar asso-

ciated with this two step / multiparametric strategy

(23) is the sum of:

– t0, the time for generating the metamodel using the

multiparametric strategy,

– t1, the time for optimizing the metamodel,

– and t2, the time for optimizing the full FE model

using the multiparametric LATIN technique.

tmultilev+multipar = t0 + t1 + t2 (23)

We seek to compare this two step optimization me-

thod based on a multiparametric calculation strategy

with the same optimization method without the mul-

tiparametric aspect. In order to compare the different

calculation strategies, it is necessary to define the ref-

erence time associated with a calculation. If tref de-

notes, for each study, the duration of the first calcula-

tion (which, because of the nonlinearities, is obviously

a function of the associated set of parameters), one can

use as the reference time the average of the different

tref obtained. Let tref designate this average value.

Thus, the total optimization time tmultilev associ-

ated with the two step optimization strategy with no

multiparametric strategy (24) is defined as the sum of:

– the time for generating the metamodel with no mul-

tiparametric strategy, which is considered to be the

product of n0, the number of sets of parameters used

to build the metamodel, by tref , the reference CPU

time,

– t1, the time for optimizing the metamodel,

– and the time for optimizing the full FE model with

no multiparametric strategy, which is considered to

be the product of n2, the number of evaluations of

the objective function using the local optimization

algorithm, by tref , the reference CPU time.

tmultilev = (n0 + n2)tref + t1 (24)

The gain G is defined as the ratio of the total op-

timization time associated with this two step / multi-

parametric strategy tmultilev+multipar by the total opti-

mization time tmultilev associated with the two step op-

timization strategy without multiparametric strategy:

G =
tmultilev+multipar

tmultilev
=

t0 + t1 + t2
(n0 + n2)tref + t1

(25)
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4.1 Optimization of the transmissible torque using an

axisymmetric model

We studied the evolution of the transmissible torque

Ma at the interface between the shaft and the pinion

as a function of five parameters (the friction coefficients

and the gaps between the different parts in contact)

using the axisymmetric model of Figure 8. The mesh

is composed of 3,549 axisymetric linear four-node ele-

ments (7,600 degrees of freedom). The calculations were

carried out on a PC (Proc. Intel Xeon W5650(tm) 2.6

Ghz, RAM 12 GB) The constraints in terms of bounds

SHAFT

GEAR

OUTER RING

F

t

INNER RING

0.05£m £0.5gear/inner

0.05£m £0.5shaft/gear

0.05£m £0.5inner/outer

Fig. 8 The FE model

on the parameters are given in Table 1. Different draws

Table 1 Bounds on the design parameters

parameters min max

µshaft/gear , µgear/inner , µinner/outer 0.05 0.5
jshaft/gear (µm) 0 49

jgear/inner−ring (µm) 36 106

of the sets of parameters were used in the metamodel

construction preliminary phase:

– an orthogonal Design Of Experiments (DOE) com-

bining 5 factors, either on two levels (8, 16 and 32

combinations),

– a random drawing (LHS) (McKay et al, 1979) of

between 5 and 80 combinations in steps of 5 combi-

nations.

Let n0 denote the number of combinations in each

draw. For each draw, a first calculation is carried out

with the first setting of parameters. Then, the new

n0−1 computations are initialized by the solution to the

previous one. If the parameters change slowly, the two

solutions are close and only a few iterations are needed

to reach convergence in the new calculation. If the pa-

rameters have very different values, more iterations are

necessary to converge, but it is proved in (Ladevèze,

1999), that the LATIN strategy will always converge

to the solution. Figure 9 shown that for the three or-

thogonal arrays sample the CPU time decreases with

the iterations of the multiparametric strategy. Table 2
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70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

iterations of multiparametric strategy

C
PU

 ti
m

e 
(s

)

orthogonal array with 8 runs

orthogonal array with 16 runs

orthogonal array with 32 runs

Fig. 9 CPU time with the multiparametric strategy in meta-
model generation step

summarizes, for each draw —of n0 combinations— the

number of iterations (i0) of the LATIN method for the

calculation of the n0 combinations and the computation

time per set of parameters. The time tref of the first

calculation and the minimum and average CPU times

are listed separately for each set of parameters.
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Table 2 Construction of the metamodel

CPU time per parameter set (s)
1st calc. min. mean total

n0 i0 tref (s) (s) (s) t0(s)
orthogonal array

8 3,076 63 14 34 275
16 5,576 64 8 31 500
32 4,496 53 0.5 13 405

Latin hypercub sampling
5 2,046 42 32 37 187
10 3,666 55 17 34 336
15 4,706 49 19 29 429
20 6,541 50 14 30 598
25 7,641 50 13 28 697
30 8,451 48 7 26 776
35 10,656 53 13 28 972
40 11,346 45 9 26 1,059
45 12,436 54 9 25 1,140
50 13,206 47 12 24 1,205
55 15,296 45 15 25 1,402
60 15,491 52 8 24 1,418
65 18,171 61 7 26 1,682
70 18,021 53 9 24 1,650
75 21,061 46 9 26 1,926
80 20,631 46 11 24 1,895

The optimization problem that we consider can be

formulated as:

arg max(µ./.,j./.)Ma

(
µ./., j./.

)
such that 0.05 ≤ µshaft/gear ≤ 0.5

0.05 ≤ µgear/inner ≤ 0.5

0.05 ≤ µinner/outer ≤ 0.5

0µm ≤ jshaft/gear ≤ 49µm

36µm ≤ jgear/inner−ring ≤ 106µm

µinner/outer − µshaft/gear ≤ 0

µinner/outer − µgear/inner ≤ 0

(26)

The optimum values of the transmissible torque at

the interface given by the two optimization steps are

shown in Figure 10 for the only bounds constraints

problem and in Figure 11 for the problem with lin-

ear inequality constraints. The optimum issued from

the first step is an approximation given by the meta-

model (Step 1), which can be greater than the opti-

mum obtained in the second step using the complete

mechanical model (Step 2). At the end of this study,

the optimum found was 21, 706N.m, associated with

the following optimum parameters: µshaft/gear = 0.5

, µgear/inner = µinner/outer = 0.05, jshaft/gear = 0µm,

jgear/inner−ring = 36µm. The CPU times and the num-

bers of iterations which were necessary to carry out

these two optimization steps are summarized in Table

3 and 4.
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Fig. 10 Comparison of the optima obtained from Step 1 and
Step 2 with bound constraints
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Fig. 11 Comparison of the optima obtained from Step 1 and
Step 2 with bound and linear constraints

Let us compare this two step optimization method

based on a multiparametric calculation strategy with

the same optimization method and no multiparametric

aspect (Table (3) (4)). In order to do that, we consider

that the reference time for a FE calculation is consid-

ered to be equal to tref = 51s.

Gain G, defined as the ratio of tmultilev+multipar
(the computation time for our two step strategy cou-

pled with the multiparametric aspect) to tmultilev (the

computation time for the two step calculation strat-

egy with no multiparametric aspect), shows that in a

two step strategy the addition of the multiparametric

strategy reduced the CPU time by a factor of between

approximately 4.4 and 14.2.

One can also observe in Figures 10 and 11 that ap-

proximately half of cases reached the same value of the

maximum torque, i.e. 21, 706N.m. Nevertheless, there

were cases where this value was not found. These are

probably cases where the optimization using the meta-
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Table 3 Global optimization with bound constraints using
the metamodel and local optimization using the complete
model

STEP 1 STEP 2 GAIN
n0 n1 t1(s) n2 t2(s) tmultilev G

Orthogonal array
8 1,140 0.7 86 261 4,837 9.0
16 1,580 0.8 96 407 5,763 6.3
32 1,240 0.8 200 435 11,936 14.2

LHS sampling
5 1,040 0.7 94 371 5,094 9.1
10 1,040 0.6 171 598 9,312 10.0
15 1,400 0.8 201 649 11,113 10.3
20 1,040 0.7 186 452 10,598 10.1
25 1,620 0.9 167 495 9,878 8.3
30 1,160 0.7 113 238 7,357 7.3
35 1,780 0.9 98 254 6,843 5.6
40 1,200 0.9 100 233 7,203 5.6
45 1,880 1.1 109 244 7,924 5.7
50 1,440 1.0 180 499 11,833 6.9
55 1,400 1.0 152 392 10,650 5.9
60 1,140 0.9 184 442 12,554 6.7
65 1,380 1.0 138 313 10,444 5.2
70 1,520 1.1 97 230 8,592 4.6
75 1,140 0.9 125 267 10,290 4.7
80 1,300 1.0 119 195 10,239 4.9

Table 4 Global optimization with bound and linear con-
straints using the metamodel and local optimization using
the complete model

STEP 1 STEP 2 GAIN
n0 n1 t1(s) n2 t2(s) tmultilev G

Orthogonal array
8 1,417 2.4 81 249 4,581 8.7
16 1,037 2.3 94 257 5,661 7.5
32 1,037 2.3 96 237 6,587 10.2

LHS sampling
5 1,037 2.3 124 415 6,639 11.0
10 1,037 2.3 148 390 8,131 11.2
15 1,037 2.3 94 255 5,610 8.2
20 1,037 2.3 122 237 7,308 8.7
25 1,037 2.3 132 685 8,079 5.8
30 1,097 2.4 160 288 9,777 9.2
35 1,037 2.3 174 464 10,754 7.5
40 1,157 2.5 132 323 8,851 6.4
45 1,057 2.5 94 247 7,153 5.1
50 1,037 2.5 111 247 8,285 5.7
55 1,037 2.5 161 326 11,115 6.4
60 1,037 2.5 137 346 10,137 5.7
65 1,097 2.5 197 418 13,481 6.4
70 1,237 2.6 124 255 9,983 5.2
75 1,057 2.5 123 272 10,189 4.6
80 1,037 2.5 102 235 9,366 4.4

model led to a trough corresponding to a local minimum

due to the GA algorithm. Therefore, the optimization

using the mechanical model led to that local minimum.

For example, this was the case for the 5 LHS draws and

for several others.

As explain in the introduction, our two step op-

timization approach is used for increasing the chance

of finding the global optimum. In order to verify this

point, the two step strategy is compared with another

reference case based on a multi-start of the local opti-

mization of the FE model (Step-2) with the multipara-

metric strategy. First of all, a couple of initial start-

ing points by LHS 10 samples and OA 8 samples is

selected. Then Step-2 run only with those points and

the best of obtained optima are assigned as a global

optimum. One consider only the optimization problem

with bound and linear constraints. We can observe that
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Fig. 12 Multi-start of the direct local optimization of the
FE model with the multiparametric strategy

for the LHS draw (Figure 12) the best optimum find is

equal to 16, 816N for a cumulative CPU time equal to

2169s and the global optimum is not achieved. Figure

12 shows that the global optimum is reached with the

OA 8 samples draw in 1820s. Note that in the two step

optimization approach the global optimum is reached

in 526s for the OA draw of 8 combinations and in 728s

for the LHS draw of 10 combinations. Our approach

shows that:

– the global optimum is in most cases obtained;

– the CPU time is always lower.

4.2 Optimization of the transmissible axial load using

a three-dimensional model

The evolution of the transmissible axial load Fa at the

interface was studied as a function of six parameters

(the tension loads Fscr in the screws, the friction co-

efficients and the gaps between the different parts in

contact). We used a volume model (Figure 13). The

mesh is composed of 21,195 four-node tetrahedron el-

ements (17,736 degrees of freedom). The calculations
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were carried out on a PC (Proc. Intel Xeon W5650(tm)

2.6 Ghz, RAM 12 GB)

SOUS STRUCTURES ET INTERFACES
Fig. 13 The substructures used for the LATIN method

The constraints in terms of bounds on the parame-

ters are given in Table 1. The tension load in the screws

varied between 1, 500N and 2, 500N . Different draws of

the sets of parameters were used in the metamodel con-

struction preliminary phase:

– an orthogonal Design Of Experiments (DOE) com-

bining 6 factors on two levels (8, 16, 32 and 64 com-

binations),

– a random draw (LHS) of between 5 and 45 combi-

nations in steps of 5 combinations.

Let n0 denote the number of combinations in each

draw. Table 5 summarizes, for each draw —of n0 combi-

nations— the number of iterations (i0) of the FE solver

for the calculation of the n0 combinations and the com-

putation time per set of parameters. The time tref of

the first calculation and the minimum and average CPU

times are listed separately for each set of parameters.

The optimization problem that we consider can be

formulated as:

Table 5 Construction of the metamodel

CPU time per parameter set (s)
1st calc. min. mean total

n0 i0 tref (s) (s) (s) t0(s)
orthogonal array

8 1,036 91 60 71 568
16 721 90 3 26 414
32 2,491 92 3 45 1,426
64 1,856 95 3 17 1,077

Latin hypercub sampling
5 521 77 34 47 237
10 906 84 27 41 413
15 1,261 81 14 39 584
20 1,586 80 23 36 725
25 1,921 79 12 35 882
30 2,326 84 18 35 1,064
35 2,686 77 21 35 1,230
40 2,921 84 7 33 1,336
45 3,201 77 16 32 1,461



arg max(µ./.,j./.,Fscr) Fa
(
µ./., j./., Fscr

)
such that 0.05 ≤ µshaft/gear ≤ 0.5

0.05 ≤ µgear/inner ≤ 0.5

0.05 ≤ µinner/outer ≤ 0.5

0µm ≤ jshaft/gear ≤ 49µm

36µm ≤ jgear/inner−ring ≤ 106µm

1500N ≤ Fscr ≤ 2500N

µinner/outer − µshaft/gear ≤ 0

µinner/outer − µgear/inner ≤ 0

(27)

The optimum values of the transmissible axial load

at the interface given by the two optimization steps

are shown in Figure 14 for the only bounds constraints

problem and in Figure 15 for the problem with linear

inequality constraints.

At the end of this study, the optimum found was

1, 038kN , associated with the following optimum pa-

rameters:

– µshaft/gear = 0.5

– µgear/inner = µinner/outer = 0.05

– Fscr = 2, 500N

– jshaft/gear = 0µm

– jgear/inner−ring = 36µm

The CPU times and the numbers of iterations which

were necessary to carry out these two optimization steps

are summarized in Table 6 and 7. Overall, the total time

tmultilev+multipar for this two step optimization strategy

varied between approximately 329s and 1, 602s, and the

variation —in the case of LHS draws— was approxi-

mately proportional to n0, the number of draws. Let us
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Fig. 14 Comparison of the optima obtained from Step 1 and
Step 2 with bound constraints
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Fig. 15 Comparison of the optima obtained from Step 1 and
Step 2 with bound and linear constraints

Table 6 Global optimization with bound constraints using
the metamodel and local optimization using the complete
model

STEP 1 STEP 2 GAIN
n0 n1 t1(s) n2 t2(s) tmultilev G

Orthogonal array
8 1,420 0.8 68 76 6,387 9.9
16 1,500 0.8 195 239 17,731 27.1
32 1,180 0.8 88 87 10,084 6.7
64 1,040 0.9 61 52 10,505 9.3

LHS sampling
5 1,120 0.7 102 91 8,992 27.4
10 1,140 0.7 45 72 4,622 9.5
15 1,560 0.9 57 49 6,051 9.5
20 1,120 0.7 45 66 5,463 6.9
25 1,520 0.9 92 81 9,832 10.2
30 1,040 0.7 55 49 7,143 6.4
35 1,260 0.8 73 87 9,076 6.9
40 1,720 1.1 73 86 9,496 6.7
45 1,220 0.9 70 69 9,664 6.3

Table 7 Global optimization with bound and linear con-
straints using the metamodel and local optimization using
the complete model

STEP 1 STEP 2 GAIN
n0 n1 t1(s) n2 t2(s) tmultilev G

Orthogonal array
8 1,069 2.3 183 178 16,052 21.4
16 1,029 2.3 204 235 18,489 28.4
32 1,169 2.4 131 174 13,699 8.6
64 1,029 2.5 45 66 9,162 8.0

LHS sampling
5 1,029 2.3 166 202 14,371 32.6
10 1,029 2.3 45 66 4,624 9.6
15 1,189 2.4 175 224 15,968 19.7
20 1,149 2.4 45 66 5,464 6.9
25 1,029 2.3 176 181 16,892 15.8
30 1,029 2.4 239 252 22,606 17.1
35 1,029 2.4 45 66 6,725 5.2
40 1,029 2.5 199 245 20,085 12.7
45 1,029 2.5 123 130 14,119 8.9

compare this two step optimization method based on a

multiparametric calculation strategy with the same op-

timization method and no multiparametric aspect. In

order to do that, we consider that the reference time

for a FE calculation is considered to be equal to tref =

84.0s. Gain G, defined as the ratio of tmultilev+multipar
(the computation time for our two step strategy cou-

pled with the multiparametric aspect) to tmultilev (the

computation time for the two step calculation strat-

egy with no multiparametric aspect), shows that in a

two step strategy the addition of the multiparametric

strategy reduced the CPU time by a factor of between

approximately 5 and 32.5.

5 Conclusion

We implemented a two step model optimization strat-

egy based on a global optimization using a cumulative

interpolation metamodel and a local optimization us-

ing the full FE model. What is unique to this work is

the coupling between this two step strategy and a multi-

parametric resolution strategy, which helps reduce com-

putation times during the numerous calls to the simu-

lator, both in the metamodel construction step using

a predefined sample and in the local optimization step

for the evaluation of the objective function and its gra-

dients. We compared the computation times obtained

using our strategy with those obtained using a two step

optimization strategy without multiparametric aspect.

We showed that this two step/multiparametric associa-

tion led to a significant reduction in computation times.

The combination of the two strategies led to a gain of

4.4 to 14.2 for the axisymmetric example and 5 to 32.5

for the 3D example.
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The extension to larger problems, in terms of both

the number of parameters and the number of simula-

tions, remains to be carried out. Another direction for

future research would be the introduction of multiple

objective functions in order to determine the Pareto

fronts.
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