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Abstract In the course of designing structural assemblies,
performing a full optimization is very expensive in terms of
computation time. In order or reduce this cost, we propose
a multilevel model optimization approach. This paper lays
the foundations of this strategy by presenting a method for
constructing an approximation of an objective function. This
approach consists in coupling a multiparametric mechani-
cal strategy based on the LATIN method with a gradient-
based metamodel called a cokriging metamodel. The main
difficulty is to build an accurate approximation while keep-
ing the computation cost low. Following an introduction to
multiparametric and cokriging strategies, the performance
of kriging and cokriging models is studied using one- and
two-dimensional analytical functions; then, the performance
of metamodels built from mechanical responses provided by
the multiparametric strategy is analyzed based on two me-
chanical test examples.

Keywords Cokriging metamodel · multiparametric
strategy · LATIN method · multilevel optimization
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1 Introduction

Optimization techniques have been in use in industry for
many years. Structural elements, geometries, materials... are
often designed and selected by means of specific industrial
optimization software. The main difficulty in carrying out
an optimization is that the precise localization of the opti-
mum of an objective function often requires a large number
of calculations. In the case of the design of structural assem-
blies, each calculation involves the resolution of very com-
plex nonlinear problems due to the existence of contacts and
friction between the parts. This makes the computation cost
a major scientific stumbling block.

A technique widely used in order to make such opti-
mizations affordable is multilevel model optimization [1].
Our approach belongs to that category in the sense that, con-
trary to the surrogate-based approach [2, 3], we use a meta-
model only to accelerate the optimization process. The main
steps are: first, the construction of a metamodel from the re-
sponses of the mechanical model; then, the localization of an
approximate optimum using the metamodel; and, finally, the
precise determination of the optimum using the mechanical
model and the approximate optimum. This strategy leads to
a reduction in computation cost and, therefore, in the time it
takes to complete the optimization.

This paper focuses on the first step, i.e. the construction
of the metamodel using:
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– a cokriging metamodel;
– a dedicated computational strategy.

We will show that when gradients are available a cokriging
metamodel leads to a better approximation than a kriging
metamodel with the same number of sample points. More-
over, our computational strategy is capable of reusing previ-
ous calculations in order to solve new problems. When the
parameters vary, this property enables one to reduce the cost
of a new calculation, particularly when it comes to evaluat-
ing gradients using a finite difference method.

The first chapter of the paper is a review of multilevel
optimization techniques in the context of this study. More
precisely, it focuses on multilevel model optimization in-
tended for parameter optimization. The second chapter in-
troduces the multiparametric strategy and discusses its per-
formance in detail. The third chapter proposes and develops
a gradient-based formulation of the cokriging metamodel.

In the last chapter, numerical and analytical examples
are used to show that the cokriging metamodel provides a
better approximation than classical (e.g. kriging) metamod-
els. For mechanical examples, the coupling of a cokriging
metamodel with our computational strategy leads to a sig-
nificant reduction in the computation costs associated with
the generation of the metamodel. The quality of the cokrig-
ing metamodel is studied based on several classical criteria
and compared with that of the kriging metamodel.

2 The optimization process

Classical direct optimization, in which the optimizer is
linked directly to the mechanical solver, requires huge com-
puter resources. The cost increases not only with the com-
plexity of the mechanical problem (i.e. the nonlinearities
included in the model), but also with the number of de-
grees of freedom in the mechanical system and the num-
ber of design variables in the optimization problem. In or-
der to reduce the cost of optimization in structural design,
many works concentrate on three main aspects: the devel-
opment of dedicated numerical methods to address increas-
ingly complex mechanical problems, the improvement of
the performance of the optimization algorithms and the de-
velopment of strategies to coordinate the exchanges between
the optimization algorithm and the mechanical solver (for
example, see [3, 4]). The use of a multilevel optimization
strategy provides a solution to the last aspect. Multilevel
strategies were developed over the last twenty years. These
approaches can be divided into two main categories: mul-
tilevel parameter optimization (which includes sequential
methods [5–7] and iterative methods [8–13]) and multilevel
model optimization (which includes hierarchical multilevel
optimization [1, 14] and imbricated multilevel optimization
[15]). Similar strategies have also been used in the context

of multidisciplinary optimization where each level of the
optimization process concerns a specific discipline [9, 16].
Parallel multilevel model optimization [17, 18] can also be
used in order to reduce the optimization cost and take max-
imum advantage of parallel computing architectures. This
type of multilevel strategy calls for specific optimization al-
gorithms, such as genetic algorithms [19–21].

The multilevel modeling strategy we propose is based
on multilevel model optimization. We focus on the two-level
strategy illustrated in Figure 1. On the first level, which con-
sists in a metamodel defined using a limited amount of data,
the zones where the optimum is to be sought are determined
using, for example, a genetic algorithm [22]; then, this in-
formation is transferred to the second level, where a precise
search for the minimum can be carried out using a gradient-
based algorithm. Thus, the second level is an optimization
process based on the full mechanical model.

Simulator Metamodel Optimizer

Simulator Optimizer

Optimization using the metamodel

Direct optimization

Scope of this article

Fig. 1: Multilevel optimization

The scope of this paper is limited to the study of the cost
associated with the generation of the metamodel.

Many types of metamodels can be used to find an ap-
proximate solution: they can be based on polynomial regres-
sion [23, 24], on neural networks [25, 26], on radial basis
functions [27], on proper orthogonal decomposition [28],
on cumulative interpolation [29], etc... We chose to use a
particular class of metamodels called kriging approxima-
tions [30] and, more precisely, a cokriging metamodel [31]
using derivatives [32]. These approximations are presented
in Section 4. The interested readers could also refer to works
on metamodeling strategies in structural optimization and
multidisciplinary design optimization [33, 34].

3 The multiparametric strategy

This chapter introduces the concept of multiparametric strat-
egy, which enables one to solve similar structural problems
at a greatly reduced cost. This is used for the types of struc-
tural assembly problems which are described in Section 3.1.
The strategy is based on the LATIN method, which is pre-
sented in Section 3.2. The multiparametric strategy itself is
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presented in Section 3.3 and its performance is discussed
using the example of a 2D mechanical benchmark problem
with two design variables in Section 3.3.2.

3.1 The problem of structural assemblies

The structures being considered in this paper are assemblies
of linear elastic structures under the assumption of small
perturbations. The only nonlinearities occur between parts
of the assemblies and are due to contact and/or friction phe-
nomena. In order to solve these problems, we use a dedi-
cated strategy based on the LATIN algorithm introduced by
P. Ladevèze [35].

This strategy is based on three main points:

– The structure being studied is divided into substructures
and interfaces. This is a natural approach in the context
of assemblies because treating each part of an assembly
as a substructure and the contact zone(s) between two
parts as (an) interface(s) constitutes the simplest decom-
position. What makes this decomposition unique is the
use of mixed force and displacement unknowns at the
interfaces;

– A suitable iterative algorithm is used to solve the me-
chanical problem;

– The operators of the method remain constant and do not
depend on the loading or on the parameters of the inter-
face (friction coefficient, gap).

The resulting approach is a mixed domain decomposi-
tion method, as opposed to the primal substructuring ap-
proach [36, 37] or dual approach [38].

3.2 Short summary of the LATIN method for assemblies

Our resolution strategy is based on the LATIN algorithm de-
veloped by P. Ladevèze [35], which consists in solving two
problems alternatively: one in the substructures and one at
the interfaces. These problems are described by two groups
of equations denoted Ad and Γ : Ad contains the linear equa-
tions related to the substructures and Γ contains the lo-
cal equations (which can be nonlinear) related to the inter-
faces. The iterations between the two groups are carried out
through the use of search directions which are parameters
of the method. This resolution process, shown in Figure 2,
leads to the solution defined as the intersection of spaces Γ
and Ad. In the context of elastic assemblies, the boundary
conditions (forces Fi and displacements Wi) at each inter-
face i between two substructures are sufficient to define the
solution: the internal behavior of each substructure is the so-
lution of a classical elastic problem. Thus, an approximate
solution is described entirely by s =

⋃
all the interfaces

(Wi,Fi).

Ad

Γ

E− E+

ŝn

s sn+1 sn

Fig. 2: Schematic representation of the LATIN process

The friction and contact conditions with their respective
approaches and laws [39] are part of equation group Γ . The
linear form of Ad is due to the linear behavior of the sub-
structures.

The main feature of the LATIN method is that at each
iteration the resolution leads to an approximate solution over
the whole loading path and in all the points of the structure.
Each new iteration enriches this solution until convergence.

Additional details can be found in [35,40] for the LATIN
method and in [39, 41] for its application to assemblies.

3.3 The multiparametric strategy

The construction of the metamodel requires the evaluation
of what is called in optimization an objective function or
cost function at certain points of what is called the design
space. In the case of a parametric study in the mechani-
cal context, these evaluations lead to the resolution of many
problems which are similar in the sense that only their pa-
rameters vary. In order to accelerate these resolutions, we
use an approach called the MultiParametric Strategy (MPS)
which was introduced in [42,43], then studied and applied to
various types of problems in [44–46]. The following presen-
tation introduces the principle of this strategy and discusses
its performance based on an academic test example.

3.3.1 Principle of the multiparametric strategy

The main idea of the multiparametric strategy is very simple
and consists in initializing the LATIN algorithm using the
converged solution of a previous problem. As mentioned in
Section 3.2, each calculated solution, associated with a set
of parameters, is entirely described by the values of the vari-
ables at the boundary. Thus, the initialization process con-
sists in reloading the boundary values associated with the
converged solution of the chosen similar problem.

In order to build a metamodel, the set of the sample
points (each defined in the design space by a set of parame-
ters) can be divided into two sets: the set of the sample points
associated with calculated values of the objective function,
and the set of the sample points at which the values of the
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objective function are still unknown. The latter is not al-
ways defined clearly, especially in an optimization process
in which the optimizer introduces new sample points gradu-
ally, but the first set constitutes a database which is available
for subsequent calculations. Thus, if a new calculation as-
sociated with different values of the parameters is required,
the algorithm can be initialized using a previous converged
solution taken from the database. Each new evaluation of the
objective function enriches the database.

Figure 3 illustrates the use of the multiparametric strat-
egy to obtain an approximate solution starting from a pre-
vious calculation: in order to obtain the converged solution,
s3 can be initialized with one of the two available converged
solutions s1 or s2. The benefit depends on the choice of the
starting point. Some indications for choosing the best ini-
tialization strategy were given in [47]. In our case we will
use only a “closest point” strategy: the initial solution of the
new problem is chosen to be the converged solution associ-
ated with the set of design parameters which is closest to the
one being considered.

Since we are assuming that the only parameters which
vary are the interface parameters, space Γ alone is affected
by the change.
Thanks to this strategy, the solution converges in fewer iter-

Ad

Γ1
Γ2 Γ3

s1

s2

s1s3

Variation of parameters

Fig. 3: The multiparametric strategy using the LATIN algo-
rithm

ations of the algorithm and, therefore, in less time.

3.3.2 Performance of the multiparametric strategy

Let us consider the example of a quasi-static academic prob-
lem which was presented in [45]. Figure 4 shows the ge-
ometry of the problem, which consists of three square parts
(h = 50mm, Young’s modulus E = 2 ·105MPa and Poisson’s
coefficient ν = 0.3) in contact with friction. Each part is rep-
resented by a single substructure discretized into 20×20 bi-
linear quadrangles. The parametric study consists in vary-
ing the friction coefficients µ1 and µ2 of the two contact
interfaces. The loading consists of two stages: first, a pro-
gressive vertical pressure P1 up to a maximum of 50MPa

applied at the top of substructure Ω3 (the preloading stage),
then a progressive horizontal load from 0 to 30MPa applied
to substructure Ω2.

h

h

j

Ω1

Ω2

Ω3

µ1

µ2P2(MPa)

30

t

P1(MPa)

50

t

Fig. 4: The geometry of the problem
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Fig. 5: The reference response surface

In this test, variations of the friction coefficients µ1 and
µ2 between 0 and 0.6 were considered, and the function
studied was the reaction force on the rigid wall. Figure 5
shows the response surface of this function obtained with
18×18 values of the friction coefficients.

In order to illustrate the performance of the multipara-
metric strategy, the two-variable design space was sampled
with a 4×4 regular grid. For each sample, the force and its
gradients were calculated (using a classical finite difference
method for the gradients). Table 1 summarizes the charac-
teristics of these calculations.

The gain obtained with our method compared to a clas-
sical calculation without the MPS was estimated using the
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expression:

Gain =
CPU time without the MPS
CPU time using the MPS

(1)

The simple mechanical examples used in this paper make it
possible to evaluate the CPU time without the MPS, but in
the general case one uses the formula:

Gain =
Number of calculations×Reference CPU time

CPU time using the MPS
(2)

where the Reference CPU time can be the CPU time of the
first calculation, the maximum CPU time necessary to obtain
one evaluation, or the average CPU time for evaluations at
several points of the design space without the MPS.

Eval. Eval. gradients Total

Number of calculations 16 2×16 48

Avg. CPU time per calc. 2.97s 1.53s 2.01s
Min. CPU time 0.17s 0.16s 0.16s
Max. CPU time 8.12s 4.83s 8.12s

Nb. of iterations 2,201 2,215 4,416
Avg. nb. of iterations (per calc.) 137 69.2 92
Min. nb. of iterations 5 5 5
Max. nb. of iterations 381 225 381

Total CPU time 47.5s 48.9s 96.4s
CPU time w/o MPS 135s 270s 405s
Gain 2.84 5.52 4.22

Table 1: The mechanical calculations using the multipara-
metric strategy

The results presented in Table 1 show that the solver
can indeed accelerate the resolution of similar problems by
reusing a previously converged solution. The most remark-
able gain was that obtained in the evaluation of the gradients.
These were calculated using a finite difference method: each
gradient required the value of the response in 3 points (a
sample point plus 2 neighboring points obtained with very
small variations of the parameters). The results show that
for the same number of evaluations the cost was lower when
both the responses and the gradients were calculated than
when the responses alone were calculated: in our example,
16 evaluations of the responses alone took 47.5s, but the
addition of 16 gradients (32 evaluations) took only 48.9s.
Thus, thanks to the ability of the method to reduce the com-
putation time for sample points that are close together, the
strategy is particularly efficient in calculating the gradients.
This feature is very interesting if one wishes to use a
gradient-based optimizer to achieve a significant reduction
in optimization time. In this paper, we will also undertake to
use these inexpensive gradients to build a gradient-enhanced
metamodel.

4 The cokriging metamodel

The classical approach to building a metamodel consists in
using the responses of an objective function (also called a
primary variable) calculated at a number of sample points.
The values of the objective function at the chosen sample
points can be used to build a classical metamodel. However,
in many cases, it may be interesting to use additional infor-
mation in the form of auxiliary variables to build a richer
metamodel. Multivariate geostatistics is a field of applied
mathematics which supplies methods to handle these vari-
ables jointly. The cokriging metamodel we use [31] is an
example of such methods in which the primary variable is
the objective function and the auxiliary variables are its gra-
dients.

The kriging technique was first introduced by D.G.
Krige, a mining engineer [48]. Subsequently, many math-
ematical enhancements were proposed by G. Matheron
[49–51]. Used initially in geostatistics, kriging was later
coupled with calculation methods for the resolution of de-
sign problems by [52, 53]. Simpson [24] gave a review of
various metamodels for multidisciplinary optimization. Ad-
ditional information can be found in [54].

This chapter focuses on the gradient-enhanced cokrig-
ing metamodel [32, 55, 56]: Section 4.2 presents the princi-
ples and fundamentals of kriging and cokriging; then, Sec-
tions 4.4 and 4.5 deal with the construction of the cokriging
metamodel in the case of ordinary cokriging. Finally, Sec-
tion 4.6 discusses the problem of the determination of the
cokriging parameters.

4.1 Notations

We will use the following notations:

1. x(i), i ∈ J0,nsK denotes a point in the design space D .
(x(i), i ∈ J1,nsK is one of the ns sample points, and x(0)
is an arbitrary point in the design space, which may or
may not be a sample point.)

2. Y (x(i)) and Ỹ (x(i)) denote respectively the response of
the analytical function (or the response of the mechan-
ical model) and the approximate response given by the
metamodel at point x(i), i ∈ J0,nsK.

3. R(x(i),x( j)) is a correlation function expressing the cor-
relation relation between points x(i) and x( j), (i, j) ∈
J0,nsK2.

4.2 Principle

The principle of the cokriging metamodel is similar to that
of the kriging metamodel. One defines a random process,
associated with the deterministic response of the objective
function, which is the sum of two components (Equation 3):
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a linear model µ which represents the trend of the data, and
a departure Z from this linear model which represents the
fluctuations around the trend.

Y (x(0)) = µ(x(0))+Z(x(0)), ∀x(0) ∈D (3)

with

E
[
Z(x(0))

]
= 0, Var

[
Z(x(0))

]
6= 0, ∀x(0) ∈D (4)

and

cov
[
Z
(

x(i)
)
,Z
(

x( j)
)]
6= 0, ∀

(
x(i),x( j)

)
∈D2 (5)

E, Var and cov are the classical statistical expected value,
variance and covariance.

µ is a deterministic function and Z is a stationary Gaus-
sian process with a known stationary covariance. Depending
on the definition of function µ , one can build different types
of kriging or cokriging metamodels (simple kriging, where
µ is the average of the values of the objective function at
the sample points; ordinary kriging, where µ is an unknown
constant; or universal kriging, where µ is a polynomial func-
tion).

Function Z has a zero expected value and its covariance
structure is a function of a generalized distance among the
sampled responses. The covariance structure can be written
as:

∀
(

x(i),x( j)
)
∈D2,

cov
[
Z
(

x(i)
)
,Z
(

x( j)
)]

= σ2R
(

x(i),x( j)
)
= σ2ci j (6)

where σ2 is the variance of process Z. The correlation
function can be a Gaussian function or a Matérn function
[57, 58].

In the context of cokriging, the variables are divided
into a primary variable Y and N auxiliary variables W i. The
auxiliary variables used to build a gradient-based cokrig-
ing metamodel are the components of the gradients (Equa-
tion 8). The construction of the cokriging metamodel in-
volves Equation 7 in addition to Equation 3.

∀i ∈ J0,NK, ∀x(0) ∈D , W i(x(0)) = µW i +Qi(x(0)) (7)

where

∀i ∈ J0,NK, ∀x(0) ∈D , W i(x(0)) =
∂Y
∂xi

(
x(0)
)

(8)

and

∀i ∈ J0,NK, ∀x(0) ∈D , E
[
W i(x(0))

]
= µW i (9)

E
[
Qi(x(0))

]
= 0 (10)

∀
(

x(i),x( j)
)
∈D2,∀(k, l) ∈ J0,NK2, (11)

cov
[
Qk
(

x(i)
)
,Ql
(

x( j)
)]
6= 0 (12)

cov
[
Qk
(

x(i)
)
,Z
(

x( j)
)]
6= 0 (13)

Var
[
Qk
(

x(i)
)]

= Var
[

∂Z
∂xk

(
x(i)
)]

(14)

Thus, in the case of a cokriging metamodel, additional
covariance relations involving the different variables must
be introduced [56]:

cov
[

∂Z
∂xk

(
x(i)
)
,Z
(

x( j)
)]

=−σ2 ∂R
∂xk

(
x(i),x( j)

)
= σ2cki j (15)

.

cov
[

Z
(

x(i)
)
,

∂Z
∂xk

(
x( j)
)]

= σ2 ∂R
∂xk

(
x( j),x(i)

)
= σ2ck ji (16)

cov
[

∂Z
∂xk

(
x(i)
)
,

∂Z
∂xl

(
x( j)
)]

=−σ2 ∂ 2R
∂xk∂xl

(
x(i),x( j)

)
= σ2ckli j (17)

where

∀(i, j,k, l) ∈ J0,nsK2×J1,ndK2, ∀
(

x(i),x( j)
)
∈D2,

ci j =R
(

x(i),x( j)
)
= c ji (18)

cki j =
∂R
∂xk

(
x(i),x( j)

)
=− ∂R

∂xk

(
x( j),x(i)

)
=−ck ji (19)

ckli j =
∂ 2R

∂xk∂xl

(
x(i),x( j)

)
= clki j = ckl ji (20)

4.3 The correlation function

In the following examples, we consider the correlation func-
tion to be the Matérn function [57], defined by:

∀r ∈ R+,

M (r, l) =

(
1+

√
5

l
r+

5
3l2 r2

)
exp

(
−
√

5
l

r

)
(21)

where l denotes the correlation length (l > 0). More details
on the Matérn function can be found in [54].

In the general case, we use the correlation function de-
fined by:

∀(i, j,k, l) ∈ J0,nsK2×J1,ndK2, ∀
(

x(i),x( j)
)
∈D2,

R
(

x(i),x( j)
)
=

nd

∏
k=1

M (|x(i)k − x( j)
k |, lk) (22)
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where nd is the number of design variables in the prob-
lem; x(i)k and lk are the kth component of point x(i) and the
associated correlation length respectively.

The first derivative of the Matérn function is non-
symmetrical. Therefore, one has cki j 6= ck ji with (k, i, j) ∈
J1,ndK×J0,nsK2 (see Equation 19).

4.4 Construction of the cokriging metamodel

The method used to build the cokriging metamodel is similar
to that used to build a kriging metamodel, which leads to
an estimator known as the best linear unbiased predictor as
follows:

1. The objective is to determine an estimator Ỹ of the ran-
dom process Y given the linear predictor defined by
Equation 23 with x(0) ∈ D ; this is equivalent to de-
termining the λ0i (∀i ∈ J1,nsK) and the λi j (∀(i, j) ∈
J1,nsK×J1,ndK) );

2. the linear predictor must satisfy the unbiasedness condi-
tions of Equation 24;

3. the linear predictor must minimize the mean square error
defined in Equation 25 subject to the previous unbiased-
ness conditions.

Ỹ
(

x(0)
)
=

ns

∑
i=1

λ0i

(
x(0)
)

Y
(

x(i)
)

+
nd

∑
j=1

ns

∑
i=1

λi j

(
x(0)
) ∂Y

∂x j

(
x(i)
)

(23)

E
[
Ỹ
(

x(0)
)]

= E
[
Y
(

x(0)
)]

(24)

MSE
[
Ỹ (x(0))

]
= E

[(
Ỹ
(

x(0)
)
−Y

(
x(0)
))2

]
(25)

4.5 Ordinary CoKriging (OCK)

For simplicity’s sake, as suggested in [19], we chose to limit
ourselves to an ordinary cokriging metamodel. In this case,
the deterministic function µ is an unknown constant. The
construction method of Section 4.4 leads to the following
estimator (from Equation 26)

Ỹ
(

x(0)
)
= β̂ c︸︷︷︸

µ(x(0))

+rT
c0C−1

c (Ysc−Xcβ̂ c)︸ ︷︷ ︸
Z(x(0))

(26)

where

β̂ c =(XT
c C−1

c Xc)
−1XT

c C−1
c Ysc

rc0 =
[
c01 c02 · · · c0ns c110 c210 · · · cndns0

]
Xc =

[
1,1, · · · ,1,0,0, · · · ,0

]T
Cc =

[
C Cd

Cd
T Cdd

]
and, using the notations presented in Equations 18-19-20:

(C)i j = ci j

Cd =


c111 c211 · · · cnd11 c112 · · · cnd1ns

c121 c221 · · · cnd21 c122 · · · cnd2ns

c131 c231 · · ·
...

. . .
...

c1ns1 · · · cndnsns



Cdd =


c11

dd c12
dd · · · c1ns

dd

c21
dd c22

dd · · ·
...

...
. . .

...
cns1

dd cns2
dd · · · cnsns

dd



with ∀(k, l) ∈ J1,nsK2, ckl
dd =


c11kl c12kl · · · c1ndkl

c11kl c12kl · · ·
...

...
. . .

...
cnd1kl cnd2kl · · · cndndkl


In the cokriging case, vector Ysc contains both the re-

sponses and the gradients of the objective function at the
sample points, whereas in the kriging case vector Ys con-
tains only the responses of the function. Equations 15-16-17
lead to the linear estimator as a function of the correlation
vector and matrices rc0 and Cc. Therefore, the resulting ex-
pression does not contain σ2.

Thus defined, the model can supply approximate re-
sponses of the objective function at every point of the design
space. In our case, the response of the function is considered
to be deterministic and we end up with a cokriging interpo-
lation model. This type of metamodel has other advantages:
for example, it provides statistical information on the pro-
cess (its expected value and its variance). Due to the use of
the unbiasedness condition, the expected value of Ỹ is given
by the trend model µ and the mean square error of Ỹ [53]:

MSE
[
Ỹ
(

x(0)
)]

= σ2
[

1−
[
1ns rc0

][ 0 XT
c

Xc Cc

][
1ns

rc0

]]
(27)

where 1ns is a vector which contains ns×1.
The correlation matrix and vector appear to depend on

the correlation function, i.e. on the correlation lengths. A
specific strategy can be used to estimate values of the corre-
lation lengths and σ2.
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4.6 Estimation of the parameters

The model’s parameters (such as the characteristic correla-
tion lengths l, the variance σ of the random process Z or the
regression coefficients) can be determined by maximizing
the likelihood function [59]. We use this technique, which
relies on the maximization of the density of the observed
values Ysc, to determine l and σ . The density can be viewed
as a function L of parameters l and σ :

L(l,σ2;Ysc) = (2πσ2)−ns(nd+1)/2|Cc(l)|−1/2

×exp
[
−1

2
(Ysc−Xcβ̂ c)

T Cc(l)−1(Ysc−Xcβ̂ c)

]
(28)

where Cc is the correlation matrix. This matrix depends
on the correlation lengths {l1, l2, ..., lnd}, which constitute a
vector l.

The maximization of the likelihood function can be ex-
pressed as:

(l̂, σ̂2) = argmax
l,σ2

{
L(l,σ2;Ysc)

}
(29)

This problem can usually be solved by minimizing the log-
likelihood.

The variance σ2 can be determined analytically through
the derivation of the likelihood function:

σ̂2 =
1
ns
(Ysc−Xcβ̂ c)

T Cc(l)−1(Ysc−Xcβ̂ c) (30)

One can also use an optimizer to determine the cor-
relation length numerically. This method has some draw-
backs [60–62]: in many cases with very few points, the log-
likelihood is monotonous; the correlation matrix often suf-
fers from conditioning problems which make it difficult to
find a minimum. When such problems arise, one sets the pa-
rameters (particularly the correlation lengths) to fixed val-
ues.

5 Examples of the construction of metamodels

In this chapter, several examples based on analytical func-
tions and mechanical test cases are presented: first, a one-
dimensional analytical function is used to build metamod-
els and, in order to compare the quality of these meta-
models, different criteria are presented in (Section 5.1.1).
Then, kriging and cokriging metamodels are built using
two two-dimensional analytical functions with and with-
out anisotropy (Sections 5.1.2 and 5.1.3). Finally, two me-
chanical problems are used to study the performance of the
coupled multiparametric/cokriging strategy approach (Sec-
tions 5.2 and 5.3). For simplicity’s sake, only problems with
two design variables are being considered.

5.1 Analytical applications

In this section, kriging and cokriging are applied to one- and
two-dimensional analytical test functions. The abbreviations
OK and OCK will be used to designate Ordinary Kriging
and Ordinary CoKriging respectively.

5.1.1 Case of a one-dimensional test function

First, we applied the two types of metamodels to the ana-
lytical function y(x) = exp(−x/10)cos(x)+ x/10. We used
6 sampled responses of the analytical function to build the
OK metamodel, and an additional 6 sampled derivatives to
build the OCK metamodel. The correlation function was the
Matérn function. The sample points were obtained using
Latin Hypercube Sampling (LHS) [63].

0 2 4 6 8 10 12 14
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0

0.5
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1.5

Real response
Sample reponses
CoKriging
Kriging

Fig. 6: Ordinary kriging and cokriging

0 2 4 6 8 10 12 14

−0.5

0

0.5

Real derivative
Sampled derivatives
Derivative of CoKriging
Derivative of Kriging

Fig. 7: OK and OCK derivatives

Figures 6 and 7 illustrate the capability of the cokrig-
ing metamodel to interpolate not only the values of the re-
sponses, but also the sampled derivatives. In this example,
the cokriging metamodel performed better: Table 2 shows
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that the R2 criterion is better with cokriging than with krig-
ing and the other criteria confirm that in this case cokrig-
ing leads to a better approximation than kriging. This state-
ment remained true as long as we worked with only a few
points. One can also observe that for a relatively smooth
function the kriging metamodel converges quickly toward a
good approximation of the actual function when the number
of points becomes large enough.

For these two metamodels the correlation length was de-
termined by maximizing the likelihood following the strat-
egy introduced in Section 4.6. Figure 8 shows the log-
likelihood as a function of the correlation length.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

20

25

30
Kriging
CoKriging

Fig. 8: The log-likelihood vs. the correlation length

Classical numerical optimization (using function
fmincon in MATLAB) led to correlation lengths equal
to lOK = 0.2807 and lOCK = 0.3481 for the kriging and
cokriging metamodels respectively. (In all the kriging and
cokriging examples presented in this paper, the data are
normalized in order to build the metamodels from reduced
variables.)

The characteristics of the two metamodels are summa-
rized in Table 2.

OK OCK

R2 0.8593 0.9666
RAAE 0.2949 0.1326
RMAE 0.7162 0.4427
Q1 7.219 ·10−2 2.758 ·10−2

Q2 5.942 1.4124
Q3 1.974 ·10−2 4.693 ·10−3

Table 2: Characteristics of the two previous metamodels

RAAE and RMAE designate the Relative Average Ab-
solute Error and Relative Maximum Absolute Error criteria.
The criteria Qi, which compare the actual response and the
responses of the metamodels at nc points (nc >> ns) of a

regular grid with were calculated as follows:

Q1 = sup
i∈{1,2,...,nc}

ei = ‖e‖∞

Q2 =
nc

∑
i=1

ei = ‖e‖1

Q3 =
Q2

nc
(the average of Q2)

where ∀i ∈ {1,2, ...,nc}, ei =

(
Y
(

x(i)
)
− Ỹ

(
x(i)
))2

sup
j∈{1,2,...,nc}

Y
(
x( j)
)2

and e =
[
e1 e2 · · · enc

]
with ‖ · ‖1 and ‖ · ‖∞ being the L1 norm and infinity norm
respectively.

Based on the statistical information obtained from the
kriging and cokriging metamodels, one can derive confi-
dence intervals. The two diagrams of Figures 9 and 10 show
the 95% Confidence Intervals (CIs) obtained with Expres-
sion 31. In these types of metamodels, the size of the con-
fidence envelopes is determined mainly by the distance be-
tween each pair of neighboring points.

CI±(x) = Ỹ (x)±2
√

MSE
[
Ỹ (x)

]
(31)

0 2 4 6 8 10 12 14

0

1

2

3 Real response
Sampled responses
Kriging
CI 95%

Fig. 9: The confidence envelopes for the kriging metamodel

For the same number of sample points, the cokriging
metamodel provides narrower confidence intervals, espe-
cially close to the sample points. One could use the infor-
mation derived from the variance or the confidence interval
of random process Ỹ to choose additional sample points (e.g.
the points where the variance is maximum) in order to en-
rich the database used in constructing the metamodels. Such
a strategy is not considered in this paper.
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0 2 4 6 8 10 12 14
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Fig. 10: The confidence envelopes for the cokriging meta-
model

5.1.2 Case of a two-dimensional test function

The same two types of metamodels were used to approx-
imate an analytical function of two variables. In order
to illustrate the performance of the cokriging metamodel,
we chose a very irregular function: the six-hump camel
back function (∀(x1,x2) ∈ [−2,2]×[−1,1], f (x1,x2) = (4−
2.1x2

1 + x4
1)x

2
1 + x1x2 + 4(x2

2 − 1)x2
2). The two metamodels

were constructed using 16 evaluations of the function for
the kriging metamodel and an additional 16 evaluations of
its gradients for the cokriging metamodel. In both cases,
the correlation function was the Matérn function. First, the
correlation length was considered to be the same for two
components of the design space. Then, different correlation
lengths were considered.
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Fig. 11: The response surface of the actual function. (The
isolines can be seen in Figure 20 of the appendix.)

The characteristics of these two metamodels are given in
Table 3.
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(a) Kriging metamodel
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(b) Cokriging metamodel

Fig. 12: The kriging and cokriging metamodels obtained
with 16 evaluations (plus 16 gradients for cokriging) of the
analytical function with only one correlation length. (The
isolines can be seen in Figure 21 of the appendix.)

OK OCK

R2 0.8236 0.9950
RAAE 0.2899 2.938 ·10−2

RMAE 2.7055 0.5604
Q1 0.3429 1.472 ·10−2

Q2 13.21 0.3757
Q3 8.257 ·10−3 2.348 ·10−4

Table 3: Characteristics of the two metamodels (Figure 12a-
12b) with a single correlation length

For this 2D test function, the cokriging metamodel led
to a relatively accurate approximation of the actual function
using only a few sample points. Taking into account the gra-
dients, we were able to develop more efficient approximate
models. However, for a problem involving the evaluation of
mechanical responses, the computation cost of determining
ns responses and ns gradients is obviously higher than for
ns responses only. (In the former case, due to the use of fi-
nite differences to calculate the gradients, the construction
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of the metamodel requires 3ns evaluations of the mechani-
cal model.)

Now let us take another approach which consists in con-
structing metamodels using the same number of evalua-
tions. In the following example, we used the same six-hump
function, but the kriging metamodel was constructed based
on the responses at 27 sample points (Figure 13a), while
the cokriging metamodel was still constructed using the re-
sponses and the gradients at 9 sample points (Figure 13b).

−2

−1

0

1

2

−1

−0.5

0

0.5

1

−2

−1

0

1

2

3

4

5

x
1

x
2

(a) Kriging metamodel
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(b) Cokriging metamodel

Fig. 13: The kriging and cokriging metamodels obtained
with the 27 evaluations of the analytical function (27 re-
sponses for kriging; 9 responses and 9 gradients for cok-
riging) with only one correlation length. (The isolines can
be seen in Figure 22 of the appendix.)

Table 4 shows that the quality of the predictions given
by the two metamodels was similar, but a very important ad-
vantage of the cokriging metamodel was that it led to more
zones where a minimum could be found than the kriging
metamodel. If the problem involved the calculation of me-
chanical responses, the computation cost associated with the
9 points and their gradients would be much lower than that
associated with the 27 points thanks to the multiparametric
strategy, as shown in Table 1.

OK OCK

R2 0.7818 0.7512
RAAE 0.2920 0.3579
RMAE 2.753 1.600
Q1 0.3550 0.1199
Q2 16.35 18.64
Q3 1.022 ·10−2 1.165 ·10−2

Table 4: Characteristics of the previous metamodels ob-
tained with the same number of evaluations (27 sample
points for kriging and 9 sample points for cokriging; see
Figures 13a-13b)

5.1.3 The case of two correlation lengths (anisotropy)

Now, let us take into account anisotropy. In the context of
using correlation functions with the correlation length as
a parameter, anisotropy is taken into account by allowing
different correlation lengths for each design variable. We
used the same two-dimensional example as in the previous
section: the kriging and cokriging metamodels were con-
structed from the same data with the same number of func-
tion evaluations for the two models. The results were com-
pared with those of the corresponding metamodels with a
single correlation length.

Figures 14a and 14b show the kriging and cokriging
metamodels whose results are to be compared with those
of Figures 13a and 13b. The quality of these predictions is
given in Table 5 (to be compared with the values of the qual-
ity criteria of Table 4).

OK OCK

R2 0.8163 0.7910
RAAE 0.2623 0.3208
RMAE 2.749 1.655
Q1 0.3541 0.1283
Q2 13.77 15.66
Q3 8.603 ·10−3 9.784 ·10−3

Table 5: Characteristics of the two metamodels with
anisotropy (Figures 14a-14b)

Table 6 shows the estimated correlation lengths obtained
with the maximized likelihood with a single correlation
length, then with anisotropy. For simplicity’s sake, the sam-
ple points and the evaluations were normalized in order to
carry out the kriging and cokriging metamodel construction
process with standardized variables. The correlation lengths
given in Table 6 refer to the variables after this transforma-
tion.
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(a) Kriging metamodel (to be compared with the sur-
face of Figure 13a)
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(b) Cokriging metamodel (to be compared with the
surface of Figure 13b)

Fig. 14: The kriging and cokriging metamodels ob-
tained with 27 evaluations of the analytical function with
anisotropy. (To be compared with Figure 13; the isolines can
be seen in Figure 23 of the appendix.)

Anisotropy No Yes Figures

OK (27 eval.) 0.9564 0.7106 1.5218 13a/14a
OCK (9 eval. & 9 grad.) 1.014 0.9878 1.310 13b/14b

Table 6: The correlation lengths for the construction of the
metamodels of the two-dimensional analytical function

5.1.4 Discussion of the example with anisotropy

The previous results confirmed the results obtained with a
single correlation length: the quality of the predictions given
by the kriging and cokriging metamodels with the same
amount of data (i.e. the same number of evaluations of the
function) was very similar. The introduction of anisotropy
improved the approximation for both types of metamodels
(see Tables 4 and 5). This suggests that it is advisable to use
a separate correlation length for each design variable.

5.2 Application to a contact problem with friction

In this section, we study the construction of the two pre-
vious metamodels (kriging and cokriging) using the multi-
parametric strategy presented in the first part of the paper
along with the responses of mechanical models. The test
cases considered are the three-squares example discussed
in Section 3.3.2 plus a shrink-fit test case. The first exam-
ple, which has a very smooth response surface, enables us
to construct and study simple metamodels. The second ex-
ample enables us to illustrate the strategy on a more com-
plex and realistic response surface presenting local optima.
In order to illustrate the performance of the coupled mul-
tiparametric/cokriging strategy, we carried out two studies:
one with a fixed number of mechanical calls (Section 5.2.1),
and the other with a fixed quality of the metamodels (Sec-
tion 5.2.2).

5.2.1 The case of a fixed number of mechanical calls

Each metamodel was constructed using 15 mechanical eval-
uations. The kriging metamodel was defined using 15 values
of the force; the cokriging metamodel was defined using 5
values of the force and 5 gradients (with two components
each, totaling 10 evaluations). The sample points were ob-
tained through Latin hypercube sampling. Our calculations
led to the two response surfaces of Figures 15a and 15b,
which are to be compared with the actual response surface
of Figure 5.

Tables 7 and 8 give the characteristics of the calculations
and of the metamodels.

Gradients no yes

Avg. CPU Time (/calc) 2.34s 1.89s
Min. CPU Time 0.17s 0.18s
Max. CPU Time 8.01s 7.81s

LATIN iterations 1,636 1,311
Avg. iterations (/calc) 109 87.4
Min. iterations 5 5
Max. iterations 381 371

Total CPU Time 35.1s 28.4s
CPU Time w/o MPS 125s 126s
Gain 3.56 4.44

Table 7: Characteristics of the mechanical calculations

With this example, the cokriging metamodel led to a
much better approximation of the mechanical model than
the kriging metamodel. Moreover, this result was obtained
at a lower computation cost.
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(a) Kriging metamodel
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(b) Cokriging metamodel

Fig. 15: The kriging and cokriging response surfaces of the
three-squares example using 15 evaluations (15 responses
for the kriging case; 5 responses and 5 gradients for the cok-
riging case). The isolines can be seen in Figure 24 of the
appendix.

OK OCK

R2 0.9880 0.9781
RAAE 8.884 ·10−2 0.1120
RMAE 0.3774 0.4720
Q1 8.917 ·10−3 1.395 ·10−2

Q2 0.2990 0.5467
Q3 7.475 ·10−4 1.367 ·10−3

Table 8: Characteristics of the metamodels

5.2.2 The case of a fixed quality of the metamodels

Another way to study the cost of the metamodels consists
in constructing kriging and cokriging metamodels of similar
quality. In this case, we constructed the metamodels using
sample points obtained through full factorial sampling. We
chose to build the kriging metamodel with 9×9 samples and
the cokriging metamodel with 3×3 and 5×5 samples. The
results are shown in Table 9.

5×5 full factorial sampling led to a cokriging meta-
model with the same quality as the 9×9 kriging metamodel.
As in the previous case with a fixed number of mechanical

OK OCK OCK
9×9 3×3 5×5

Avg. CPU Time (/calc) 1.79s 2.17s 1.68s
Min. CPU Time 0.16s 0.16s 0.16s
Max. CPU Time 8.01s 8.06s 8.08s
LATIN iterations 6,576 2,711 5,666
Avg. iterations (/calc) 81.2 100 75.5
Min. iterations 5 5 5
Max. iterations 381 381 381
Total CPU Time 144s 58.5s 126s
CPU Time w/o MPS 689s 225s 637s
Gain 4.78 3.84 5.06

R2 0.9986 0.9756 0.9955
RAAE 2.699 ·10−2 0.1155 4.468 ·10−2

RMAE 0.1818 0.5352 0.3290
Q1 2.068 ·10−3 1.793 ·10−2 6.774 ·10−3

Q2 3.631 ·10−2 0.6087 0.1134
Q3 9.078 ·10−5 1.522 ·10−3 2.836 ·10−4

Table 9: The metamodels constructed using full factorial
sampling

calls, the cost with the cokriging metamodel was lower. The
simplicity of the response surface of this test case enabled
the metamodels built with the multiparametric strategy to
be studied easily and visually. In order to assess the per-
formance of the cokriging metamodel, we also introduced a
more irregular response surface associated with a shrink-fit
test case.

5.3 Application to a shrink-fit problem

In order to study a case with a more irregular response sur-
face capable of illustrating the performance of the cokriging
metamodel, we introduced an additional test case: a shrink-
fit assembly problem in 2D. Figure 16 shows the geometry
of this problem.
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Fig. 16: The geometry of the shrink-fit assembly problem

The reference problem consists of a cylindrical shaft
inserted into a perforated rectangular plate (h1 = 0.3m,



14 Luc LAURENT et al.

h2 = 0.2m, Young’s modulus E = 80GPa, Poisson’s coef-
ficient ν = 0.3). The shaft is made of a perfect material, but
presents geometric defects: a diameter slightly larger than
its nominal value and a small eccentricity. The plate was di-
vided into 16 substructures, each meshed with six-node tri-
angular elements. The shaft itself was a substructure, also
meshed with six-node triangular elements, with the same
material characteristics and a nominal diameter of 5cm. Fig-
ure 17 shows the nominal geometry and the actual geometry
of the shaft. The eccentricity defect was set to e = 0.5µm
and the excess diameter was set to dr = R− R′ = 1µm.
The loading was applied in two stages: first, the shaft was
mounted in the frame; then, a uniform vertical pressure
was applied progressively to the shaft up to a maximum
250MPa. The mechanical solution of this problem was ob-
tained through a quasi-static resolution.

~x

~y

R

~x ′

O ′

R ′

ϕ

Fig. 17: The nominal and actual geometries of the shaft

We considered two design variables: the friction coef-
ficient µ between the shaft and the frame (µ ∈ [0.02,0.7])
and the orientation angle of the eccentricity defect ϕ (ϕ ∈
[0,360]). The objective function studied was the maximum
Von Mises’ stress in the structure.

Figure 18 shows the reference response surface plotted
on a 20×20 regular grid: one can observe that for this prob-
lem the objective function has several local minima and is
more irregular than that of the three-squares test case.

The kriging and cokriging metamodels of this test case
were constructed from evaluations of the objective func-
tion at 30 and 10 sample points respectively. These sampled
functions were obtained using the Latin Hypercube Sam-
pling procedure. Figure 19 and Table 10 show the resulting
metamodels and their characteristics.

These results show that the quality of the two metamod-
els is very similar. The cokriging metamodel was less ex-
pensive to build than the kriging metamodel, due largely to
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Fig. 18: The reference response surface of the shrink-fit test
case
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Fig. 19: The kriging and cokriging response surfaces of the
shrink-fit test case using 30 evaluations (30 responses for
kriging and 10 responses and 10 gradients for cokriging; the
isolines are presented in Figure 25 of the appendix)

the multiparametric strategy. For this test case, the response
surfaces enabled a good localization of the global minimum.
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OK OCK

Number of evaluations 30 30
Number of responses 30 10 (10 eval.)
Number of gradients 0 10 (20 eval.)

Avg. CPU Time (/calc) 60.5s 45.6s
Min. CPU Time 33.1s 2.21s
Max. CPU Time 123.6s 146.2s
LATIN iterations 27,137 19,307
Avg. iterations (/calc) 905 644
Min. iterations 36 30
Max. iterations 3,605 2,865
Total CPU Time 1815s 1366s
CPU Time w/o MPS 3641s 3441s
Gain 2.01 2.51

R2 0.8841 0.8158
RAAE 0.2649 0.3367
RMAE 0.9956 1.183
Q1 9.862 ·10−3 1.393 ·10−2

Q2 0.4601 0.7312
Q3 1.150 ·10−3 1.828 ·10−3

Table 10: Characteristics of the metamodels

6 Conclusion

This paper proposes a new multilevel model optimization
strategy based on a multiparametric approach and a cokrig-
ing metamodel and presents a detailed study of the cost of
constructing this type of metamodel. Based on two tools –
the Multiparametric strategy and a gradient-based cokriging
metamodel – the proposed approach allows us to obtain ac-
curate approximations of objective functions. Morevoer, due
to the use of the M.P.S., approximations are built with a sig-
nificant reduction of the computational time in comparison
with classical mechanical solver (i.e. without reinitialization
of the solving algorithm). On an two-variables academic test
example one can reach a gain about 3 to 4 in terms of com-
putational time. The closer the sample points, the greater the
gain. Obviously, the gain would be even greater in the case
of 3D problems [64].

This conclusion led to the construction of a gradient-
based cokriging metamodel. The final conclusion of this
study is the following:

– With similar numbers of sample points, cokriging leads
to more accurate results than kriging, but this is not very
useful in the mechanical context due to its higher com-
putation cost. (The construction of the cokriging meta-
model requires three times as many calculations as the
kriging metamodel in order to obtain the responses and
the gradients.)

– For a given quality of the results, cokriging enables a
significant reduction in the number of mechanical calls
compared to kriging.

– For a given quality of the results, cokriging leads to a
significant reduction in computation cost compared to
kriging.

– Like Kriging, Cokriging provides accurate locations of
the local optima.

– In all cases involving more than one design variable, the
use of the anisotropy principle is crucial for optimizing
the quality of the metamodels.

These results pave the way for future works on larger
and more complex assembly problems in order to deal with
more realistic industrial structures, such as two- and three-
dimensional problems with many design variables. Besides,
future developments will be also to compare cokriging meta-
model with other classical models such as gradient-based
Radial Basis Function [65] and Artifical Neural Network
[66]. Another objective will be to complete the develop-
ment of the first and second levels of the multilevel model
optimization strategy, i.e. the exploratory phase to localize
the optimum approximately and the subsequent precise op-
timization through new mechanical calculations using the
multiparametric strategy along with the results from the first
level.
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49. G. Matheron. Traité de géostatistique appliquée, Tome I. Mem-
oires du Bureau de Recherches Geologiques et Minieres, 14, 1962.

50. G. Matheron. Traite de Geostatistique Appliquee, Tome II: Le
Krigeage. Memoires du Bureau de Recherches Geologiques et
Minieres, No 24, 1962.

51. G. Matheron. Principles of geostatistics. Economic geology,
58(8):1246, 1963.

52. J. Sacks, S.B. Schiller, and W.J. Welch. Designs for computer
experiments. Technometrics, 31(1):41–47, 1989.

53. J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and
analysis of computer experiments. Statistical science, 4(4):409–
423, 1989.



Generation of a Cokriging Metamodel Using a Multiparametric Strategy 17

54. C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Ma-
chine Learning. Adaptive Computation and Machine Learning.
MIT Press, Cambridge, MA, USA, 01 2006.

55. J.R. Koehler and A.B. Owen. Computer experiments. Handbook
of statistics, 13:261–308, 1996.

56. M.D. Morris, T.J. Mitchell, and D. Ylvisaker. Bayesian design and
analysis of computer experiments: use of derivatives in surface
prediction. Technometrics, 35(3):243–255, 1993.

57. B. Matérn. Spatial Variation (Lecture NotesStatist. 36). Springer,
Berlin, 1960.

58. M.L. Stein. Interpolation of Spatial Data: some theory for kriging.
Springer Verlag, 1999.

59. K.V. Mardia and R.J. Marshall. Maximum likelihood esti-
mation of models for residual covariance in spatial regression.
Biometrika, 71(1):135, 1984.

60. K.V. Mardia and A.J. Watkins. On multimodality of the likelihood
in the spatial linear model. Biometrika, 76(2):289, 1989.

61. M.J. Sasena. Flexibility and efficiency enhancements for con-
strained global design optimization with kriging approximations.
PhD thesis, University of Michigan, 2002.

62. J.J. Warnes and B.D. Ripley. Problems with likelihood estimation
of covariance functions of spatial gaussian processes. Biometrika,
74(3):640, 1987.

63. M.D. McKay, W.J. Conover, and R.J. Beckman. A comparison of
three methods for selecting values of input variables in the analysis
of output from a computer code. Technometrics, 21(2):239–245,
1979.

64. V. Roulet, L. Champaney, and P.-A. Boucard. A parallel strat-
egy for the multiparametric analysis of structures with large con-
tact and friction surfaces. Advances in Engineering Software,
42(6):347 – 358, 2011.

65. S.J. Leary, A. Bhaskar, and A.J. Keane. Global approximation and
optimization using adjoint computational fluid dynamics codes.
AIAA journal, 42(3):631–641, 2004.

66. KC Giannakoglou, DI Papadimitriou, and IC Kampolis. Aero-
dynamic shape design using evolutionary algorithms and new
gradient-assisted metamodels. Computer methods in applied me-
chanics and engineering, 195(44-47):6312–6329, 2006.

A Complementary figures

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

0

0

4

4

1

1

−
1

−
1

5

5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 20: Isolines and gradients of the six-hump camel back
function presented in Section 5.1.2 and in Figure 11



18 Luc LAURENT et al.

0

0

0
.5

0
.5

0
.5

0.5

0.5
0
.5

0
.5

1

1

1

1

1

1

1.5

1
.5

1
.5

1.5

1
.5

1
.5

2

2

2

2

2

2

0

0

0

0

2
.5

2
.5

0

0

0

2
.5

−
0
.5

−0.5

3

−0.5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Kriging metamodel (associated with the response sur-
face of Figure 12a)

0

0

0

0

0

0

1

1

1

1

1

1

12

2

2

2

2
2

3

3

3
3 0

0

4

4

1

−
1

1

−1

5

5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Cokriging metamodel (associated with the response
surface of Figure 12b)

Fig. 21: The isolines and gradients of the kriging and cokriging metamodels obtained with 16 evaluations of the analytical
function and a single correlation length associated with the response surfaces presented in Figure 12 of Section 5.1.2

−0.5

0

0

0

0

0

0.5

0.5

0
.5

0
.5 0

.5

0.5

0
.5

1

1

1

1

1

1
1.5

1
.5

1
.5

1.5

1
.5

1
.5

2

2
2

2

2
2

2.5

2.5

−0.5

−0.5
2.5

−
1

0

2.5

1

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Kriging metamodel (associated with the response sur-
face of Figure 13a)

0

0

0

0

0

0

0
.5

0.5
0
.5

0.5

0
.5

0
.5

0
.5

0.5

1

1

1

1

1

1

1

1

1.5

1
.5

1.5

2

2

2

1.5

1
.5

1
.5

−0.5

−
0
.5

−0.5
−0.5

2.5

2
.5

2.5

2

2

3

3

2
.5

3

−
1

3.5

2

3
.5

3
.5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Cokriging metamodel (associated with the response
surface of Figure 13b)

Fig. 22: The isolines and gradients of the kriging and cokriging metamodels obtained with the 27 evaluations of the analytical
function and a single correlation length associated with the response surfaces presented in Figure 13 of Section 5.1.2



Generation of a Cokriging Metamodel Using a Multiparametric Strategy 19

−
0
.5

−
0
.5

0

0

0

0

0
.5

0
.5

0
.5

0
.5

0.5

0
.5

1

1

1

1

1

1

1

1
.5

1.5

1
.5

1.5

1
.5

1
.5

2

2
2

2

2
2

2
.5

0
.5

1

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Kriging metamodel (associated with the response sur-
face of Figure 14a)

−
0
.5

−
0
.5

−
0
.5

−
0
.5

0

0

0

0

0

0

0

0
.5

0.5

0
.5

0.5

0
.5

0
.5

0
.5

0.5

1

1

1

1

1 1

1

1
.5

1
.5

1
.5

1.5 1
.5

1
.5

2

2

2
2
.5

2.5

2.5

2

2

3

2
.5

3

3

2

3.5

−1

3.5

x
1

x
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Cokriging metamodel (associated with the response
surface of Figure 14b)

Fig. 23: The isolines and gradients of the kriging and cokriging metamodels obtained with 27 evaluations of the function
with anisotropy associated with the response surfaces presented in Figure 14 of Section 5.1.3

0

0

0

0

0

0

2
0
0

200

200 200

4
0
0

400

400 400

600

600

600 600

800

800

1000

1
0
0
0

1
2
0
0

x
1

x
2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Kriging isolines and gradients (associated with the re-
sponse surface of Figure 15a)

0

0 0

0

2
0
0

200

200

200

4
0
0

400

400
400

6
0
0

600

600
600

8
0
0

800

800
800

1
0
0
0

1000

1200

0

0

1400

x
1

x
2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Cokriging isolines and gradients (associated with the
response surface of Figure 15b)

Fig. 24: The kriging and cokriging metamodels constructed with 15 mechanical evaluations associated with the response
surfaces presented in Figure 15



20 Luc LAURENT et al.

36000000

36000000

3
6
0
0
0
0
0
0

38000000

38000000

38000000

3
8
0
0
0
0
0
0

40000000

40000000

40000000

4
2
0
0
0
0
0
0

4
2
0
0
0
0
0
0

42000000

42000000

42000000

4400000044000000

4
4
0
0
0
0
0
0

4
4
0
0
0
0
0
0

46000000
46000000

46000000

4
6
0
0
0
0
0
0

4
8
0
0
0
0
0
0

48000000

4
8
0
0
0
0
0
0

4
8
0
0
0
0
0
0

48000000

4
4
0
0
0
0
0
0

34000000

34000000

x
1

x
2

0 50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

(a) Kriging isolines and gradients (associated with the re-
sponse surface of Figure 19a)

36000000

36000000
38000000

3
8
0
0
0
0
0
0

38000000

38000000

40000000

4
0
0
0
0
0
0
0

40000000

42000000

42000000

42000000

4
2
0
0
0
0
0
0

44000000

44000000

4
4
0
0
0
0
0
0

46000000

46000000

4
6
0
0
0
0
0
0

4
8
0
0
0
0
0
0

4
8
0
0
0
0
0
0

48000000

3
4
0
0
0
0
0
0

44000000

5
0
0
0
0
0
0
0

x
1

x
2

0 50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

(b) Cokriging isolines and gradients (associated with the
response surface of Figure 19b)

Fig. 25: The kriging and cokriging metamodels constructed with 30 mechanical evaluations associated with the response
surfaces presented in Figure 19


	Introduction
	The optimization process
	The multiparametric strategy
	The problem of structural assemblies
	The LATIN method for assemblies
	The multiparametric strategy

	The cokriging metamodel
	Notations
	Principle
	The correlation function
	Construction of the cokriging metamodel
	Ordinary CoKriging (OCK)
	Estimation of the parameters

	Examples of the construction of metamodels
	Analytical applications
	Application to a contact problem with friction
	Application to a shrink-fit problem

	Conclusion
	Complementary figures

