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Introduction

There exist many Runge-Kutta methods (explicit or implicit), more or
less adapted to a given class of problems. Some of them have interest-
ing properties such as A-stability for stiff problems or symplecticity for
problems with energy conservation. Defining a new method, adapted
to a given class of problems, has become a challenge. Indeed, the num-
ber of stages and the order don’t stop to increase. This race to the
“best” method is interesting but forgot an important problem. More
precisely, the coefficients of a Runge-Kutta method are more and more
difficult to compute and the result is often given in floating-point num-
bers, which may lead to violate their definition rules. We propose a
method using interval analysis tools to compute Runge-Kutta coeffi-
cients by using a solver based on guaranteed constraint programming.
Moreover, with a global optimization process and a well chosen cost
function, we propose a way to define some novel optimal Runge-Kutta

methods.
One step of a Runge-Kutta integration scheme, applied on an or-
dinary differential equation ¢ = f(¢,y), is obtained with

Ynt1 = Yo hz biki, where k; = f (to + cih, yo + hz aijkj> : (1)

i=1 j=1

The coefficients ¢;, a;; and b;, for 7, j = 1,--- | s, fully characterize the
Runge-Kutta methods and they are usually synthesized in a Butcher



tableau [1] of the form:

ci | a1 ... QAig
Cs | g1 ... Qgg
b .. b

Main idea

Our approach consists on the generation of constraints defined by the
Butcher theory in order to build a Runge-Kutta method. Then we solve
these constraints with a Branch&Prune algorithm. We also propose
a Branch&Bound approach to define new optimal methods w.r.t. an
easy to obtain cost function.

Interval coefficients preserve properties

In a preliminary stage, we can verify that a Runge-Kutta method with
interval coefficients preserves the Butcher rule and then that a method
given for an order p has really a local truncature error in O(hF™).
We also propose three methods using interval tools to check the linear
stability, algebraically stability and symplecticity properties.

Main results

First, our Branch&Prune based approach is used to find existing meth-
ods and by the way re-discover the Runge-Kutta theory such as i)
Gauss-Legendre is the only 2-stages 4-order method; ii) there is no
2-stages b-order method; etc. Our Branch&Bound method finds the
same results as Ralston [2]. Second, both of our methods is used to
define new validated Runge-Kutta methods.
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