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Abstract

The pharmacovigilance aims at detecting ad-
verse effects of marketed drugs. It is based
on the spontaneous reporting of events that
are supposed to be adverse effects of drugs.
The Spontaneous Reporting System (SRS)
is supplying huge databases that pharma-
covigilance experts cannot exhaustively ex-
ploit without any data mining tools. Data
mining methods have been proposed in the
literature but none of them is the object of a
consensus in terms of applicability and effi-
ciency. It is especially due to the difficulties
to evaluate the methods on real data.

In this context, the aim of this paper is to
propose the SRS modelling in order to simu-
late realistic data that would permit to com-
plete the methods evaluation and compari-
son, with the perspective to help in defining
surveillance strategies. In fact, as the sta-
tus of the drug-event relations is known in
the simulated dataset, the signal generated
by the data mining methods can be labelled
as ”true” or ”false”.

Spontaneous Reporting process is viewed as
a Poisson process depending on the drugs
exposure frequency, on the delay from the
drugs launch, on the adverse events back-
ground incidence and seriousness and on a re-
porting probability. This reporting probabil-
ity, quantitatively unknown, is derived from
the qualitative knowledge found in literature
and expressed by experts. This knowledge
is represented and exploited by means of a
fuzzy characterisation of variables and a set
of fuzzy rules.

Simulated data are described and two
Bayesian data mining methods are applied to
illustrate the kind of information, on meth-
ods performances, that can be derived from
the SRS modelling and from the data simu-
lation.

1 Introduction

The aim of the pharmacovigilance is to detect adverse
effects of marketed drugs. Pharmacovigilance is based
on the spontaneous reporting of events that are sup-
posed to be adverse effects of drugs.

In France, the Spontaneous Reporting System
(SRS) is supplying a database that gathers about
200000 reports. Since 1985, the yearly reports num-
ber has been on the steady increase and has reached
20000 in 2001 [10]. In 1997, 35000 new reports
were added quarterly in the World Health Organi-
sation (WHO) database [2]. The generation of sig-
nals, i.e. the fact that drug-event couples suspected
to be causally related are bringing out, is currently
human based or supported by some heuristic rules
implemented in basic software [1]. Due to the mass
of the data and to the fact that useful features are
lost in this mass, these methods cannot effectively ex-
ploit the whole information contained in the database.
Data mining methods have been proposed to auto-
matically generate signals and support pharmacovig-
ilance experts, but none of them is used routinely.
These methods are based on different association mea-
sures associated with detection thresholds. Mea-
sures are all intended to evaluate the difference be-
tween the observed number of reports and the ex-
pected one under the drug-event independance as-
sumption. The methods have been proposed for dif-
ferent databases: the Proportional Reporting Ratio
(PRR) [7] for the Medical Control Agency (MCA) of
the UK, the Information Component (IC) [2] for the
WHO database, the Empirical Bayes Method (EB) [4;
5] for the Food and Drugs Administration (FDA),
etc. These methods have been evaluated on real
data, i.e. on pharmacovigilance databases [2; 4; 8;
14].
Lack of knowledge
All the questions concerning the methods reliability
cannot be totally answered with the evaluations as
they are performed in the literature, explaining in
part the fact that the methods are not routinely used.
In fact, the Spontaneous Reporting System (SRS) is
based on the subjective appreciation of the medical
community and does not provide an exhaustive report-



ing of the adverse effects. At first the adverse event
has to be diagnosed and next, it has to be judged new
and serious enough to be reported [13]. It is impossi-
ble to know the proportion of adverse events that is
reported. Moreover, the reported events are supposed
to be causally related to the prescribed drugs but the
simultaneous presence of an adverse event and of a
drug can be coincidental. In other words, all the ad-
verse effects are not reported (and the proportion of
reported events is unknown), and the adverse events
reported are not all adverse drug reactions. Moreover,
the numbers of patients exposed to the drugs as well
as the background incidence of the adverse events in
the whole population are ill-known. To access this
knowledge would require deep investigations that are
not conceivable at the database scale. That is prevent-
ing to determinate reliable estimations of the expected
numbers of reports that would allow to compare the
reports frequencies for the drug-event couples and to
reliably determine the nature of the drug-event rela-
tions. Eventually, the drug-event relative risk in the
real database is unknown.

This lack of knowledge makes difficult to labelled
the signal generated by the data mining methods as
”true” or ”false”. Gould [8] circumvented this diffi-
culty by comparing methods results with the results
of one of them, considered as the reference one. By
this way, methods can be compared in a relative man-
ner. However, it is still impossible to verify the sig-
nals ranking pertinence, i.e. the fact that the higher
the drug-event relative risk is, the stronger the signal
has to be. Moreover, the sensitivity of the methods
results according to the drug and/or event character-
istics cannot be study easily. Indeed, it is interesting
to establish if the methods tend to bring out recently
marketed drug or older ones, serious events or mild
ones, etc.

Objectives

In this context, this paper proposes the SRS mod-
elling in order to simulate realistic data. Data mining
methods can then be applied on these data and it is
possible to complete the previously described evalu-
ations, as the status of the drug-event relations and
as the drugs and events characteristics are known. It
is important to obtain data as realistic as possible in
order to study the data mining methods behaviour
according to the model parameters and to be able to
derive knowledge on their efficiency with real data.

The SRS modelling is described in the first section.
This modelling phase exploits qualitative knowledge
expressed by pharmacovigilance experts and found
in literature, by means of a fuzzy representation of
knowledge and a fuzzy inference system. Then, the
Application section proposes a set of simulation pa-
rameters values that aims at obtain some charac-
teristic situations of the French pharmacovigilance
database and describes two Bayesian data mining
methods [2; 4; 5]. Generated data are described and
performances of the data mining methods are pre-

sented in the Results section. The data mining meth-
ods evaluation is not the main issue tackled by this
paper but it is presented as an illustration of what
information can be derived from simulations.

2 Spontaneous reporting system

modelling

In the present study, a pharmacovigilance database is
simply viewed as a two entries table: one entry for
the events and the other for the drugs. The cell cor-
responding to the (drug i, event j) couple contains
the cumulated reports number, Nij , associated to this
couple.

The probability distribution of the numbers of re-
ports nij , during a given period ∆t, is assumed to
be Poisson with a mean reports’ number δij [11;
12]:

δij = RRij · Ij · Ti · pij (1)

RRij is the Risk Ratio of a (drug i, event j) com-
bination. When RRij=1, the (drug i, event j) associ-
ation is only coincidental and the reports are ”false”
reports. Ij is the background incidence of the event
j and Ti the exposure frequency, i.e. the number of
patients exposed to the drug i during the given pe-
riod ∆t. Assuming that the probability to observe
the event without the exposure to the drug is com-
parable to the probability to observe the event in the
whole population, i.e. the background incidence of the
event, the product RRij ·Ij ·Ti represents the expected
number of events j associated to the drug i during ∆t.

As seen before, even if an adverse event occurs when
a patient is exposed to a drug, the case is not system-
atically reported. So a reporting probability, pij , com-
pletes the spontaneous reporting system modelling.
The reporting probability is known to be very vari-
able from a drug-event couple to another. The phar-
macovigilance experts have only general and/or quali-
tative knowledge on its order of magnitude, on the fac-
tors that influence it and on the effects of these factors.
In order to obtain realistic data, this knowledge has to
be exploited and has to be easily updated if a change
occurs in it. Fuzzy set theory and fuzzy logic permit to
represent such knowledge and to exploit them to per-
form human like deductive reasoning. A set of fuzzy
rules is derived from literature and pharmacovigilance
experts advices. These fuzzy rules represent three ba-
sic intuitions of the experts concerning the reporting
probability, that have been confirmed by quantitative
analysis of real data [13]: 1) the more serious the event
is and the more reported it is 2) The more unknown
the causal drug-event association is, the more reported
it is 3) the more recent the drug is, the more reported
the event is. These rules impose to distinguish serious
and mild events, to characterise the knowledge on the
causal drug-event association and the delay since the
drug launch.

Seriousness of the events



We considered the seriousness of an event as a bi-
nary variable with two modalities: serious and mild.

Knowledge on the drug-event association
The knowledge the medical community has on a

given drug-event association is assumed to be charac-
terised by the cumulative sum of the reports number,
for the considered drug-event couple, from the launch
date of the drug. This cumulative sum is then fuzzi-
fied by means of the membership functions described
in Figure 1.
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Figure 1: Membership functions to characterise the
cumulative sum of reports

Delay from the drug launch
The delay from the drug launch is characterised by

the membership values of the periods of the drug life
cycle. This cycle is supposed to be a classical prod-
uct life cycle with five periods (that are fuzzy in our
study): ”launch”, ”growth”, ”maturity”, ”decline”,
and ”end of life” (Figure 2).
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Figure 2: Drug life cycle and fuzzy characterising of
drug life cycle

Reporting probability (pij)
The reporting probability is assumed to be at most

equal to 0.1 [12; 15]. pij is characterised by five fuzzy
subsets as described in Figure 3.

Fuzzy rules definition
Given the three basic rules previously stated and

the coding of the variables, the rule base presented in
Figure 4 is defined.

The fuzzy conclusions associated to the cells of the
table (Figure 4) are chosen to represent the gradual
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Figure 4: Fuzzy rule base for the reporting probability
determination. In each cell of the table are given the
conclusions associated to a serious event (upper part
of the cell) and to a mild event (lower part of the cell).
VH is for ”Very high”, H for ”High”, M for ”Medium”,
L for ”Low” and VL for ”Very low”

knowledge of the type ”the higher (resp. ”lower”) [...]
is, the higher (resp. ”lower”) the reporting probabil-
ity is”. The only exceptions are the rules associated
to the fuzzy subset ”Launch”, for which the reporting
probability is ”Very high” (or ”High”) whatever the
cumulative sum of the reports number is. This is jus-
tified by the fact that during the launch period, the
causal drug-event association is unknown. Another
exception is the increase of the reporting probability
when moving up from the ”Launch” to the ”Growth”
period and while keeping with a ”Low” cumulative
sum of reports number. This increase of the reporting
probability is supposed to model, before the ”Matu-
rity” period, a learning phase during which medical
community and pharmacovigilance experts are more
focalised on the new drug couple, when the drug-event
association is not known yet [11].

Rules activation

The fuzzy implication is performed by the min op-
erator. The generalised modus ponens operator is the
min operator too and the fuzzy conclusions are ag-
gregated with the max operator [3]. At this stage,
the conclusion is still fuzzy and cannot be exploited
directly by the formula (1). It has to be defuzzified.
This operation is realised by the Height Method (HM)
[6], consisting in computing the weighting average of



the reporting probability corresponding to the max-
ima of the membership functions, pk (k∈[1,5], cf. Fig-

ure 3 and Figure 5), by µij
k (k∈[1,5]), the heights of

the fuzzy subsets of the conclusion (cf. Figure 5).

pij =

∑
5

k=1
µij

k · pk
∑

5

k=1
µij

k

(2)
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Figure 5: Fuzzy conclusion (thick lines) and values
used for defuzzification

This defuzzification method does not require to de-
fine the membership functions for all the values of pij

but only to determine the parts of the fuzzy subset
supports that correspond to the maximum (or max-
ima in the case of trapezoidal membership function
for example) of the membership functions. Such a de-
fuzzification method is simple and fast. Moreover, it
permits to reach the maximal values of pij , i.e. 0 and
0.1, unlike the centre of gravity method.

At this stage of the SRS modelling, only pij is de-
fined. Ti, RRij and Ij have now to be defined so that
they represent at best realistic situations.

Exposure (Ti)
Ti is time dependent and is defined, in our study,

by the drug life cycle presented Figure 2. The only
parameter required for defining the whole cycle is the
maximal exposure, Timax, corresponding to the expo-
sure during the maturity phase. Ti is supposed to
reach Timax

10
at the end of the Launch period, to reach

its maximal value after four years and decline expo-
nentialy from the sixth years, so that at ten years,
Ti = Timax

2
.

Relative risk (RRij)
A proportion of coincidental drug-event associations

that will give ”false” reports, i.e. with RRij=1, is de-
fined. The remaining couples, with RRij >1, are asso-
ciated to ”true” reports and are supposed to generate
a signal. In order to observe all the possible situa-
tions according to the different values of the model
parameters, the subset of drug-event couples having
the same values for the drug exposure, the delay since
the drug launch, the event incidence and seriousness,
have to described the whole range of the chosen RRij

values. For each of these subsets, the chosen RRij are
randomly attributed to the drug-event couples.

No particular constraint is imposed for the defini-
tion of Ij in the present version of the SRS modelling
and the choice of the Ij values will be presented fur-
ther.

Data generation process

Data are generated sequentially. A total duration of
the reporting process, corresponding to the maximal
delay since the drug launch we want to consider, must
be defined. The period ∆t between two successive gen-
erations has to be chosen too. As a new drug can be
launched during the generation process, it is possible
to have, at the same time, drugs with different delays
since launch.

3 Application

Data generation
We considered 60 drugs and 40 effects. The follow-

ing parameters values have been chosen in order to
represent some characteristic situations of the French
pharmacovigilance. Two maximal exposures (Timax)
have been chosen: 300000 (one half of the drug) and
three millions (the other half). Concerning the de-
lays since the drug launch, we chose to have three
different cases: one, five and ten years, correspond-
ing to one third of the drugs each. So, ten years of
the reporting process have been simulated. Moreover,
a six months generation period (∆t) has been cho-
sen. In the present study, data are considered at the
end of the generation process, i.e. at the end of a
ten-year spontaneous reporting process. Two values
have been chosen for the events background incidences
(Ij): 1/10000 (one half of the events) and 1/50000.
Moreover, one half of the events are considered as se-
rious, the remaining events being mild. This repar-
tition corresponds approximatively to the one in the
french pharmacovigilance database, where 46% of the
events are labelled serious [10]. Eventually, 90% of the
drug-event associations are assumed to be coinciden-
tal, i.e. with RRij=1. The set of RRij >1 is assumed
to be exponentially distributed so that RRij ∈[1.2,10].
Indeed DuMouchel [4] supposed that 1/3 of the drug-
event couples are dependent but found, in the FDA
database, 1/10 of dependent couples by means of his
mixture model (cf. application section and [4]). The
figure 6 summarises the previous choices for the pa-
rameters and their values.

Application to the evaluation of data mining meth-
ods in pharmacovigilance

The next section presents some results relative to
two Bayesian data mining methods, the Information
Component method (IC) [2] and the Empirical Bayes
Method (EB) [4; 5], in order to illustrate what kind of
information we can derived from simulated data. IC
method exploits the IC measure of association defined
as followed:

ICij = log2

wij

ui · vj

(3)

ui is the probability of having the drug i, vj the
probability to observe the jth event and wij is the
probability of having the drug-event association given
the observed number of reports. ui, vj and wij are
supposed to be, a priori, beta distributed. So ui, vj

and wij are, a posteriori, beta distributed too. Then,



 

Events (×  40) 
1/10000 (×  20) 1/50000 Incidence  

Mild (×  10) Serious (×  10) Mild (×  10) Serious Seriousness 
10

 

  
 

 

5 
(×

 1
0)

 

  
 

 

3
00

00
0 

1
 

(×
 1

0)
 

  
 

 

1
0 

(×
 1

0)
 

  
 

 

5 
(×

 1
0)

 

  
 

 

3
00

00
00

 (×
 3

0
) 

1
 

(×
 1

0)
 

 
  

 

D
ru

g
s 

(×
 6

0
) 

E
x

po
su

re
 

D
el

ay
 s

in
ce

 
L

au
n

ch
 (

ye
ar

s)
 

 

  

 

 

 

 

RR 
1(90%) 

[1.2,10] (10%) 

j 

N i j i 

Figure 6: Model parameters and associated values

Bate defines a criterion in order to make a decision.
He proposes to generate a signal when the lower
limit of the 95% credible interval, IL95ij , is positive.
IL95ij is estimated with the formula:

IL95ij=Posterior expectation of ICij - 1.96 ·
Posterior standard deviation of ICij

DuMouchel [4] assumes a Poisson distribution for
the number of reports, with a mean µij for the (drug
i, event j) couple. Then he considers the rate λij =
µij/(ni.·n.j/N), where ni. and n.j are the total reports
number for the drug i and for the event j, respectively.
N is the total reports number in the database and
(ni. · n.j)/N is the expected reports number for the
(drug i, event j) couple, assuming the statistical inde-
pendence between drug i and event j. A prior mixture
of two gamma distributions is assumed for λij :

λij

a priori
∼ P ·Γ1(α1, β1)+(1−P ) ·Γ2(α2, β2)(4)

The ”empirical” character of the method comes
from the estimation of the prior distribution parame-
ters Θ = {P, α1, β1, α2, β2}, by means of a maximum
likelihood estimation from the data. The posterior
distribution is a mixture of two gamma distributions
too. It is then possible to obtain the exact posterior
mean of λij , denoted EBAMij . DuMouchel proposes
to use this value (in fact, DuMouchel uses the geo-
metric mean derived from log2(λij)) to rank the drug-
event couples and does not recommend a threshold.
Gould [8] chose to apply a decision criterion compa-
rable to Bate’s one [2], by computing the lower bound
of the 95% credible interval. This lower bound can
be approached with a predefined precision. Indeed,
Gamma quantiles are tabulated in marketed software
and a basic optimisation procedure can easily find the

probability corresponding to a given quantile of the
posterior mixture.

The objective of the present study is not properly
the methods description and evaluation but the SRS
modelling. We refer to the following articles for a more
detailed description of the methods [2; 4; 8].

4 Results

1000 datasets have been generated. Figure 7 shows
the reporting probability and the cumulative number
of reports in three different cases and as a function of
the time.
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Figure 7: Reporting probabilities a) and cumulative
number of reports b), c) and d)

Figure 8 shows the reports numbers distribution in
average over the 1000 simulated datasets. The first
bar refers to the drug-event couples without any re-
ports. The maximal reports number associated to a
drug-event couple is, in average, 994 (standard devi-
ation: 32). In average, 51912 reports (N) are cumu-
lated over 10 years in the whole dataset (stand. dev.:
197).

For each of the generated datasets, Bate and Du-
Mouchel’s methods have been applied. Table 1 shows
the prior parameters of the DuMouchel’s mixture
model, obtained by means of maximum likelihood esti-
mation. The average prior probability P=0.096, asso-
ciated with the component which has a mean >1 (the
1st one), corresponds well to the 10% of the drug-event
couples with RRij >1.

Sensitivity and specificity have been computed with
the decision thresholds that correspond to the follow-
ing posterior distribution quantiles: 0.025, 0.05, 0.1,
0.2, ..., 0.9, 0.95, 0.975, for the two methods and for
the 1000 simulated datasets. Computations have been
performed after stratification according to the model
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Figure 8: Reports number distribution in the whole
dataset
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Table 1: A priori parameters for the mixture model of
DuMouchel

parameters. Then, over the 1000 datasets, the aver-
age and the standard deviation of the sensitivity and
of the specificity corresponding to each quantile have
been computed.

Results are shown Figure 9. IC and EB give com-
parable results in the majority of the situations but
noticeable differences can be observed for a maximal
exposure of 300000 and a delay of one year since drug
launch. Even if the whole curves are not drawn given
the chosen thresholds, EB clearly obtained better re-
sults. This situation corresponds to very low reports
numbers (max=10, median=1 and max=4, median=1
for, respectively, an event incidence of 1/10000 and
1/50000), indicating the supremacy of EB for rare ad-
verse drug effects. Conversely, results are similar and
are the best ones for important reports numbers, i.e.
for ”old” and frequently used drugs.

Results show that a given threshold leads to very
different results according to the different methods,
inciting to define method specific thresholds and not
an identical and arbitrary one.

Eventually, the signals pertinence according to the
imposed Relative Risk has been evaluated by comput-
ing the linear correlation coefficient between the data
mining measures and the imposed Relative Risk, for
the whole set of drug-event couples of each simulated
dataset (cf. Table 2). The correlation coefficient eval-
uates the ability of the methods to correctly rank the
signal from the strongest to the weakest one according
to the ”true” RRij values. Results show that EB is
the more effective method for couples ranking.
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Figure 9: ROC curves for Bate and DuMouchel’s data
mining methods according to the model parameters
values

 Linear correlation coefficient 
 IC EB 

A verage 
(Standard  
deviation) 

0.54  
(0.014) 

0 .87 
(0.012 ) 

 

Table 2: Linear correlation coefficient between RR
and IC and between RR and EB as an evaluation of
the ranking pertinence

5 Discussion and Conclusion

Some SRS features have not been taken into account
in the previously described model. The most impor-
tant one is the drugs interactions, i.e. the fact that
some events can be caused by the simultaneous expo-
sure to two or more drugs and not by the drugs taken
alone. DuMouchel proposes a method to identify the
associations between an event and more than one drug
by means of the ”all-two-factor” model [5]. In order to
evaluate such a method, it seems necessary to model
drugs interactions in the simulated datasets.

SRS modelling permits not only to evaluate data
mining methods but also to support pharmacovig-
ilance experts in defining and testing surveillance
strategies. A surveillance strategy is sequential and
much information can be derived from the evolution
of the reports number over the time [2; 8]. Moreover,
it would be of particular interest to capitalise the ex-
perts knowledge when they interpret the signals gen-
erated and to use this knowledge for the subsequent
signal generation. As the data generation process in
the present study is sequential, surveillance strategies
including time consideration could be easily tested.



The results presented in the present paper are ob-
tained with a set of parameters values chosen in order
to at best correspond to characteristic situations met
in the French pharmacovigilance database. However,
the choices are still quite arbitrary. A particular ef-
fort has to be done in order to make the distributions
of the marginal numbers, i.e. ni. and n.j , compara-
ble with the real ones. Firstly these numbers are ex-
ploited by the data mining methods to determine the
expected numbers of reports. Secondly, to study the
distributions of these numbers is, to our knowledge,
the only manner to quantitatively evaluate the SRS
model. In fact, as the events incidences, the Relative
Risks and the reporting probabilities are unknown in
the real database, it would be useless to compare the
real and the simulated number of reports at the drug-
event couple level. The distributions of the marginal
numbers are not only defined by the parameters values
but also by the repartition of these values among the
events, the drugs and the couples. As an example, it
seems not realistic to have so many new drugs (1/3 of
drugs with a delay of one year since the launch) in the
database. So, the study of the French pharmacovig-
ilance database, initiated in [10], has to be pursued
to allow the simulation datasets to be as realistic as
possible. However, results sensitivity according to the
parameters values has to be studied too. Results in [9]
show that methods sensitivity depends on the reparti-
tion of the causal/coincidental drug-event associations
in the dataset. With a 40%/60% causal/coincidental
associations repartition, relative methods results seem
comparable but methods sensitivity are lower, for a
given decision threshold.

Fuzzy set theory and fuzzy logic are not only in-
teresting for modelling qualitative knowledge but also
to actualise these knowledge by the pharmacovigi-
lance experts themselves. They contribute to make
the model intelligible for the experts and to make the
results interpretable. So the Spontaneous Reporting
System modelling participates to the knowledge dis-
covery on the SRS itself and is of particular interest
for the pharmacovigilance experts.
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