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Towards An Architecture-Centric Approach to Manage Variability of
Cloud Robotics

Lei Zhang1, Huaxi (Yulin) Zhang2, Zheng Fang3, Xianbo Xiang4, Marianne Huchard5 and René Zapata6

Abstract— Cloud robotics is a field of robotics that attempts
to invoke Cloud technologies such as Cloud computing, Cloud
storage, and other Internet technologies centered around the
benefits of converged infrastructure and shared services for
robotics. In a few short years, Cloud robotics as a newly
emerged field has already received much research and industrial
attention. The use of the Cloud for robotics and automation
brings some potential benefits largely ameliorating the per-
formance of robotic systems. However, there are also some
challenges. First of all, from the viewpoint of architecture,
how to model and describe the architectures of Cloud robotic
systems? How to manage the variability of Cloud robotic
systems? How to maximize the reuse of their architectures?
In this paper, we present an architecture approach to easily
design and understand Cloud robotic systems and manage their
variability.

I. INTRODUCTION

Cloud robotics is a field of robotics that attempts to
invoke Cloud technologies such as Cloud computing, Cloud
storage, and other Internet technologies centered around the
benefits of converged infrastructure and shared services for
robotics [1]. Cloud Robotics was firstly introduced by James
Kuffner [1]. In a few short years, Cloud robotics as a
newly emerged field has already received much research and
industrial attention.

The use of Cloud computing for robotics and automation
brings some potential benefits largely ameliorating the per-
formance of robotic systems. Due to the limited capacities of
on-board processing, storage and battery capacities, robotic
devices are constrained to numerous limitations. It not only
solves the problems of robotic systems, such as on-board
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6René Zapata is with LIRMM, UMR 5506, CNRS et Université Mont-
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computation and storage limitation, asynchronization com-
munication, compatibility problem of multi-robot systems[2],
but also makes possibility of different directions or en-
hances their performance, such as remote brain, big data and
shared knowledge-base, collective learning and intelligent
behavior[3].

However, beyond these advantages, Cloud robotics also
brings us many challenges. For example, from the view of
architectures, how to construct the architectures of Cloud
robotic systems? How to model these architectures? How
to deploy these architectures in Clouds? How to reuse
these architectures? How to manage the variability of these
architectures?

In this paper, we propose a domain specific language –
CRALA trying to response the above questions. Our main
contributions are to propose:

• an architecture-centric design process for Cloud robotic
systems,

• a domain specific language for architecture-centric
Cloud robotic systems named CRALA.

The rest of the paper is organized as follows: We begin
with an introduction of related concepts, background and
related work of Architecture-centric Cloud robotics. We then
present an overview of the architecture-centric design process
for Cloud robotic systems. Then we describe the metamodel
of CRALA with examples and how CRALA manages the
variability of Cloud robotic systems. Afterwards, we present
the implementation of CRALA. Finally, we finish with a
discussion and future work.

II. BACKGROUND AND RELATED WORK

A. Related concepts
Architecture-centric Cloud robotics is a methodology of

developing robotics systems on Clouds using architecture-
centric development techniques.

Cloud computing Cloud computing is defined by the
National Institute of Standards and Technology (NIST) as:
”Cloud computing as a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned
and released with minimal management effort or service
provider interaction [4]”.

Clouds offer services that can be grouped into three
categories: software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS) [5].



1) Infrastructure as a Service: IaaS refers to on-demand
provisioning of infrastructural resources, usually in
terms of VMs (Virtual Machines). The cloud owner
who offers IaaS is called an IaaS provider.

2) Platform as a Service: PaaS refers to providing plat-
form layer resources, including operating system sup-
port and software development frameworks.

3) Software as a Service: SaaS refers to providing on-
demand applications over the Internet.

An explicit architecture of Cloud robotic system should
cover these three design services in its architecture.

System/Software architectures. Traditionally, software
architecture is a collection of models that capture a software
systems principal design decisions in the form of compo-
nents (foci of system computation and data management),
connectors (foci of component interaction), and configura-
tions (specific arrangements of components and connectors
intended to solve specific problems) [6]. Generally speaking,
a software system architecture [7] gathers design decisions
of the system. As the development of computer science,
nowadays, a system is much more complex than before
such as with the integration of ”Internet of Things”, ”Cloud
Computing” and ”Robotics” etc.

Architectures Modeling language. Architecture models
are often expressed using ADLs (Architecture Description
Language) that, in most cases, provides information on
the structure of the software system listing the compo-
nents/services and connectors that the system is composed
of. A system architecture could cover different abstraction
levels, such as specification, configuration and assembly [8]
and from different viewpoints [9]. For Cloud robotic system,
architecture model also needs to capture Cloud and robot
design decisions.

B. Related Work

The description of Cloud robotic systems should cover
robot description, web services/component description and
cloud robotic system global architecture description.

Robot description. Robot description languages provide
models of a robot and then design and implemented software
components that work on the model components rather than
the particular robot instance.

The representative example of robot description language
is the Unified Robot Description Format (URDF) [10], which
can be used to specify the kinematics and dynamics, the
visual representation and the collision model of a robot.
However, URDF is not designed for specifying robot com-
ponents such as sensors, actuators, and control programs.

COLLADA [11] is an XML Schema designed for de-
scribing 3D objects including their kinematics. It mainly
focuses on modeling information about scenes, geometry,
physics, animations, and effects. But similar to URDF, it
lacks elements for describing sensors, actuators and soft-
ware. SRDL [12] focuses on modeling robot components,
i.e. sensors, actuators and control programs, especially via
capabilities to actions.

Fig. 1. Cloud robotic system architecture design

Many work try to develop an OWL (Web Ontology
Language) ontology to describe robots, such as [13], [14] in
specific domains or [15], [16] focusing on sensor ontology.

Web service description. Web service description in
robotics often serves to match the capabilities with robot
components, such as PHOSPHORUS [17], Larks [18], OWL-
S [19] and SRDL[12]. In general, the term capability match-
making refers to the process of matching an advertisement
of a capability with a request.

Cloud Robotic description. All above work cover a
part description of Cloud robotic systems, referring to robot
description or web service description. However, it misses a
language that fully covers all necessary aspects of Cloud
robotic architecture, including the description of Clouds,
robots and components/web services.

III. ARCHITECTURE DESIGN FOR CLOUD ROBOTICS

The architecture design for Cloud robotic system is dif-
ferent from traditional software design, as it concerns two
special aspects: Cloud-based systems and robotic systems.
We identify the architecture-centric development process for
Cloud robotic systems into three main phases, as shown in
Figure 1.

1) Specification design. Architect or robotics engineers
should choose a robotic architecture pattern for the
system according the models of robots (hardware) and
its functional tasks (objective), for example, a pioneer
robot with a task of path planning.

2) Configuration design.
• First of all, architect should consider how to dis-

tribute intelligence among robots and Cloud. That
means, which components should be placed on the
robot itself and which services should be placed on
Cloud. How to choose the appropriate components
or services from component or service repository.
This design decision refers to different factors,
including robot capacities, system non-functional
properties such as real-time, security etc.



Fig. 2. Cloud robotic system architecture design

• Secondly, architect should choose operating sys-
tem for their services, as in robotics domain, there
exists some operating systems that are widely
used, such as ROS[20]. Then, how to distribute
these services in different virtual machines.

3) Assembly deployment. Lastly, how to deploy this archi-
tecture model in Clouds, automatically or not? How to
reflect and supervise a runtime model to prevent VMs
failure etc.?

During the process, five factors affect architecture design
decisions robot models, tasks, intelligence, non-functional
properties, and Clouds, as shown in Figure 2.

• Robot model describes the hardware model of the robots
consisting of sensors and actuators etc.

• Task is the objective realized by robots.
• Intelligence distribution defines how to distribute the

intelligence to robots and Clouds.
• Non-functional properties are non-functional require-

ments required to be exposed by Cloud robotic systems,
such as security, realtime, safety etc.

• Clouds represent Cloud infrastructures (IaaS) used to
deploy robotics services. Clouds can be mono-cloud or
multi-Cloud.

IV. CRALA: A DOMAIN SPECIFIC LANGUAGE

CRALA is a domain specific language for architecture-
centric Cloud robotics, and it is also an architecture descrip-
tion language. CRALA models architectures at three separate
abstraction levels, each designed in a different development
phase as shown in Fig. 1. For now, the first version of
CRALA presented in this paper mainly focuses on modeling
essential elements of architectures and their basic properties,
as the design concept of CRALA is to auto-develop and
enrich the language by experimentation and real use cases.
The three levels are as follows:

1) Specification defines the abstract architecture spec-
ification. It defines which functionality should be

TABLE I
DECISION DECISIONS MADE IN EACH ARCHITECTURE ABSTRACTION

MODEL

Architecture Defined Aspects

Architecture specification 1) Functionalities of the system, 2)
system non-functional properties

Architecture configuration 1) Component/service selection (for
reuse) or implementation (for from
scratch), 2) Component/service group,
and 3) Operating system selection

System assembly 1) Cloud deployment, 2) Running state

supplied by robotic systems. All the constituents of
this architectural models are abstract and without any
consideration of Cloud etc.

2) Configuration defines the sets of component or service
implementations (classes) by searching and selecting
from the component/service repository and defines how
to group services and components in different virtual
or physical machines by consideration of system re-
quirements.

3) Assembly depicts how configuration is deployed on
Clouds. This architecture model exactly depicts the
current state of Cloud robotic system on Cloud.

Table I presents the design decisions that should be made
in each architecture level.

A. Architecture Specification

Architecture specification is composed by component
roles, connections and Concept robots. The metamodel1 of
specification is illustrated in Fig. 3(a).

• Component roles describe the roles that components
should play in the system. In Cloud robotic systems,
a roles could be a function (such as algorithm), a
database, or a driver etc. A component role lists the
minimum list of interfaces (both required and provided)
the component/service (will be selected or implemented
in configuration level) should expose. On the one had, as
they define the requirements of the architect (its ideal
view) to guide the search for corresponding concrete
components (or service) in component (or service)
repository, component roles are abstract and partial
component (or service) representations. On the other
hand, they can be used as the design specification for
implementing new components or services from scratch.
For example in Fig. 3(b), Spec1 defines three component
roles to fulfill three different functionalities.

• Concept robots define the robots that will be included
in the system with certain sensors or actuators to realize
the functionalities of the system. At this level, concept
robot is totally abstract, and it only defines the types of
sensor and actuators. In specification, we do not precise
the model of robot used. As shown in Fig. 3(b), Robot1

1In this paper, we ignore interfaces aspects and all attributes in metamodel
for sake of simplicity.



Fig. 3. Architecture specification Metamodel and example

could be any robot with an camera, such as pionner,
NAO etc.

• Connections2 define the communication between archi-
tecture elements including roles, robots, actuators and
sensors. With CRALA connection constraints, the com-
munication allowed could be categorized in three types:
(1) the communication between component roles, (2)
the communication between component roles (drivers)
and sensors and (3) the communication between com-
ponent roles (drivers) and actuators. However at spec-
ification level, we define also one kind of ”abstract”
connection between robots and component roles. The
connection signifies the connected component roles
must communicate with robots at next configuration
level (components could locate directly in robots or
connect with robots from Cloud.).

B. Architecture Configuration

Architecture configurations are the second level of system
architecture descriptions. They result from the search and
selection of real component classes (or web services) in a
component (or service) repository. The metamodel is shown
in Fig. 4.

1) We precise which robots (RobotModel) will be used in
configuration. Robot models should expose all sensors
and actuators specified in concept robot of Specifica-
tion.

2For sake’s simplicity, the details of connection and its constraints are
not discussed in this paper.

Fig. 4. Architecture Configuration Metamodel

2) Component roles will be implemented by component
classes or web services by selection or implementa-
tions according to different system requirements or
used robot models.

• Component class: A component class often can be
characterized as: attributes, component interface,
behaviors and properties.

• Web service: A more formal and extended defini-
tion is the one offered by the W3C Web Services
working group[21]:A Web service is a software
system designed to support interoperable machine-
to-machine interaction over a network. It has an
interface described in a machine-processable for-
mat (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by
its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.

3) Then, components and services will be placed in robots
or virtual machines3.

4) Lastly, the connections should be established, for ex-
ample which kind of communication protocols will
be used in different situations. We could find the
connection between robots and components are not
permitted at this level (the same for next assembly
level).

According to the selection of different component classes
and services and the distribution of these components in
robots and VMs, it could lead to different configuration
architectures, which implement the same specification archi-
tecture.

Figure 5(a) and 5(b) represent two different possible
configuration architectures of specification Spec1 in Fig. 3(a).
In Config1, two services LocalisationService and PathPlan-
ningService locate in two separated VMs, and in Config2,

3In the first version of CRALA, we ignore the possibility that besides
virtual machines, for web services could also be placed in physical machines
directly.



Fig. 5. Architecture Configuration Example Config1 and Config2

they are located in the same VM. The reliability of Config1
is better than Config2, as if the VM of Config2 is broken,
both two services are lost at the same time. However, in
Config1, two services use more calculating resource, as they
are located in two VMs compared to one.

C. System assembly

System assemblies are the third level of system architec-
ture descriptions. At the macroscopic level, They result from
the deployment of VMs of configuration in Clouds. At the
microscopic level, they result from the instantiation of the
component classes and the deployment of the web services
from a configuration. The important thing is that they should
provide a description of runtime software systems including
Cloud deployment description.

The metamodel of Cloud is illustrated in Fig. 6. Each
component or service are defined clearly which VMs or
robots they are deployed and each VM is illustrated with
which physical machine of which Cloud it is deployed.

System assemblies are the most related level to Cloud.

• Cloud: Different Clouds directly affect the deployment
results of configurations.

Fig. 6. Assembly Metamodel

– Network: For example, if Cloud is an Open-
Stack [22] nova-network (FLAT) Cloud. The net-
work of this kind of Cloud is linux-bridge, so
all the VMs locate in the same network. If we
want two VMs located in two subnets, it’s im-
possible. However, with OpenStack neutron (SDN:
Software-Defined Network) Cloud, it’s possible.

– Scheduling: Scheduling in Clouds is complicated
and it’s extremely important for Cloud robotic sys-
tems. Some NFPs such as reliability, security could
be directly applied by using different scheduling al-
gorithms. One Cloud could apply multiple schedul-
ing algorithms with different priorities. Normally
different Clouds use different scheduling algo-
rithms according to different requirements. Accord-
ing to different scheduling algorithms of Cloud,
architecture configuration could be deployed in
different ways, as shown in Fig. 7(a) and 7(b). For
the first example, two VMs are located in different
physical machines, and for the second example, two
VMs are located in the same physical machine. In
Ass2, two VMs communicate faster than Ass1, as
they locate in the same physical machine. However,
in Ass1, two VMs could profit the maximize RAM,
as they are the only VM in each physical machine.

• Physical machine: Normally in one Cloud, clients (ten-
ants) could not see which physical machines locate
their VMs. Only administrators could know this kind of
information for security. In order to raise the clarity of
Cloud, we add this information to assembly level. This
could make easier to control Cloud robotic systems.



Fig. 7. Assembly Metamodel and examples

Fig. 8. The variability of example architectures

D. The variability

The variability of software architecture often cites SPL
(Software Product Line). In SPL, the variability is inside
in configuration level. A reference architecture could be
implemented by different possible configurations with certain
limit choices. In CRALA, variability is horizontal, which is
reflected in the relationships between three levels. We use
illustrating examples to explain how CRALA manages the
variability of Cloud robotic systems from microscopic and
macroscopic views.

Firstly, from macroscopic view, the variability of architec-
tures could be captured by their relationships between dif-
ferent architecture levels, as shown in Fig. 8 (a). Figure 8(b)
illustrates the relationships of example architectures Arch1
presented earlier in this section and it’s generated automat-
ically by CRALA toolsuite according to the relationships
defined in architecture models (Fig. 3(b), 5(a,b) and 7(a,b)).

Secondly from microscopic view, the variability is re-
flected by components. Fig. 9 presents an example of com-

Fig. 9. The Localization component role, some possible concrete realiza-
tions and some of their instantiations

ponents in three levels. It shows the relationship of different
component forms in three levels: component roles (specifi-
cation), component/service (configuration) and component or
service instance (assembly).

In our viewpoint, if we could combine these two kinds of
variability: horizontal and vertical in our future work, it will
greatly increase the feasibility and reusability of CRALA.

V. IMPLEMENTATION

We used the Ecore framework [23] and Sirius [24] for
CRALA. Ecore allows create a tree editor for a DSL accord-
ing to its metamodel, as show in Fig. 10. Sirius is an Eclipse
project which allows you to easily create your own graphical
modeling workbench including generating graph of models
or editing graphical models. The models created by CRALA
Ecore plugins could be automatically expressed in graphs.
Figures 3(b), 5(a,b), 6(a,b) and 8 are graphs generated from
CRALA models.



Fig. 10. A sample of CRALA Ecore editor

VI. CONCLUSION AND FUTURE WORK

In this paper we investigate architecture design process for
Cloud robotic systems and propose a domain-specific archi-
tecture description language for architecture-centric Cloud
robotics. We present CRALA for describing Cloud robotic
architectures, and show that linking architecture descrip-
tions with Cloud deployment aspect allows mastering and
controlling Cloud robotic systems and their variability. The
proposed language is implemented by EMF and Sirius and
we use a use case to illustrate CRALA.

In future work, we aim to extend CRALA in several
ways. We would like to develop some mechanisms to sup-
port the automatically developing process of architecture-
centric Cloud robotic systems. First of all, how to search
the correspondent and appropriate components or services
in repository to construct architecture configuration auto-
matically. Secondly, how to deploy the configuration on
Cloud automatically. Then how to reorganize the system on
Clouds when service failure. Our overall goal is to construct
an intelligent development environment to construct Cloud
robotic systems.
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