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Abstract

The human brain is ultimately responsible for all thoughts and movements that the
body produces. This allows humans to successfully interact with their environment.
If the brain is not functioning properly many abilities of human can be damaged.
The goal of cerebral signal analysis is to learn about brain function.

The idea that distinct areas of the brain are responsible for specific tasks, the
functional segregation, is a key aspect of brain function. Functional integration is
an important feature of brain function, it is the concordance of multiple segregated
brain areas to produce a unified response. There is an amplified feedback mechanism
in the brain called reentry which requires specific timing relations. This specific tim-
ing requires neurons within an assembly to synchronize their firing rates. This has led
to increased interest and use of phase variables, particularly their synchronization,
to measure connectivity in cerebral signals. Herein, we propose a comprehensive re-
view on concepts and methods previously presented for assessing cerebral synchrony,
with focus on phase synchronization, as a tool for brain connectivity evaluation.
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Chapter 1

Introduction

Cerebral signals are among the easiest, most useful and efficient tools for studying
brain and its different cognitive states. According to their concept (i.e. embedded
information) and also the recording procedure, these signals are called in many dif-
ferent names such as EEG (electroencephalogram), EMG (magnetoencephalogram),
ERP (event related potential) or etc.. Analyzing these signals needs some powerful
and discriminative features extracted from them. Amplitude is one of these powerful
features. Amplitude of Biological signals has been shown that is very informative
and is used as main analysis factor in former studies.

In some applications, because of the environment being too much noisy, or pres-
ence of other biological contaminants, the amplitude information of captured signals
become contaminated and inadequate. As an example of such applications we can
refer to ERP signals studies in BCI purposes that the spontaneous EEG and other
biological signals such as EOG play the contaminant role and make the amplitude
of ERP signals inadequate in information. As an other instance, investigating fetal
brain signals needs recordings from maternal abdominal. Also in this application
there are some biological contaminants such as fetal and maternal cardiac activity
signals (fECG, mECG). These signals are stronger, i.e. 10–100 fold, in amplitude
than fetal brain signals. Thus, the amplitude solely can not yield adequate informa-
tion. In such cases we need to look for new features to use and capture information
from new aspects that are less contaminated and noisy.

Phase of this biological signals is an informative useful alternative feature in these
cases that has been of interest in past few years. In many recent researches it has
been shown that phase has valuable information and can be used as a complement
for amplitude information. Thus, using phase of brain signals in cases that ampli-
tude informations are contaminated or inadequate, or the phase itself has adjunct
information over amplitude (i.e. brain cognitive response investigations), would be
very helpful.

Phase of cerebral signals has been extracted and used through various proce-
dures in past studies such as Fourier and Wavelet transforms in frequency domain,
Analytic form of signals and also using multi–channel signals and the angles be-
tween signal subspaces. Each of these methods are applied on data sets related to a
specific application such as brain computer interface purposes, cognitive researches,
event related potentials studies and etc. Since for different applications the result
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of all these various methods will vary, the important confronting problem here is
that there is not a comprehensive and reliable comparison between these methods.
So we decided to first specify these different methods and extract a well-defined
conceptual framework out of them to prevent from being perplexed in using phase
analysis methods. After that we will implement some of these methods on specific
data sets in specific applications to compare the results and specify the properties
of each method in details. We hope that the results of this study will be useful in
applications such as ERP signals analysis (i.e. BCI systems studies) and also brain
cognitive responses investigations.

To this goal, in Chapter 1, the brain signals’ phase analysis methods from two
viewpoints are presented: (1) the early analysis and (2) the modern analysis. Differ-
ent related quantities are defined and the statistics are presented and some benefits
and limitations confronting in both the early and the modern viewpoints are dis-
cussed. Finally at the end of this section the related applications are introduced.
Phase analysis is of an extended interest in this applications because of their par-
ticular characteristics.

In Chapter 2, phase analysis methods are presented and investigated afterward
in different fields such as measuring connectivity in distinct brain areas, phase mod-
ulations and demodulations and high order statistics. The different approaches in
each specific case such as Coherence, Phase Synchronization and Desynchronization
and etc. are presented in this Section. The statistics and the motivation of each
method are proposed and discussed for each part.

1.1 Cerebral Signals: Early Analysis

The human brain is ultimately responsible for all thought and movement that the
body produces. This allows humans to successfully interact with their environment.
If the brain is not functioning properly many abilities of human can be damaged.
The goal of cerebral signal analysis is to learn about brain function.

Cerebral signals are susceptible to be contaminated by various noise sources such
as muscular activities (i.e. blinking, jaw clenching or frowning), artifact generated
by the electrical equipments which are near recording areas and also other biological
signals (i.e. EMG or EOG). Artifact detection and removal is a necessary step for
many types of cerebral signal analysis [1].

Early cerebral signal recording systems were very simple in comparison to the
their modern species. The analogue EEG signals recorded at that time were analyzed
visually and the qualitative features of them were been investigated usually. Features
of the EEG signal were classified as either paroxysmal (transient, bursting) or on-
going (background, spontaneous) activity. A simple feature of EEG recordings was
measured by counting the number of oscillations in one second.

Because of recordings being too much noisy the quantification and interpretation
of the amplitude of a desired frequency component were too difficult, since the peak-
to-peak amplitude of the signals changed over time. One approximation used was
to create an envelope for the signal by joining together all the peaks/troughs and
taking an average of the resulting lines [2]. Another used measure was the duration
of time that a recording would spend oscillating in a particular frequency band [3].
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Many complex waveform that exist in EEG recording such as the alpha rhythm
which was the first EEG waveform reported by Hans Berger [4] (also called as the
Berger waveform) and the K-complex which is a transient waveform that occurs
during sleep were discovered [5](many more examples can be found in [6]). Also to-
pographic maps of the scalp potentials were used to visually identify spatial patterns
in EEG signals, however creating these maps were difficult from analogue recordings.

Often visual analysis was not sufficient to discriminate between components and
furthermore, more complex events were very cumbersome with analogue recordings.
Analogue-to-digital converters (ADC) are used to create digital EEG recordings.
Digital EEG recordings opened new possibilities for analyzing the spectral content
of brain signals. Creating topographic maps was made more practical with digital
recordings and systems. Using the digital EEGs, computers used interpolation to
create detailed contour plots of the scalp potential. However, there are also some
ambiguities remaining when interpolation is used, due to projecting a 3D volume
onto a 2D surface [7].

Based on the idea of Fourier analysis, using the Fourier transform leads to mea-
suring the power spectral density(PSD) and so the mean squared coherence (MSC)
(which employs the PSD) and also extracting significant frequency specific compo-
nents such as instantaneous phase and amplitude.

1.1.0.1 Power Spectral Density

Let x(t) be a stochastic stationary process, The Fourier transform of x(t) is shown
by X(f) and is determined as below:

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (1.1)

Then the power spectral density PSDx(f) of x(t) is calculated as follow:

PSDx(f) =
∞∑

i=−∞

|Xi(f)|2 (1.2)

The PSD can also be calculated between two distinct signals and it is called as cross-
spectrum function. Cross-spectrum is a complex function that its amplitude and
phase show the correlation between two signals. For instance, the cross-spectrum of
two sinusoidal signals of the same frequency has a sharp peak in that frequency. The
phase of the cross-spectrum at that frequency equals the phase difference between
the records. If two signals share a sinusoidal activity, but each also contains other,
unshared activity, their cross-spectrum has a peak at the shared frequency only.

1.1.0.2 Correlation Function

Another measure availed through digital signal recordings is the correlation function.
Auto-correlation function Rx(τ) of x(t) is measured as below:

Rx(τ) = x(τ)x(−τ) =

∫ ∞
−∞

x(t)x(t+ τ)dt (1.3)
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The Fourier transform of the Auto-correlation function does indeed equal to the
PSD of our stochastic stationary signal x(t).

PSDx(f) =

∫ +∞

−∞
Rx(τ)ej2πfτdτ (1.4)

The proof is quite straightforward, by mean of Fourier transform of the correlation
function Rx(τ) we have:

f{Rx(τ)} =

∫ ∞
−∞

R(τ)e−j2πfτdτ

=

∫ ∞
−∞

∫ ∞
−∞

x(t)x(t+ τ)e−j2πfτdtdτ

=

∫ ∞
−∞

x(t)

∫ ∞
−∞

x(t+ τ)e−j2πfτdτdt

= X(f)

∫ ∞
−∞

x(t)ej2πftdt

= X(f)X∗(f) = |X(f)|2

1.1.0.3 Phase & Amplitude Extraction

Two other quantities availed through digitalized early cerebral signal analysis are
the instantaneous phase and amplitude. There are two conceptually distinct set of
techniques for the purpose of capturing the amplitude and phase of a signal: (1)
linear techniques and (2) nonlinear techniques. In one hand, the linear techniques
assume a constant amplitude and phase within the estimation window [8]. As a
common example, Fourier transform represents the stationary process x(t) in the
frequency space as a phasor X(f):

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt = A(f) cos θ(f) + jA(f) sin θ(f) = A(f)ejθ(f)

where A(f) and θ(f) are the amplitude and phase of signal x(t) within the estimation
window respectively.

In the other hand, nonlinear techniques try to measure the time-dependent in-
stantaneous amplitude and phase which are illustrating the moment-to-moment
change in signal. Instantaneous amplitude and phase are usually obtained using ei-
ther the Hilbert or Wavelet transforms which has been illustrated that both produce
similar results [9]. There are other recently proposed methods for phase extraction
purpose which are represented here.

1.1.0.3.1 Hilbert Transform The Hilbert transform of a real valued process
x(t) is defined as:

xh(t) =
1

π
PV

∫ ∞
−∞

x(τ)

t− τ
dτ (1.5)
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where xh(t) = H{x(t)} represents the Hilbert transform of process x(t) and the
integral is taken using the Cauchy principal value due to the potential singularity at
t = τ . The Hilbert transform is the convolution of the signal x(t) with the function
1
πt

which means the PSD of xh(t) is equal to the product of the PSD of x(t) and the
PSD of 1

πt
. Besides, the Fourier transform of the function 1

πt
is equal to:

F{ 1

πt
} = −isgn(f)

which states that the Hilbert transform is simply a π
2

shift in the phase of the original
signal. Thus using the analytic extension of a signal as presented below does not
change the PSD of that signal [10]:

Z(t) = x(t) + jxh(t) (1.6)

Now, the instantaneous amplitude and phase of x(t) can be defined as the magnitude
and argument of the analytic extension as follow:

Z(t) = A(t)ejφ(t) (1.7)

where A(t) is the instantaneous amplitude and φ(t) is the instantaneous phase which
can be calculated as below:

φ(t) = arctan

(
xh(t)

x(t)

)
(1.8)

To have a physically meaningful interpretation of the instantaneous phase and ampli-
tude, they have to be extracted from a narrow-band signal or in a specific frequency
of interest, so a filtering pre-step before applying Hilbert transform is needed [11].

1.1.0.3.2 Wavelet Transform As mentioned before, another useful procedure
for measuring the instantaneous amplitude and phase of a signal is through time-
frequency transformations such as Wavelet transform. By mean of the standard
Morlet-Wavelet, the Wavelet coefficients of signal x(t) can be determined as follow
[12]:

Wx(t, f) =

∫ ∞
−∞

x(u)ψ∗t,f (u)du (1.9)

where the ψt,f (u) is a modulated Gaussian function (with center of t and variance
of σ) by a sinusoidal wave with frequency of f :

ψt,f (u) =
√
fej2πf(u−t)e−

(u−t)2

2σ2

Then two important parameters obtained from Wavelet transform are spectrogram
and Instantaneous Phase [12]. We have:

Spectrogram = |Wx(t, f)|2 (1.10)

and

exp(jφx(t, f)) =
Wx(t, f)

|Wx(t, f)|
(1.11)

which in latter the φx(t, f) represents the instantaneous phase.
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1.1.0.3.3 Phase Extraction Based on Complex Energy Density Function
“Rihaczek derived the signal energy distribution in time and frequency by applica-
tion of the complex signal notation”[71].

Considering two complex signals x(t) and y(t) which are at similar frequency,
the total complex energy can be defined as:

CE(t, f) =

∫ ∞
−∞

x(t)y∗(t)dt (1.12)

Rihaczek utilized this idea to compute the interaction energy of a signal within
some frequency band. This leads to the Complex Energy Density Function (CEDF),
stated as below [72]:

CEDF (t, f) =
1√
2π
x(t)X∗(f) exp(−j2πft) (1.13)

CEDF measures the complex energy of a signal around time t and frequency
f . As stated in [71], CEDF provides a better understanding of phase-modulated
signals. Now, the time-varying phase for signal x(t) in time-frequency plane is
defined as below:

φx(t, f) = arg

(
CEDF (t, f)

|CEDF (t, f)|

)
(1.14)

1.1.0.3.4 Phase Extraction Based on Empirical Mode Decomposition
The Empirical Mode Decomposition EMD technique was first proposed by Huang
in 1998 [76], and is based on the assumption that any signal consists of different
simple intrinsic independent modes of oscillation. Each of these modes will have the
same number of extrema and zero-crossings and there is only one extremum between
successive zero-crossings [74]. Here we present the statistics given in [76] for EMD
algorithm with respect to the signal x(t):

• Find all the local extrema. Then connect all the local maxima together and
also all the local minima by a cubic spline as the upper and lower envelope
respectively, (emax(t)andemin(t)).

• Extract the detail as the difference between the signal and the mean of the
upper and lower envelope values : d(t) = x(t)− emax(t)+emin(t)

2
.

• If d(t) is not an IMF, treat it as original signal and repeat first two steps until
d(t) becomes an IMF, then d(t) = I1(t) is the first IMF.

• After getting the first IMF, remove it from the original signal and obtain the
residual r1: x(t)− I1(t) = r1(t).

• Treat the r1(t) as the original signal and repeat the above steps to obtain the
second IMF, I2(t).

• Repeat the process n times. The decomposition process can be stopped when
no more IMF components can be extracted from the last residual.
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Thus, the EMD algorithm decomposes the signal x(t) into n empirical modes as:

x(t) =
n∑
i=1

Ii(t) + rn(t) (1.15)

The IMFs I1(t), ..., In(t), include different frequency bands ranging from high to
low [74]. Now, after decomposing signal x(t) into its relative IMFs, for the purpose
of phase extraction, Hilbert transform can be applied to the IMFs and produce the
instantaneous phase sequences.

The main difference between this method and other phase extraction method is
that, here, phase sequences are extracted from IMFs and there is no need for band-
pass filtering the signal anymore. Also EMD based methods have some other merits
which are discussed in next chapter while introducing EMD based phase analysis
method for assessing synchronization in brain.

1.1.0.4 Coherence

The idea that distinct areas of the brain are responsible for specific tasks, the func-
tional segregation, is a key aspect of brain function. Functional integration is another
important feature of brain function, it is the concordance of multiple segregated
brain areas to produce a unified response [13], [14].

To measure functional integration in brain, different procedures were introduced
to quantify functional connectivity, a statistical dependence between different cere-
bral signals captured from different brain regions. The first famous measure of
functional connectivity was coherence.

Coherence determines the correlation between the signals at specific frequencies
[15], [16]. Coherence in a simple definition is a measure of synchronization and
correlation between two random process, stochastic, wide-sense stationary (WSS )
signals that is computable through the coherence function. Coherence is widely used
to study dependency and relationship between different brain regions particularly
during a specific cognitive task or while experiencing a specific stimuli [17].

In general Coherence function is a complex valued number with both an am-
plitude and phase that are used to measure phase synchronization in signals. The
main advantage of coherence over other correlation calculating methods (i.e. in [18])
is that in fact coherence gives the correlation between two signals as a function of
frequency that provides the possibility of studying spatial correlation in different
frequency bands [17].

According to the different characteristics of signals (i.e. stochastic or determin-
istic) and also different procedures presented for determining PSDs in literature,
several approaches for MSC calculation exist. Here we represent the most widely
used approaches and in next Chapter after reintroducing the conventional MSC,
The rest of the approaches will be discussed.

1.1.0.4.1 MSC Using FFT In [17] a method for measuring coherence function
is presented. The method is based on weighted windowing of the Fourier transform of
signals. Let x(t) and y(t) be two random process, zero mean, wide–sense stationary
and ergodic signals with length l. A summary of the method in [17] is given below:
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• Divide the signals into N equal parts with T samples (different part can be
overlapped or disjoint)

• Multiply the samples of each ensemble in a weighting function (i.e. cosine)

• Take FFT of each weighted ensemble

• Measure power spectral densities of signals (PSD)

• Finally, measure the coherence function (or as said “Mean Squared Coherence
(MSC)”)

If Xi(f) and Yi(f) be the Fourier transform of i-th ensemble, the PSDs are
calculated as follow:

PSDxx(f) =
1

NT

N∑
i=1

|Xi(f)|2 (1.16)

PSDyy(f) =
1

NT

N∑
i=1

|Yi(f)|2 (1.17)

PSDxy(f) =
1

NT

N∑
i=1

Xi(f)Y ∗i (f) (1.18)

With the ergodicity of signals being neglected we have:

PSDxx(f) = E{|Xi(f)|2} (1.19)

PSDyy(f) = E{|Yi(f)|2} (1.20)

PSDxy(f) = E{Xi(f)Y ∗i (f)} (1.21)

where E{.} illustrates the mathematical expectation. Using these PSDs we com-
pute the mean squared coherence MSC as:

|MSC(f)|2 =
|PSDxy(f)|2

PSDxx(f)PSDyy(f)
=

1
N

∑N
i=1 |(PSDxy(f))i|2

PSDxx(f)PSDyy(f)
(1.22)

Since PSDxy(f) is complex, the Cartesian or Polar coordinates can be used for
averaging. We discussed This issue in Appendix A.

1.1.0.4.2 MSC Using Correlation Functions Another method for obtaining
complex coherence is presented in [20] which computes the PSDs using auto and
cross correlations. In this method after dividing the signals into N separate parts,
first the auto/cross correlations Rxx, Ryy and Rxy are calculated and then the PSDs
are measured by taking Fourier transform of these correlation functions:

Rxx(τ) = E{x(t)x(t+ τ)} ⇒ PSDxx =

∫ +∞

−∞
Rxx(τ)ej2πfτdτ (1.23)

Ryy(τ) = E{y(t)y(t+ τ)} ⇒ PSDyy =

∫ +∞

−∞
Ryy(τ)ej2πfτdτ (1.24)

8



Rxy(τ) = E{x(t)y(t+ τ)} ⇒ PSDxy =

∫ +∞

−∞
Rxy(τ)ej2πfτdτ (1.25)

The equations (1.23), (1.24) and (1.25) can also be illustrated using inner product
by the complex sinusoidal mother function as follow:

PSDxx =< Rxx, e
j2πft > (1.26)

PSDyy =< Ryy, e
j2πft > (1.27)

PSDxy =< Rxy, e
j2πft > (1.28)

This method also takes all the assumptions considered in former method. Here,
as well, if the ergodicity assumption is neglected thus the expectation term in corre-
lation calculation could be changed by time averaging. Finally the MSC is obtained
as below:

MSC(f) =
PSDxy(f)√

PSDxx(f)PSDyy(f)
=

F{Rxy(f)}√
F{Rxx(f)}F{Ryy(f)}

(1.29)

where F{.} denotes the Fourier transform.
MSC varies between 0 to 1 (0 < MSC < 1). The more two signals are related

and synchronized, the grater the MSC value will become. In fact a MSC value close
to 1 means the activity between corresponding signals follows a linear transformation
in that frequency of interest and a MSC near zero shows two non-related signals in
that frequency.

As discussed before, cross-spectrum is a complex function that its amplitude and
phase show the correlation between two signals. For instance, the cross-spectrum of
two sinusoidal signals of the same frequency has a sharp peak in that frequency. The
phase of the cross-spectrum at that frequency equals the phase difference between
the records. If two signals share a sinusoidal activity, but each also contains other,
unshared activity, their cross-spectrum has a peak at the shared frequency only.
The MSC has the same interpretation to the cross-spectrum and concluded from
the discussion above, it is said that the phase of MSC is meaningful and equals
the phase difference between two corresponding signals, if the amplitude in that
frequency is considerable. The large value of coherence amplitude in a phase of 0
degree indicates the large positive correlation and in a phase of 180 degree it’s the
vise versa and the the rest of the phase values are interpreted similarly due to the
amplitude in that frequency [18].

The discriminant factor between methods presented in [17] and [20] is the proce-
dure of measuring power spectral densities of signals. As reported in [20], the PSD
can be estimated using non-parametric methods such as Blackman–Tukey method,
weighted overlapped segment averaging (WOSA), also known as Welch’s method,
Lag-reshaping method or parametric ones, as discussed later in next Chapter.

1.2 Cerebral Signal: Modern Analysis-Cerebral

Connectivity

Brain connectivity depicts patterns of links in the brain. Most of the brain functions,
for instance the ones involved in learning, memory, behavior adaptation to stimuli,
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emotions, as well as pathological processes in some brain disorders like epilepsy,
autism or schizophrenia, are based on interactions between neuronal assemblies dis-
tributed within and across distinct cerebral regions [21]. For instance, it has been
shown that segregated areas may activate in response to a particular cognitive task.
Neural assemblies are the basic concept of current scientific model for how cerebral
functional integration is achieved. Integration of cerebral areas can be measured by
assessing brain connectivity [21], [22], [23]. Brain connectivity can be separated into
three different concepts: (1) structural (or neuroanatomical) connectivity, which
denotes anatomical links, (2) functional connectivity, which rely on statistical de-
pendencies between signals from different brain areas and (3) effective connectivity,
which introduces causal interactions among these signals [21], [23], [24].

There are reasons discussed in [25] which make structural connectivity difficult
to define intrinsically. functional connectivity is defined as the temporal correlation
among the activity of different neural assemblies whereas the direct or indirect effect
that one neural system exerts over another is defined as effective connectivity [26],
[27].

Functional and effective connectivity techniques are intensely dependent on mea-
suring the correspondence of neural signals over time. Thus cerebral signal recording
techniques such as EEG and MEG with good temporal resolution, are optimal for
calculating such connectivity. Most frequently used measures for connectivity are:
correlation, coherence, mutual information, transfer entropy, generalized synchro-
nization [28], continuity measure [29], synchronization likelihood [30] and phase
synchronization [31].

There is an amplified feedback mechanism called reentry which requires spe-
cific timing relations. This specific timing requires neurons within an assembly to
synchronize their firing rates. This has led to increased interest and use of phase
variables, particularly their synchronization, to measure connectivity in cerebral sig-
nals [16]. Moreover, our focus in this work is based on signal phase and its analysis
methods. Thus, we will introduce the phase synchrony as a subset of modern meth-
ods for cerebral signal analysis and discuss various approaches presented to achieve
this quantity in next section.

The next section is dedicated to introducing synchronization and its different as-
pects. Each case is introduced and its characteristics are represented briefly. Finally
the phase synchronization as one of the major investigated fields in this thesis and
its various approaches are presented.

1.3 Synchronization

Connectivity measures are widely used to determine the level of synchronization
between distinct brain regions using cerebral recordings. As discussed before, since
structural connectivity is difficult to define inherently, only the two remaining con-
nectivity measures (functional connectivity and effective connectivity) are used for
determining synchronization in brain.

As discussed in [23], methods to measure effective connectivity can be subdi-
vided into two main categories: (1) model-based and (2) data-driven techniques.
The former case assumes theoretical models that describe how brain areas inter-
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act and influence each other, whereas the latter case does not assume any specific
underlying model or prior knowledge concerning spatial or temporal relationships.
Granger-causality (GC), directed transfer function (DTF), directed coherence (DC)
and its extension partial directed coherence (PDC) are the most common data-
driven connectivity techniques. It is notable that DTF, DC and PDC are developed
out of the GC method. The PDC technique will be presented in next chapter as an
extension of coherence methods.

The functional connectivity methods are subdivided into three main categories:
(1) linear, (2) nonlinear and (3) information-based techniques [23]. Each of these
categories and the corresponding most common approaches are introduced in next
subsections.

1.3.1 Linear Synchronization Methods

1.3.1.1 Cross Correlation

Cross-correlation and MSC are the most commonly used linear synchronization
methods. As we discussed before (see Sections 1.2.1.2 and 1.2.1.4), assuming two
discrete time processes xn and yn where n = 1, ..., N , then the cross-correlation
function Rxy is defined as:

Rxy(τ) =
1

N − τ

N−τ∑
n=1

(
xn − µx
σx

)(
yn+τ − µy

σy
) (1.30)

where µ and σ denote mean and variance, respectively, while τ is the time lag.

1.3.1.2 MSC

Another linear technique for synchronization measurements is the MSC or simply
coherence. MSC is defined precisely in Section (1.1.0.4). To remind what the basic
idea is, the main formula to calculate MSC is given below:

|MSC(f)|2 =
1
N

∑N
i=1 |(PSDxy(f))i|2

PSDxx(f)PSDyy(f)
(1.31)

which is averaged over trials.
Although MSC is a successful measure of functional integration, it has several

limitations [16]:

• Stationarity: Because of using FFT, existence of a PSD depends on the station-
arity of a process. As reported in [32], there is evidence that EEG recordings
longer than a particular period of time are non-stationary.

• Linearity: Coherence is based on linear correlation in the process. Thus, if
information is being transferred in a nonlinear manner, it may not be detected.

• Direction: When there is synchronization between two signals, coherence does
not clarify which signal is driving the flow of information.
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1.3.2 Nonlinear Synchronization Methods

Many crucial neural processes have nonlinear characteristics. Due to the lack of lin-
ear synchronization methods to detect this nonlinear connectivity, basic motivation
for developing nonlinear methods were not put on outperforming linear methods but
rather providing complementary information under certain assumptions [23].

Within the field of neuroscience, synchronization is commonly illustrated in the
concept of phase synchrony. There are various approaches to obtain this quantity
based on different characterization procedures. The main ideas are described briefly
in next subsection and more comprehensively in next chapter. Another nonlinear
connectivity measure termed as Generalized synchronization is also introduced very
briefly.

1.3.2.1 Phase Synchronization

Phase synchronization (PS) is defined as temporal adjustment of rhythms of a pair
of signals in a frequency band of interest, whereas the amplitudes can remain un-
correlated [33]. PS also can be determined through successive frequency bands to
provide a complete measure of synchrony between two signals. Phase locking-value
(PLV) is the most commonly used measure of PS. In order to detect periods of phase
synchrony (i.e. PLV) in cerebral signals, there are four main steps summarized as
follow [34], [35], [36], [37], [38]:

• The first step is to calculate a sequence consisting instantaneous frequency
specific phase values within a temporal window.

• The second step simply is to determine the instantaneous phase-differences (in
frequency f and time t) from the corresponding phase sequences captured in
first step.

• Quantifying the local stability of this phase-differences across trials of cerebral
signals.

• Determining the degree of statistical significance of each quantity obtained in
step three.

The first step can be performed through one of the two common signal phase extrac-
tion methods: (1) Hilbert Transform or (2) Wavelet transform (see Section 1.2.1.3).
The second step actually depends on the third step. The quantification in step three
can be performed through various statistical dependence parameters such as mean
phase difference, circular variance, standard deviation, Shannon entropy, or mutual
information [33]. Depending on which of these procedures to be selected, the pro-
cess in second step might be required or not. If the phase differences have to be
found, there are different ways to this goal depending on the method used for phase
extraction. This might differ between simply subtracting the corresponding time-
dependent phases captured through Hilbert Transform or using description below
due to phase extraction through Wavelet Transform:

exp(j(φy(t, f)− φx(t, f))) =
Wx(t, f)W ∗

y (t, f)

|Wx(t, f)||Wy(t, f)|
(1.32)
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where the term φy(t, f)− φx(t, f) represents the phase-difference between processes
y and x. The main conventional approaches to assess the synchrony between neural
signals are distinct in their technique to quantify the captured instantaneous phase-
differences. Finally, for the last step commonly surrogate data are utilized. There
are different techniques presented for generating surrogate data in literature such
as shifting or scrambling the original series [35], [37]. The degree of statistical
significance of the PLVs is then determined by comparing them to values obtained
from surrogate data.

Generally speaking, for two neural signals x(t) and y(t) and their corresponding
phases φx(t) and φy(t), phase synchrony in its most general form is defined as:

nφx(t)−mφy(t) = const. (1.33)

where n and m are integers indicating the ratios of possible frequency locking [31].
In what follows we assume n = m = 1 for simplicity. Because of problems such as
Volume Conduction (introduced later in current chapter) or background spontaneous
brain signals the true synchrony is buried in a considerable background noise [38].
In this case, as in [31], this condition of phase locking can be replaced by the weaker
condition as stated below:

|nφx(t)−mφy(t)| < const. (1.34)

As discussed in [33], such approaches to phase synchrony impose two main lim-
itations as presented below:

• As mentioned, only synchrony between pairs of signals can be directly studied.
This extremely increases the computational cost. For instance, when there is
n signals, d = n2−n

2
pairs of signal exist.

• As illustrated in [33], synchronizations with frequency non-stationarity can
be observed in brain signals (frequency of synchronization alters continuously
through time, although the phase-difference remains stable). Thus, defining
phase synchronization in this manner will prevent such phase synchronizations
from being detected.

• It has been demonstrated in [40] that synchrony-measurement methods based
on this definition may be insensitive to very short periods of phase synchro-
nization (see also [41]).

The relation between coherence and phase synchronization is investigated in [60]
and according to the reported results there is a very close relationship between these
concepts. In many studies it has been reported that a complete phase synchroniza-
tion is manifested by highly coherent phases and correlated amplitudes. In fact,
both the phase synchronization and the coherence analysis are looking for periods
of phase synchrony in various frequency bands but there is some differences between
their sensitivity to detecting them. With focusing on Signals phase, the coherence
analysis has some objections (see Section 1.3.1.2), however, in [60] it is reported that
phase synchronization analysis is not superior than coherence considerably.
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1.3.2.2 Generalized synchronization

After the successful application of PS in EEG analysis, the concept of Generalized
synchronization (GS) was introduced [42]. GS approaches were proposed to investi-
gate the dependencies between nonlinear signals without any knowledge about the
governing equations [22]. GS represents how much neighborhoods of one chaotic
attractor can be mapped onto the other [23]. Although this mapping is prone to
stationarity deficits, it is considered to be a robust way of evaluating the GS [42].
Generating such attractors needs delay vectors to be constructed from time series
using a procedure known as time-delay embedding [43].

1.3.3 Information-based Techniques

In probability theory and information theory, Mutual Information (MI) measures
the mutual dependencies between two random-variable processes by quantifying the
amount of information gained about one signal from measuring the other. If two
signals have a statistical dependence, observing one signal gains information about
the other and reduces the entropy because of the knowledge of other signal. The
benefit of using information-based techniques is that these techniques are sensitive
to both linear and nonlinear statistical dependencies between signals [16], [23].

MI analysis can be used to assess functional connectivity between cerebral sig-
nals. For this purpose a measure of entropy is needed [44]. Defining the entropy for
a signal x(t) as:

H(x) = −
∫
x

P (x) log(P (x)) (1.35)

we have the mutual information between signals x(t) and y(t) determined as:

I(x, y) =

∫
y

∫
x

P (x, y) log(
P (x, y)

P (x)P (y)
)dxdy (1.36)

where P (x, y) is the joint probability density function of x(t) and y(t), and P (x)
and P (y) are the marginal probability density functions of x(t) and y(t) respectively
[44]. MI has been used for evaluating functional connectivity in EEG recordings (see
[45] and [46]).

1.4 Cerebral Signal: Modern Analysis-Higher or-

der Spectra

The previous introduced statistical tools utilize first and second order statistics to
extract information from random signals. However, the main problem confronts in
the presence of nonlinearity in systems where the first and second order statistics
are unable to adequately analyze many signals [78]. Presenting High-order Spectra
(Statistics) (HOS) is mainly motivated to overcome this problem and plays an im-
portant role in digital signal processing. HOS methods are very useful in problems
where non-Gaussian, non-minimum phase, phase coupling or nonlinear behavior and
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robustness to additive noise are important [78]. They are also used in detection and
classification in communication and pattern recognition applications.

“In general, there are three motivations behind the use of HOS in signal process-
ing which can be considered as its property over lower order spectra: (1) suppressing
Gaussian noise of unknown mean and variance; (2) detecting and characterize non-
linearities in the data and (3) reconstructing and preserving the phase as well as
the magnitude response of signals or systems”[79]. Also the applications of HOS on
biomedical signals are based on these properties. Particularly in this contribution
we focus on the latter property of HOS. In fact, measuring Power spectrum causes
phase relations and signals phase informations to be suppressed, while HOS, based
on the ability of cumulant spectra to preserve the Fourier-phase of signals, contains
such informations [80], [81] and [82].

Higher order spectra are functions of two or more component frequencies while
the power spectrum and lower order spectra are functions of a single frequency
[78]. The bispectrum and bicoherence and their related extensions (i.e. auto/cross
bispectrum and bicoherence) are the third order spectra and also the most used
HOS quantities as they are easiest computationally. The other less common HOS
quantities than the 3-rd orders are the (auto/cross) trispectrum and tricoherence.
First, we need to review approaches for calculating moments and cumulants of order
n as high order spectra quantities’ computation is based on them.

1.4.1 Moments and Cumulants of order n

For a stationary discrete time random process X(k), the moments of order n are
given by:

mn(τ1, τ2, ..., τn−1) = E{X(k)X(k + τ1)...X(k + τn−1)} (1.37)

where E{.} denotes expectation.
The n − th order cumulants are functions of the moments of order up to n, for

example the first order cumulants can be obtained as below:

c1 = m1 = E{X(k)} (1.38)

which is the mean. Consequently, the second order cumulants are given by:

c2(τ1) = m2(τ1)− (m1)2 (1.39)

which is the covariance. Also for the third order cumulants we have:

c3(τ1, τ2) = m3(τ1, τ2)− (m1)[m2(τ1) +m2(τ2) +m2(τ2 − τ1)] + 2(m1)3 (1.40)

where m3(τ1, τ2) in the third order moment sequence. Following this manner, the
n − th order cumulants can be obtained. The general relations between cumulants
and moments are given in [81].
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1.4.2 Bispectrum

1.4.2.1 Auto-bispectrum

The bispectrum of a signal x(t) can be defined in two ways. First is the triple
product of the DFT’s [81]:

Bxxx(f1, f2) = lim
T→∞

1

T
E{XT (f1)XT (f2)X∗T (f1 + f2)} (1.41)

The bispectrum is complex. It means that it contains Fourier magnitude and
phase information [83]. With the above definition we have:

Bxxx(f1, f2) = |Bxxx(f1, f2)| exp(jφ(f1, f2)) (1.42)

where the magnitude of bispectrum obtains as:

|Bxxx(f1, f2)| = |X(f1)||X(f2)||X∗(f1 + f2)| (1.43)

and the phase of bispectrum (or biphase [83]) is:

φ(f1, f2) = φ(f1) + φ(f2)− φ(f1 + f2) (1.44)

Second definition of bispectrum is the double DFT of the 3rd order cumulant.
Two methods for calculating bispectrum based on this definition in real data are
presented later in current section.

The auto-bispectrum is a function of two frequency components, f1 and f2 which
would have a small value if the biphase varies over the different realizations and
conversely, would have a large value if this phase does not vary, which is an indication
of quadratic coupling between f1 and f2 [84].

1.4.2.2 Cross-bispectrum

Following the definition of the auto-bispectrum, the cross-bispectrum is used to
determine the quadratic coupling between frequency components in two different
signals. Considering two signals with Fourier transforms as X(f) and Y (f), the
cross-bispectrum is defined by [84]:

Bxxy(f1, f2) = lim
T→∞

1

T
E{XT (f1)XT (f2)Y ∗T (f1 + f2)} (1.45)

Through this definition, the coupling level between two frequency components
in X(f) namely f1 and f2 and their algebraic sum in Y (f) is determined which is
based on the phase relation between these components in the different realizations. A
large value of the cross-bispectrum indicates high Quadratic Phase Coupling (QPC)
between X(f) and Y (f). In fact QPC normally is obtained through the normalized
extension of bispectrum known as bicoherence. Bicoherence as a tool for phase
analysis is presented within next Chapter [84].

1.4.2.3 Methods for Calculating Bispectrum

There are two main methods for calculating bispectrum through its definition based
on 3rd order cumulants: (1) indirect method and (2) direct method.
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1.4.2.3.1 Indirect Method Let x(k), k = 1, ..., L be the available discrete sig-
nal. First, we have to segment the data into N parts each with M samples. Now
xi(k), k = 1, ...,M is the i− th segment. Then, After subtracting the mean of each
segment the 3rd order moment of each segment is computed as below:

mxi
3 (τ1, τ2) =

1

M

l2∑
l=l1

Xi(l)Xi(l + τ1)Xi(l + τ2) (1.46)

where l1 = max(0,−τ1,−τ2) and l2 = min(M − 1,M − 2).
Since we made each segment zero-mean, its third-order moments and cumulants

are equal. Thus, now the average cumulants have to be calculated:

cx3(τ1, τ2) =
1

N

N∑
i=1

mxi
3 (τ1, τ2) (1.47)

Finally, the third order spectrum (bispectrum) can be estimated as [79]:

Bxxx(f1, f2) =
L∑

τ1=−L

L∑
τ2=−L

cx3(τ1, τ2) exp(−j(f1τ1 + f2τ2))ω(τ1, τ2) (1.48)

where L < M − 1 and ω(τ1, τ2) is a two-dimensional window, introduced to smooth
out edge effects [79]. A complete description of appropriate windows that can be
used and their properties can be found in [81].

1.4.2.3.2 Direct Method Regarding to assumed signal x(k) in previous method,
again in this method we have to segment the data and zero-mean each segment sim-
ilar to previous method. After these steps, the Fourier transform of each segment
based on M points have to be computed:

Fxi(k) =
M−1∑
l=0

xi(l) exp(−j 2π

M
lk) (1.49)

where k = 0, 1, ...,M − 1. Now the third order spectrum (bispectrum) of each
segment is obtained as:

Cxi
3 (k1, k2) =

1

M
Fxi(k1)Fxi(k2)F ∗xi(k1 + k2) (1.50)

which is similar to the first definition of bispectrum. The Cxi
3 (k1, k2) need to be com-

puted only in the triangular region 0 ≤ k2 ≤ k1, K−1+k2 < M/2. Also a smoothing
window for reducing the variance can be performed around each frequency. With
these we have:

Ĉxi
3 (k1, k2) =

1

W 2

(W/2)−1∑
l1=−W/2

(W/2)−1∑
l2=−W/2

Cxi
3 (k1 + l1, k2 + l2) (1.51)
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where the smoothing window is of size (W ×W ). Finally, the third order spectrum
(bispectrum) is given as [79]:

Bxxx(f1, f2) =
1

N

N∑
i=1

Ĉxi
3 (f1, f2) (1.52)

Both the direct and the indirect methods produce asymptotically unbiased and
consistent bispectrum estimates [79].

1.5 Major Obstacles

There are some main obstacles confronting through modern cerebral signal anal-
ysis methods, particularly when measuring connectivity in brain. Each of them
are introduced below and discussed through next chapter within each represented
method.

1.5.1 Volume Conduction

One of the most important obstacles confronting in investigating correlation and
synchronization between different brain regions using EEG/MEG recordings is a
phenomenon known as Volume Conduction (VC). The activity of a particular brain
area will be observed in some adjacent electrodes because of conduction in brain
volume which produces spurious synchrony. This substantial problem provides false
results and shows incorrect related brain regions that can not be neglected. The
problem of VC is especially large for scalp EEG and MEG data, because of their
low spatial resolution. The difference between estimated connectivity directly from
neural sources and the corresponding estimates from scalp recordings is an effect of
VC [16].

Several recent methods are presented to overcome this substantial problem and
as some of them reported, they obtained successful results. Many of these methods
are represented in Section 2.

1.5.2 Presence of a Common Reference

EEG is a bipolar signal recorded from the scalp while MEG is a unipolar record.
In a unipolar record, the recording channels are reference free whereas in a bipolar
record, channels are constructed by subtracting two unipolar signals captured from
two distinct scalp electrodes (i.e. a reference and an arbitrary electrode).

As reported in [47], the confronting problem here is that bipolar recordings im-
pose a distortion in observed synchrony values, such that in general, they destroy the
intended physical interpretation of phase synchrony. It is notable to emphasize that
the problem of a common reference is an obstacle when using EEG (and not MEG)
recording due to their intrinsic bipolarity. The limitations due to this problem in
coherence measurements [48], [49], and phase synchrony [47], are widely investigated
previously. It is reported that any contamination in the reference channel will sig-
nificantly affect the coherence measurements [48], [49]. As mentioned before, one of
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the superb benefits of using PS over conventional coherence is that PS separates the
amplitude information from the phase. Nevertheless, problem of common reference
imposes limitations to PS too. It has been shown that if two signals are synchro-
nized, their differences from a third signal are not necessarily synchronized. Based
on this, the choice of the reference electrode can considerably affect the synchrony
values obtained, up to the point that they almost span the entire interval [0 1] (see
[47]).

There are a number of different ways to choose the reference electrode such as
typical EEG reference montages, which all voltage differences refer to one specific
channel, bipolar montage, which reference electrode for every channel is different and
normally spatially close to it, average reference and the Laplacian reference which
is a mathematical approximation to a reference-free signal. All these techniques are
susceptible to common reference problem but it is preferred to use the Laplacian
reference method [47].

Also as reported in [47], the significance-level in PS measurements will not help
and again high synchrony is detected when the reference electrode amplitude is
relatively high. As a conclusion, utilizing MEG data in PS measurements and more
generally in brain connectivity studies will produce much more reliable results.

1.5.3 Noise Sources and Spurious Synchrony

A noise source or an artifact in cerebral signal is referred to any unwanted contri-
bution to the field potential. This might vary due to different applications. For
example, when studying ERPs the spontaneous background EEG/MEG is consid-
ered as an artifact while in many other applications the background EEG/MEG is
the subject of study. Also there are some common noise sources in EEG record-
ings that require a preprocessing step where the artifacts are detected and removed.
Artifacts generated by the electrical equipment which are near the recording area,
contaminations caused bay muscle activity (i.e. blinking, jaw clenching or frowning)
and also other contaminant biological signals (i.e. EOG) are such artifacts. Neglect-
ing these kind of noise sources which are uncorrelated to the signals under study in
phase synchronization and brain connectivity measurements might impose incorrect
PS values and cause Spurious Synchrony.

1.5.4 Phase Enslaving

“Narrow-band filtering tends to transfer phase behavior consistent with the target
frequency (or frequency band) from the time region where this holds to adjacent
regions where corresponding oscillations are lacking. Conversely, if the signal ex-
hibits distinct oscillations of some particular frequency f , these may strike through
to the phase course even if f is incompatible with the target frequency. Such tends
to happen particularly in time-frequency regions where power is low. Since power
in EEG signals decays rapidly with increasing frequency, phase enslaving may thus
especially affect higher frequency (i.e. gamma) oscillations”[70].
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1.6 Applications

Phase analysis has a broad usage in many fields. It has been used widely in com-
munication investigations (i.e. signal phase modulation/demodulation) and also in
biomedical researches, particularly in field of neuroscience (i.e. brain functional
integration and cerebral signal synchrony measurements).

The most frequent applications in brain connectivity measurements are typically
the Brain-Computer Interface (BCI), Event Related Potential (ERP) and the Cog-
nitive studies. Recent applications include investigation of cognitive processes such
as visual perception, mental rotation [50], or pathological states such as epileptic
seizures [39], schizophrenia [51], [52], attention deficit (hyperactivity) disorder [53]
or migraine [54].

1.7 Summary

In this chapter an overview of frequent cerebral signals, their history and their early
and modern analysis methods, particularly in cerebral connectivity measurements
were presented.

Most of the early quantities gained by digitalizing the EEG records were in-
troduced. Quantities such as PSD, Correlation Function, signals’ Instantaneous
Phase and Amplitude and also the concept of Coherence. In modern analysis the
main problem discussed was estimating functional integration between neural regions
from spatio-temporal patterns in cerebral signals. To this purpose, the concept of
Synchronization was introduced. It had been discussed that synchronization can be
classified into three main categories: (1) linear, (2) nonlinear and (3) information-
based methods. Conventional approaches in these categories were also represented.
Finally, the major obstacles confronting in this new fast growing field were discussed
and many possible and commonly used applications to this concept were introduced.

The next Chapter is dedicated to delicately representing many introduced Phase
Analysis methods in various distinct fields which are applicable to brain studies.
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Chapter 2

Phase Analysis Methods

Phase information is generally considered to be “purer”and less contaminated or
more informative than the amplitude of cerebral recordings, which is more influ-
enced by the impedance of the skull or various artifacts such as eyes or face muscles
movements [55]. Biological signal phase is an informative useful alternative feature
in aforementioned cases that has been of interest in many different research fields
through past few years. Thus, using phase of brain signals in cases that amplitude
informations are contaminated or inadequate, or in cases that the phase itself has
valuable adjunct information over amplitude (i.e. brain cognitive response investi-
gations), would be very helpful.

As mentioned before, measuring brain connectivity is of a particular interest in
neuroscience. Because of the reentry mechanism, phase variables and particularly
their synchronization for the purpose of measuring connectivity in cerebral signals
became more interesting [16].

Various methods within different fields and frameworks are presented in literature
for the purpose of cerebral signal phase analysis. The main frameworks and basic
concepts were introduced in previous Chapter. In this Chapter, we try to represent
and elaborate these various methods within their corresponding field and framework.

2.1 Coherence

2.1.1 Conventional MSC

As introduced earlier in Section (1.1.0.4.1), the conventional method presented in
[17] for measuring coherence is based on weighted windowing of the Fourier transform
of signals. Let x(t) and y(t) be two random process, zero mean, wide-sense stationary
and ergodic signals with length l. A summary of the method in [17] is given below:

• Divide the signals into N equal parts with T samples (different part can be
overlapped or disjoint)

• Multiply the samples of each ensemble in a weighting function (i.e. cosine)

• Take FFT of each weighted ensemble

• Measure power spectral densities of signals (PSD)
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• Finally, measure the coherence function (or as said “Mean Squared Coherence
(MSC)”)

If Xi(f) and Yi(f) be the Fourier transform of i-th ensemble, the PSDs are
calculated as follow:

PSDxx(f) =
1

NT

N∑
i=1

|Xi(f)|2 (2.1)

PSDyy(f) =
1

NT

N∑
i=1

|Yi(f)|2 (2.2)

PSDxy(f) =
1

NT

N∑
i=1

Xi(f)Y ∗i (f) (2.3)

where the signals are sampled at fs(fs > 2BW ) and the BW is the band width.
N is the number of ensembles with 50% overlap, T is the number of samples in
ensembles and a p− pointFFT is taken (p = Tfs).

With the ergodicity of signals being neglected we have:

PSDxx(f) = E{|Xi(f)|2} (2.4)

PSDyy(f) = E{|Yi(f)|2} (2.5)

PSDxy(f) = E{Xi(f)Y ∗i (f)} (2.6)

where E{.} illustrates the mathematical expectation. Using these PSDs we com-
pute the mean squared coherence MSC as:

|MSC(f)|2 =
|PSDxy(f)|2

PSDxx(f)PSDyy(f)
=

|
∑N

i=1 Xi(f)Y ∗i (f)|2∑N
i=1 |Xi(f)|2

∑N
i=1 |Yi(f)|2

(2.7)

and the complex coherence function is obtained as below:

MSC(f) =
PSDxy(f)√

PSDxx(f)PSDyy(f)
(2.8)

It is notable that T have to be chosen large enough to reduce the bias and
standard deviation of the measurements. Also the Fourier transform of the weight
function have to be narrow. Thus a good resolution for PSD measurements is
provided when N and T both are chosen large (the best resolution is obtained in
5o% overlap between ensembles).

The important question confronting here is that “what is the optimum way for
averaging the MSC over ensembles?”. As reported in [19], the procedure described
above for computing averaged MSC might prevent some coherencies in case of non-
stationary phase from being detected. Another method presented for averaging MSC
over trials is described below:

|MSC(f)|2 =
1
N

∑N
i=1 |(PSDxy(f))i|2

PSDxx(f)PSDyy(f)
(2.9)
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2.1.2 MSC for Deterministic Evoked Signals

In some applications, for example detecting brain evoked potentials during a rhyth-
mic periodic stimuli the MSC could be used to measure the correlation and synchro-
nization between evoked potentials and background EEG signal. For Instance, in
[56] they assumed x(t) to be the evoked potential in response to a rhythmic periodic
stimuli and y(t) as the background EEG. If the windowing process is done in the
way that all the ensembles contain equal number of the periods of signal x(t) thus
a modification as below is possible. Due to main equation presented for MSC in
Section (1.2.1.4) we have:

|MSC(f)|2 =
|
∑N

i=1 Yi(f)X∗i (f)|2∑N
i=1 |Xi(f)|2

∑N
i=1 |Yi(f)|2

since x(t) is deterministic, it can be put out from the summation as below:

|MSC(f)|2|x(t)periodic =
|
∑N

i=1 Yi(f)|2

N
∑N

i=1 |Yi(f)|2
(2.10)

where 0 < MSC(f) < 1, and it reaches to its maximum value (i.e. 1), when
there is only the evoked potentials observing in the windows.

2.1.3 Multiple MSC

The extension of coherence concept and increasing in number of existing signals,
particularly in case of multi-channel EEG recordings presents another aspect of
coherence known as multiple coherence. Multiple coherence shows the relation and
synchronization between a signal and a group of other signals. This concept is used
to increase the evoked potential detection rate for multi-channel EEG recordings
in [57]. Similar to previous method, signal x(t) assumed to be the brain response
of a rhythmic periodic stimuli (i.e. evoked potential) and so deterministic and
yi(t)s(i = 1, 2, ..., L) as the different EEG signals recorded from different electrodes.
The coherence function is computed as below:

|MSC(f)|2|x:y1,..yL =
PSDH

yx(f)PSD−1
yy (f)PSDyx(f)

PSDxx(f)
(2.11)

where H indicates Hermitian of a matrix and the cross-spectrum vector and
auto-spectrum matrix are as follow:

PSDyx(f) =


PSDy1x(f)

.

.

.
PSDyLx(f)

 (2.12)

PSDyy(f) =


PSDy1y1(f) . . PSDy1yL(f)

. . . .

. . . .
PSDyLy1(f) . . PSDyLyL(f)

 (2.13)
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With x(t) being deterministic, same as previous method, its Fourier transform
has an identical value in all ensembles and a simplification could be made:

PSDyx(f)|x(t)periodic =


∑N

i=1 Y
∗

1i(f)X(f)
.
.
.∑N

i=1 Y
∗
Li(f)X(f)

 (2.14)

PSDyx(f)|x(t)periodic = X(f)


∑N

i=1 Y
∗

1i(f)
.
.
.∑N

i=1 Y
∗
Li(f)


PSDyx(f)|x(t)periodic = X(f)V (f) (2.15)

Putting this result into equation (25) results:

|MSC(f)|2|x(t)periodic =
V H(f)PSD−1

yy (f)V (f)

N
(2.16)

This procedure for measuring MSC is helpful calculating phase synchronization
in multi-channel EEG recordings and particularly in application of detecting evoked
potentials among a group of other channels of background records.

2.1.4 MSC Based on Thomson Multitapers

A novel method based on Thomson Multitapers [58], for determining coherence func-
tion is presented in [59]. In this method, the left and right singular vectors of the
cross-covariance matrix corresponding to a known cross-spectrum model are eval-
uated as multitapers for estimation of cross-spectrum and coherence. A random
process, zero mean, stationary signal x(t), is filtered through a causal linear fil-
ter h(n) and a stationary sequence y(t) is created and then the MSC function is
measured using a multitaper spectrum estimator as:

|MSC(f)mt|2 =
|PSDmt

xy (f)|2

PSDmt
xx (f)PSDmt

yy (f)
(2.17)

where −0.5 < f < 0.5 and:

PSDmt
xy (f) =

1

N

N∑
i=1

uHi F
H(f)XY HF (f)vi (2.18)

PSDmt
xx (f) =

1

N

N∑
i=1

uHi F
H(f)XXHF (f)ui (2.19)

PSDmt
yy (f) =

1

N

N∑
i=1

vHi F
H(f)Y Y HF (f)vi (2.20)
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where n samples of signals, x = [x(0), ..., x(n− 1)]T and y = [y(0), ..., y(n− 1)]T

are used, and H is showing conjugate transpose and the left and right windows
are ui = [ui(0), ..., ui(n − 1)]T and vi = [vi(0), ..., vi(n − 1)]T respectively and F =
diag[1, e−j2πf , ..., e−j2π(n−1)f ] is the Fourier transform matrix.

According to [59], using this procedure for measuring MSC has some advantages
over former methods (i.e. based on weighted overlapped segment averaging) in many
applications.

2.1.5 Imaginary Part of Coherence

A new method based on imaginary part of the complex coherence function is pre-
sented in [61] and it has been shown that the results of this method can not be
caused by Volume Conduction (VC). This method assumes that there is no time lag
between the potential recorded on the scalp and the source of this potential. This
assumption is proved through an investigation in [62]. During an accurate study,
they do not observed any time lag or any shift in phase of the recorded potential
compared with source of the corresponding signal for frequencies under 100Hz.

A very striking point discussed in [61] is that they argued about using coherency
for non-stationary signals and reported that the coherence analysis is feasible in
non-stationary processes as strong as stationary ones.

The basic idea used in method presented by [61] is using the real and imagi-
nary part of the coherency instead of its amplitude and phase. Since the real and
imaginary parts of coherency are just another representation of complex coherency
function, no new quantities are being calculated and it is just a new perspective.

According to [61], the (complex) coherency of the non-interacting areas of brain
are necessarily real. Therefore the imaginary part of the coherency can be a good
choice for investigation on interacting areas of brain. To see this, assume that the
M possible active sources at any time are given as follow:

S = [S1, S2, ..., SM ]T

and the L scalp electrodes as:

X = [X1, X2, ..., SL]T

now we have: 
x1(t)
.
.
.

xL(t)

 =


a11 . . a1M

. . . .

. . . .
aL1 . . aLM




s1(t)
.
.
.

sL(t)

 (2.21)

where alm denote the degree to which source sm project to electrode xl. With
the coefficient alm assume to be constant, we have in frequency domain:

X1(f)
.
.
.

XL(f)

 =


a11 . . a1M

. . . .

. . . .
aL1 . . aLM




S1(f)
.
.
.

SL(f)

 (2.22)
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Now assume that the signals recorded from two adjacent electrodes, x(t) and
y(t) are superposed of K independent sources, then according to above equations
we have:

X(f) =
K∑
i=1

aiSi(f) (2.23)

Y (f) =
K∑
j=1

bjSj(f) (2.24)

Now based on the main assumption of this method, while computing the cross-
spectrum of these signals we will have:

PSDxy(f) = E{X(f)Y ∗(f)} =
∑
i

∑
j

aibjE{Si(f)S∗j (f)} (2.25)

⇒ PSDxy(f) =
∑
i

aibiE{Si(f)S∗i (f)} =
∑
i

aibi|Si(f)|2 (2.26)

which is real. Thus the normalization to auto-spectrum terms will also be real
and so will be the coherence function. Based on this result and the assumption, if
the VC causes no time lag (which has been shown in [62]), the imaginary part of
the coherency has no effect of VC artifact in it. This also has been shown in [61] by
adding non-interacting signal (i.e. noise) and experiencing a decrease in imaginary
part of coherency.

In fact, the imaginary part of coherency shows the phase synchronization between
time-lagged signals. This claim is coming from the fact that time-lag in time domain
causes a phase shift in frequency domain and vise versa. Therefore, it could be said
that the imaginary part of coherency specifically shows the synchronization
between time-lagged signals.

According to [61], however the amplitude and phase of the complex coherence
function provide similar information to its real and imaginary part, but looking to
the imaginary part instead of phase have some advantages as below:

• Non-interacting sources do not lead to small but rather to random phases. We
cannot interpret a phase without having an estimate of its significance at the
same time.

• One usually calculates coherency with respect to a baseline (a rest condition).
Since in the individual coherencies the real parts are typically much larger
than the imaginary parts, the phase flips by π depending on whether the real
part of coherency is larger in the rest or active condition. The interesting
structure is easily obscured by this rather meaningless effect.

• Phase is usually regarded as an additional information about time delay be-
tween two processes. However, volume conduction strongly affects the real part
but does not create an imaginary part. Processes can appear to be synchro-
nized with almost vanishing time delay while it is only the volume conducted
copies of the signals which do not have a time delay.
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Finally, stochastic given by [61] to measure the imaginary part of coherency
is presented in follow. It has been shown that for two signals x(t) and y(t), the
imaginary part of power spectral density in determined as below:

Imag{X(f)Y ∗(f)} =
K∑
i=1

K∑
j=1

AiAj(aibj − ajbi)sin(∆θij) (2.27)

where i and j indicate the independent sources and finally the imaginary part of
coherency (ImagC) is obtained as:

ImagCxy(f) =
E{Imag{X(f)Y ∗(f)}√

E{Ax}2E{Ay}2
=
E{Imag{PSDxy(f)}√

E{Ax}2E{Ay}2
(2.28)

which varies between 0 and 1 (similar to MSC(f)).

2.1.6 Phase Lag Index

The ImagC normalizes the components of cross-spectrum to the amplitudes of sig-
nals. Thus it is not true if one says it is only related to the imaginary components
of cross-spectrum. Adding uncorrelated noise sources causes the amplitude of cross-
spectrum to increase while the numerator of ImagC fraction stays unaffected. This
problem is investigated in [63] and by simulations it has been shown that the normal-
ization of ImagC to the amplitudes of signals increases its sensitivity to additional
uncorrelated noise sources and changes in phase of coherency. Due to this, another
method for measuring phase synchronization is represented in [63] to confront these
problems. As a potential improvement on the ImagC, [63] proposed the phase lag
index (PLI). The PLI estimates, for a particular frequency, to what extent the phase
leads and lags between signals from two sensors are non-equiprobable, irrespective of
the magnitude of the phase leads and lags. In simulations, the PLI performed better
than the ImagC in detecting true changes in phase synchronization, and was less
sensitive to the addition of volume conducted noise sources [64]. The main purpose
of PLI was to solve two major problems (1) volume conduction and (2) common
reference electrode.

“The central idea is to discard phase differences that center around 0 mod π.
One way to realize this is to define an asymmetry index for the distribution of phase
differences, when the distribution is centered around a phase difference of zero. If
no phase coupling exists between two time series, then this distribution is expected
to be flat. Any deviation from this flat distribution indicates phase synchronization.
Asymmetry of the phase difference distribution means that the likelihood that the
phase difference ∆φ will be in the interval −π < ∆φ < 0 is different from the
likelihood that it will be in the interval 0 < ∆φ < π. This asymmetry implies the
presence of a consistent, nonzero phase difference (lag) between the two time series.
The existence of such a phase difference or time lag, however, cannot be explained
by the influences of volume conduction from a single strong source or an active
reference, since these influences are effectively instantaneous. The distribution is
expected to be symmetric when it is flat (no coupling), or if the median phase
difference is equal to or centers around a value of 0 mod π”[63].
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An index of the asymmetry of the phase difference distribution can be obtained
from a time series of phase differences ∆φtk , k = 1, ..., N in the following way:

PLI = |E{sign[∆φtk ]}| (2.29)

Phase lag index measures phase differences as they occur on the unit circle by first
thresholding each ∆φ using the signum function and then averaging over successive
data points [63]. The PLI ranges between 0 and 1. A PLI of zero indicates either no
coupling or coupling with a phase difference centered around 0 mod π. A PLI of 1
indicates perfect phase locking at a value of ∆φ different from 0 mod π. The stronger
this nonzero phase locking is, the larger PLI will be. Note that PLI does no longer
indicate, which of the two signals is leading in phase. Whenever needed, however,
this information can be easily recovered, for instance, by omitting the absolute value
in above equation [63].

2.1.7 Weighted Phase Lag Index

The PLI is said to has some defects. Recently, in a comprehensive study in [64], it
has been shown that PLI has some problems with VC, noise sources and detecting
changes in phase synchronization due to its discontinuity. It is said that in PLI a
small perturbation turns phase lags into phase leads and vise versa. Based on this,
another quantity for measuring phase synchronization known as Weighted Phase
Lag Index (WPLI) is presented in [64]. It is said that WPLI is an improvement
over both the conventional PLI and the ImagC. According to [64], the advantage of
WPLI over PLI is that it weights the observed phase lags and leads by the magnitude
of the imaginary components of cross-spectrum that causes less sensitivity to addi-
tional uncorrelated noise sources and more power of detecting phase synchronization
statistically.

As mentioned before (see Section 1.4), in case of phase synchronization measure-
ments four problems are well known:

• The presence of a common reference signal

• Volume Conduction

• The presence of noise sources

• Sample-size bias

VC, and in case of EEG (but not MEG) data, the use of a common reference, can
spuriously inflate phase synchronization indices. The problem of VS is especially
large for scalp EEG and MEG data, because of their low spatial resolution.

Due to these problems, to increase the detection rate of true changes in phase
synchronization and also to decrease the effects of additional uncorrelated noise
sources, coherency phase changes and the common reference problem, the repre-
sented statistics for WPLI are as follow:

WPLI(f) =
|E{Imag{X(f)Y ∗(f)}}|
E{|Imag{X(f)Y ∗(f)}|}

=
|E{Imag{PSDxy(f)}}|
E{|Imag{PSDxy(f)}|}

(2.30)
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WPLI(f) =
|E{|Imag{PSDxy(f)}|sign{Imag{PSDxy(f)}}|

E{|Imag{PSDxy(f)}|}
(2.31)

As it is clear, unlike the ImagC, the WPLI uses the components of imagi-
nary part of the cross-spectrum to normalize and also unlike the conventional PLI,
sign{Imag{PSDxy(f)}} is weighted by |Imag{PSDxy(f)}|. The WPLI also varies
between 0 to 1 and find its maximum value in:

sign{Imag{PSDxy(f)}} = ±1

when:

|E{|Imag{PSDxy(f)}|sign{Imag{PSDxy(f)}}| = E{|Imag{PSDxy(f)}|}

The performance of WPLI is evaluated in confront with the mentioned phase
synchronization measurement difficulties in a wide simulation experiment in [64]
and it has been reported that the WPLI performed much better in comparison with
both PLI and ImagC.

2.1.8 MSC Based on Parametric Spectral Estimation Meth-
ods

Each of these represented method for analyzing of signal phase exhibit some sensi-
tivity to both changes in background power and the instantaneous effects caused by
volume conduction. As an improvement to all these methods, the traditional spec-
tral estimation based on Fourier Transform of the raw EEG data, can be replaced
by a parametric estimation derived using the Yule-Walker AR approach. After this
as before, we have to look for periods of phase synchronization [65].

Let p be the model order, vi(t) be the noise term. For two assumptive signals
x(t) and y(t) the AR model could be derived as:

x(t) =

p∑
q=1

b11(q)x(t− q) +

p∑
q=1

b12(q)y(t− q) + v1(t) (2.32)

y(t) =

p∑
q=1

b21(q)x(t− q) +

p∑
q=1

b22(q)y(t− q) + v2(t) (2.33)

which in frequency domain turns into:

X(f) =

p∑
q=1

B11(q)X(f)e−j2πfq +

p∑
q=1

B12(q)Y (f)e−j2πfq + V1(f) (2.34)

Y (f) =

p∑
q=1

B21(q)X(f)e−j2πfq +

p∑
q=1

B22(q)Y (f)e−j2πfq + V2(f) (2.35)

To use this model in cross-spectrum measurement and then coherence function
estimation using EEG/MEG signals we can extend this to a multi-channel case (i.e.
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multi-channel EEG). Let x(t) = [x1(t), ..., xL(t)]T be the scalp electrodes. Derivation
of Multy-channel AR Model gives (B(0) = −I, F.T.{v(t)} = N(f) [65]:

x(t) =

p∑
q=1

b(q)x(t− q) + v(t) (2.36)

taking Fourier transform of this equation gives:

X(f) =

p∑
q=1

B(q)X(f)e−j2πfq +N(f) (2.37)

−
p∑
q=1

B(q)X(f)e−j2πfq +X(f) = N(f)

(I −
p∑
q=1

B(q)e−j2πfq)X(f) = N(f)

(−
p∑
q=0

B(q)e−j2πfq)X(f) = N(f)

B̂(f)X(f) = N(f) (2.38)

where B̂(f) = −
∑p

q=0 B(q)e−j2πfq. If H(f) = B̂−1(f) multiplying in equation
above gives the cross-spectrum as:

X(f) = H(f)N(f)

X(f)X∗(f) = H(f)N(f)N∗(f)H∗(f) (2.39)

which is an estimation of cross-spectrum needed for establishing the coherence
function. Normalization of the temporal averaged version of this cross-spectrum (i.e.
expectation) to the amplitude of the estimated AR coefficients gives the coherence
function. To estimate the coefficients of AR model, as presented in [66], the least
squares modified Yule–Walker equation (LSMYWE ) estimator [67], can be used:

b̂ = −(R̂HR̂H)−1R̂H r̂ (2.40)

R̂ =


r̂xx,p r̂xx,p−1 . . r̂xx,1
r̂xx,p+1 r̂xx,p . . r̂xx,2
. . . . .
. . . . .

r̂xx,M−1 r̂xx,M−2 . . r̂xx,M−p

 (2.41)

r̂ =
(
r̂xx,p+1 r̂xx,p+2 . . r̂xx,M

)
(2.42)

where r̂xx,n shows the i-th element of auto-correlation estimation for signal xn, p
is the AR model order and M = 2p.

As reported in [65], the parametric and non-parametric spectral estimation meth-
ods perform similarly in low noise power while in high noise power the parametric
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methods act much better in detecting periods of phase synchronization. Using this
parametric model in first step of the presented phase synchronization detection
methods will improve the results of them and make them less impressible to noise,
background power changing and volume conduction effects. The main problem con-
fronting here is dealing with number of channels and the optimum model order.

It is notable that using non-parametric methods have some important advantages
too. For instance, parametric methods assume that signals are generated by a
linear auto-regressive process but the non-parametric methods do not consider this
assumption. Moreover, there are less parameters to be adjusted in non-parametric
methods (i.e. the window length), but in parametric methods, after selecting the
number of channels and adjusting the model order, the AR model coefficients have
to be estimated and after that other parameters such as window length and etc. are
set.

2.2 Phase Synchronization

As discussed before, in synchronization concept, coherence deals with several objec-
tions. The linearity, stationarity and also the lack of ability to separate the effects
of amplitude and phase informations are the main abjections confronting. Thus,
another concept called phase locking was introduced to overcome these obstacles.

2.2.1 Phase Locking Value

There are two major approaches to calculate this quantity. Both of these methods
are based on the framework presented in Section (1.3.2.1). It means in first step
they utilize one of the phase extraction methods and then after simply calculating
the phase-differences, they quantify the local stability in this phase-differences and
finally, in significance-level the significance of captured values are determined. The
major difference between methods presented for Phase Locking Value (PLV) is in the
manner they use to deal with the first and third steps. Due to different techniques
utilized in these steps, we represent various statistics for PLV as follow.

2.2.1.1 Phase-Locking Statistics

This method, called Phase-Locking Statistics (PLS), measures the significance of
the phase-covariance between two signals. PLS separates the phase and amplitude
components and can be directly interpreted in the framework of neural integration
[34].

To have a meaningful interpretation from instantaneous phase, it has to be ex-
tracted through a narrow filter which isolates the frequency of interest. In this
method, First of all the signal is band-pass filtered in its frequency of interest and
a short arbitrary interval around it (i.e. f ± 2). After that, its convolution with a
complex Gabor-Wavelet centered at frequency f is calculated and phase of this
convolution is extracted for all time-bins t, trials n = 1, ..., N , and for each of the
pair of electrodes as discussed before in Section (1.2.1.3.2). As mentioned before,
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when using Wavelet Transform description below gives back the phase-differences
which is calculated across trials, as in the second step [34], [35]:

exp(j(φy(t, f)− φx(t, f))) =
Wx(t, f)W ∗

y (t, f)

|Wx(t, f)||Wy(t, f)|
(2.43)

where the term φy(t, f)− φx(t, f) represents the phase-difference between processes
y(t) and x(t).

As the third step, the stability of phase-differences across trials is quantified by
a phase locking value:

PLV (t, f) = | 1
N

N∑
i=1

exp(j(φy,i(t, f)− φx,i(t, f)))| (2.44)

where N is the total number of trials and i indicates the index of trial. PLV varies
between 0 and 1 which indicate the completely non-synchronized and synchronized
signals respectively. PLV is said to has phase enslaving problem when the power is
low.

As the final step in significance-level, the degree of statistical significance of each
PLV value is determined by comparing it to the values obtained by the surrogate data
which is a statistical test with the null hypothesis that states: “the value of original
data is not significantly different from the specific class of signals”[60]. Efficient
surrogate data are generated in a way that they simulate all signals’ characteristics,
but destroy only the one property suspected to be the source of outstanding values of
measure computed [60]. For this purpose, as in [35], the surrogate data is generated
by shifting the trials of one of the main signals (i.e. y(t)) in such a way that the
phase-differences are no longer computed in simultaneously recorded trials. It means
we have:

PLVsurrogate(t, f) =
1

K

K∑
j=1

| 1
N

N∑
i=1

exp(j(φy,j(i)(t, f)− φx,i(t, f)))| (2.45)

The proportion of surrogate values greater than the original PLV for a tim t is
called PLS. Normally a criterion of 5%(PLS < 5%) is used to characterize significant
synchrony [35].

2.2.1.2 Single-trial Phase Locking Statistics

As an extension of PLS, Single-trial Phase Locking Statistics (S-PLS) is presented in
[35] in order to estimate PLS in single-trials. S-PLS shares the whole idea with PLS
except at a slight cost of temporal resolution, in this method the phase-difference
variability is calculated through successive time-steps (not across trials). Based on
this, the S-PLV for each individual trial is obtained as below:

S − PLV (t, f) = |1
δ

∫ t+ δ
2

t− δ
2

exp(j(φy(τ, f)− φx(τ, f)))dτ | (2.46)

As PLV, the S-PLV varies between 0 and 1 with 1 indicating the strongest phase
locking [35].
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The significance-level in this method is performed similar to that of PLS except
that here surrogate values are generated by estimating the maximum PLV between
pairs of independent white noise signals. Finally, S-PLS is obtained through a similar
criteria to that of PLS.

2.2.1.3 Phase Synchrony Based on Shannon Entropy

The instantaneous phase sequence which is used to estimate the PLV can also be
captured through the Hilbert transform (statistics are given in Section 1.2.1.3.1). In
a method presented in [36], as the first step they extract the instantaneous phase
of signals by Hilbert transform. A merit of the this approach is that the phase can
be easily obtained for an arbitrary broad-band signal. Nevertheless, instantaneous
amplitude and phase have a clear physical interpretation only if the signals are
narrow-band [38]. Therefore, an extra filtering pre-step is required to separate the
frequency band of interest. After the pre-step filtering and extracting the phase
sequence from the frequency band of interest, Tass et al. [36], proposed that Shannon
Entropy can be used to characterize the statistical strength of phase synchrony. For
this purpose, “the deviation of the actual distribution of the phase-difference between
recording signals from a uniform one must be quantified”[38]. The synchronization
index proposed by Tass et al. in [36] can be illustrated as follow:

γ =
Hmax −H
Hmax

(2.47)

where H is the entropy and defined by (see Section 1.3.3):

H = −
N∑
i=1

Pi lnPi (2.48)

which N is the total number of trials, and Hmax = ln(N) is the maximal entropy,
and Pi the relative frequency of finding the phase-differences within the i− th trial
[38].

As reported in [36], the optimal number of trials can be obtained as:

N = exp(0.626 + 0.4 ln(n− 1)) (2.49)

where n is the number of samples.
Finally, the degree of statistical significance of the phase-locking values was deter-

mined through generating surrogate values obtained from surrogate data. Surrogate
data is constructed by scrambling the original series. This randomization destroys
any temporal structure, if present in the original series [36], [38]. The γ is a nor-
malized quantity (0 < γ < 1) which measures the strength of phase synchronization
and the γ = 1 indicates the perfect synchrony.

2.2.1.4 Phase Synchrony Based on Mutual Information

Another phase-locking statistic was introduced in [37]. This method is also similar
to previous methods with the whole idea except in procedure presented for quantifi-
cation the phase synchrony strength. The phase synchrony index in this method is
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as below:

ρ =
I

Imax
(2.50)

where Imax=ln(N) and N is total number of trials. I is the mutual information
between phase sequences and can be determined as follow:

I(φx, φy) =

∫ π

−π

∫ π

−π
Px,y(φx, φy) log(

Px,y(φx, φy)

Px(φx)Py(φy)
)dφxdφy (2.51)

which Px(φx) and Px(φy) are the probability distribution of the phases φx and
φy, and Px,y(φx, φy) is their joint distribution. The Mutual Information (MI) in this
method measures the dependence between phase sequences of signals x(t) and y(t).

It has been reported that MI produces surplus amount of information caused by
an incorrect assumption that two processes are independent [68]. Also, as discussed
in Section (1.3.3), MI can be rewritten as entropy as follow:

I(φx, φy) = H(φx) +H(φy)−H(φx, φy) (2.52)

Finally, the statistical significant of obtained phase synchrony values is tested
through significant-level similar to that of previous method. Normalized in this
way, just like previous methods, ρ varies between 0 and 1 where latter indicates the
complete synchrony [37].

It seems that this method does not provide any further information in comparison
to previous method. Although, more accurate results will be presented in next
Chapter after implementing these methods using similar data sets and in a unique
situation.

2.2.2 Mean Phase Coherence

Another statistical measure for phase synchrony called as Mean Phase Coherence
(MPC) is presented in [39]. This method utilize circular variance [69] to characterize
the dependences between instantaneous phases of two signals. The method presented
in [39] shares the two first steps with previous methods where as first step the
instantaneous phases are extracted through Hilbert transform and as second step the
phase-differences are calculated by simply subtracting the phase sequences. Finally,
as a measure for synchronization the MPC of an angular distribution is defined as:

MPC = | 1
N

N−1∑
i=0

exp(jφx,y(i∆t))| (2.53)

where φx,y indicates the phase differences between phases φx and φy and 1
∆t

is
the sampling rate of discrete series. Whit utilizing the Euler’s formula, the above
equation turns into:

MPC = ([
1

N

N−1∑
i=0

cos(φx,y(i∆t))]
2 + [

1

N

N−1∑
i=0

sin(φx,y(i∆t))]
2)

1
2 (2.54)

Clearly from this notation MPC is restricted to the interval [0, 1] [39]. As same
as all previous methods presented for phase synchrony, reliability of these obtained
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synchrony values is evaluated by the surrogate data approach. In [60] they offered
to use Z-score statistics for the statistical test in significance-level. Z-score statistic
calculates how different is the value of original data from the mean value of all
surrogates in the units of standard deviation [60]:

Z =
MPCorg − µ(MPCsurr)

σ(MPCsurr)
(2.55)

where µ and σ are the mean value and the standard deviation of all surrogates
respectively.

2.2.3 Wavelet Coherence

Another method presented in [35] called as Wavelet Coherence (WC) uses the
wavelet coefficients of signals and the coherence function to provide a weighted
version of PLV. The basic idea for presenting this method is that instantaneous
phase may be meaningless where power is low and former methods are susceptible
to a notorious problems called as phase enslaving [70]. AS in [35], WC for time
delays t and frequency(bands) f can be obtained as below:

WC(t, f) =
| 1
N

∑N
i=1Wxi(t, f)W ∗

yi
(t, f)|√

1
N

∑N
i=1 |Wxi(t, f)|2 1

N

∑N
i=1 |Wyi(t, f)|2

(2.56)

Since for both signals x(t) and y(t) we have:

exp(jφ(t, f)) =
W (t, f)

|W (t, f)|
(2.57)

and also from the original PLV equation:

PLV (t, f) = | 1
N

N∑
i=1

exp(j(φy,i(t, f)− φx,i(t, f)))| (2.58)

then we got:

Wxi(t, f)W ∗
yi

(t, f) = exp(j∆i(t, f))|Wxi(t, f)||Wyi(t, f)| (2.59)

then assuming:

λi(t, f) =
|Wxi(t, f)||Wyi(t, f)|√

1
N

∑N
i=1 |Wxi(t, f)|2 1

N

∑N
i=1 |Wyi(t, f)|2

(2.60)

thus WC can be rewritten as a weighted variant of PLV as below [70]:

WC(t, f) = | 1
N

N∑
i=1

exp(j∆i(t, f))λi(t, f)| (2.61)

Due to multiplication by λi(t, f), wavelet amplitudes are low and this clearly
reduces the potential consequences of phase enslaving. Nevertheless, WC has some
defects such as it does not separate the effects of amplitude and phase in the inter-
relation between signals [70].
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2.2.4 Weighted Phase Locking Value

The basic idea in this method presented in [70] is completely similar to WC method.
The only different is between procedures for obtaining the weights. Description
below known as Weighted Phase Locking Value (WPLV) is presented to measure
the statistical strength of phase synchrony between signal pairs:

WPLV (t, f) = | 1
N

N∑
i=1

exp(j∆i(t, f))ωxi(t, f)ωyi(t, f)| (2.62)

In contrast to WC, here weights are not proportional to amplitudes. As offered
in [70], the weights differ from 1 —which gains the conventional PLV— only when
the amplitudes are considered “not large enough”and that depends on the respective
spectral characteristics. For calculating the weights assume that for signal x(t) we
have (the procedure and statistics for y(t) is repeated):

Px(t, f) =
1

f2 − f1

∫ f2

f1

|Wx(t, f)|2df (2.63)

Px(f) =
1

T

∫
T

Px(t, f)dt (2.64)

where Px(t, f) denotes the mean wavelet power in frequency band f at time t and
Px(f) is its time average across the relevant trial T . Now, assessment of weights can
be summarized as below [70]:

• Large enough: ωx(t, f) = 1, if Px(t, f) > 3
2
Px(f)

• Too small: ωx(t, f) = 0, if Px(t, f) ≤ 3
10
Px(f)

• Between: ωx(t, f) =
log(

Px(t,f)
Px(f)

)−log( 3
10

)

log(5)

For both the previous and current methods, since the wavelet transform has to
be computed anyway, it is preferred to use it also for assessing the instantaneous
phases. As discussed before in previous Chapter, the wavelet phases for frequency
bands can be determined as the phase angle of the band-averaged complex wavelet
coefficients as follow:

exp(jφx(t, f)) =
W x(t, f)

|W x(t, f)|
(2.65)

where

W x(t, f) =
1

f2 − f1

∫ f2

f1

Wx(t, f) (2.66)

It is notable that phase enslaving is less serious problem in case of cerebral
signals and it is normally serious when test signals with a sharply defined spectrum
is used. Nevertheless, it is expected that WPLV yield more accurate results than
the conventional PLV because of discussed problem.
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2.2.5 Reduced Interference Rihaczek Distribution Phase Syn-
chrony

This phase synchronization method is based on Cohen’s Class of Distributions and
the Complex Energy Density Function (CEDF) phase extraction method. Cohen’s
class of distributions are bilinear time-frequency distributions and can be illustrated
as below [73]:

CEDF (t, f) =

∫ ∞
−∞

∫ ∞
−∞

φ(θ, τ)A(θ, τ) exp(−j(θt+ 2πτf))dτdθ (2.67)

where φ(θ, τ) is the kernel function and A(θ, τ) is the ambiguity function and can
be obtained as below:

A(θ, τ) =

∫ ∞
−∞

x(u+
τ

2
)x∗(u− τ

2
) exp(jθu) (2.68)

“The major differences between Cohen’s class of distributions compared to other
time-frequency representations such as the wavelet transform are the nonlinearity of
the distribution, energy preservation, and the uniform resolution over entire time-
frequency plane”[71]. This distributions describe energy of a signal over time and
frequency simultaneously but they can not be used for describing phase information
of a signal. Thus, we need complex time-frequency distributions to obtain both the
energy and the phase information. For this purpose, as discussed earlier in Section
(1.2.1.3.3), Rihaczek derived the signal energy distribution in time and frequency
by application of the complex signal notation. This CEDF, known as Rihaczek
distribution, encounters a major disadvantage due to producing crossterms in case
of multi-component signals. These crossterms are at the same time and frequency as
the original signals and will lead to biased energy and phase estimates [71]. Assume
z(t) = x(t) + y(t), then the Rihaczek distribution is as follows:

CEDF (t, f) =
1√
2π

(x(t)X∗(f) exp(−j2πft) + y(t)Y ∗(f) exp(−j2πft)

+x(t)Y ∗(f) exp(−j2πft) + y(t)X∗(f) exp(−j2πft)) (2.69)

where the last two terms are crossterms. Therefore, a filtering is needed to remove
these crossterms out of calculations.

For this purpose, this method proposes a method based on Cohen’s class of
distributions and uses its kernel function as the required filter. This is called Reduced
Interference Rihaczek Distribution (RID) and utilizes the Choi-Williams kernel to
filter out the crossterms. As in [71], the Reduced Interference Complex Energy
Density Function or simply (RI-CEDF) can be expressed as:

RI − CEDF (t, f) =

∫ ∫
exp(−(θτ)2

σ
) exp(j

θτ

2
)A(θ, τ) exp(−j(θt+ 2πτf))dτdθ

(2.70)
where exp(j θτ

2
) is the Rihaczek distribution kernel function and the integrals are

from −∞ to −∞.
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After defining this RI-CEDF, as introduced previously, the phase in time-frequency
plane can easily be defined as:

φx(t, f) = arg(
RI − CEDF (t, f)

|RI − CEDF (t, f)|
) (2.71)

Now, as the second step in phase synchronization evaluation process, we need to
estimate the phase-difference between two signals x(t) and y(t). The phase-difference
between time-varying phases can be computed as follow:

φx,y(t, f) = arg(
RI − CEDFx(t, f)RI − CEDF ∗y (t, f)

|RI − CEDFx(t, f)||RI − CEDFy(t, f)|
) (2.72)

Finally in this method, as the final step to assess phase synchrony, the conven-
tional PLV measure is used to quantify the phase synchrony strength between pairs
of electrodes.

2.2.6 Phase Synchrony Based on Empirical Mode Decom-
position

Another set of methods for evaluating phase synchrony utilize Empirical Mode De-
composition (EMD) and separate data into Intrinsic Mode Functions (IMFs) and
then, extract the instantaneous phases of the IMFs and finally use a phase synchrony
quantification procedure, for example in [74], [75] and [77].

Extracting signals phase sequences through EMD algorithm was discussed in
previous Chapter. First, signals are decomposed into their relative IMFs and then
the Hilbert transform is applied to these IMFs to extract phases. As the next
step, for evaluating phase synchrony, the phase-differences have to be calculated.
Assuming signals x(t) and y(t) and their corresponding phases φx(t) and φy(t) which
are extracted using EMD, the phase-difference is simply calculated as:

δφx,y(t) = φy(t)− φx(t) (2.73)

Finally, as in [74] and [75], the phase synchrony strength is evaluated by this
phase-difference through measuring the conventional PLV.

Phase synchrony measurements using EMD have some advantages over other
introduced previous methods [74]. First, it is said that the discriminative band
of the phase synchrony phenomenon differs not only with subjects, but also with
time. Nevertheless, EMD algorithm can decompose the non-stationary signal into its
relative IMFs. Therefore, no subject-specific or frequency-specific factors need to be
considered to get the discriminative band [74]. Second, band-pass filter is a required
necessary step in previous methods which causes time-delay in output signal with
respect to the input signal while EMD based methods prevent this time-delay.

As reported in [77], there are two main obstacles confronting while using this
method for phase synchrony purposes: (1) it is computationally inefficient (2) mis-
leading results can be obtained as components of different frequencies can tem-
porarily appear synchronized. To overcome these problems, [77] proposes to use the
Complex Extension of EMD. For more information refer to [77].
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2.3 Phase analysis in Higher Order Spectra

2.3.1 Bicoherence

***UNDER CONSTRUCTION***

2.3.2 Bi-phase Locking Value

***UNDER CONSTRUCTION***

2.3.3 Phase Reconstruction Using Bispectrum

***UNDER CONSTRUCTION***

2.3.3.1 Method I

***UNDER CONSTRUCTION***

2.3.3.2 Method II

***UNDER CONSTRUCTION***

2.3.3.3 Method III

***UNDER CONSTRUCTION***

2.3.3.4 Wavelet Phase Reconstruction

***UNDER CONSTRUCTION***
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Appendix A

Which Coordinates?

since PSDxy(f) is complex, the Cartesian or polar coordinates can be used for
averaging. In [19] this problem is investigated. Using Cartesian coordinate we got:

(PSDxy(f))i = ai(f) + jbi(f) (A.1)

⇒ PSDc
xy(f) =

1

N

N∑
i=1

(ai(f) + jbi(f)) (A.2)

where PSDc
xy(f) indicates the cross-spectrum averaged in Cartesian coordinates

and its amplitude and phase are obtaining as follow:

|PSDc
xy(f)| =

√√√√(
1

N

N∑
i=1

ai(f))2 + (
1

N

N∑
i=1

bi(f))2 (A.3)

6 PSDc
xy(f) = arctan(

∑N
i=1 bi(f)∑N
i=1 ai(f)

) (A.4)

Similarly, in Polar coordinates we have:

PSDp
xy(f) = ρ(cos(φ) + jsin(φ)) (A.5)

where PSDp
xy(f) indicates the cross-spectrum averaged in Polar coordinates and

ρ its amplitude and φ its phase are obtaining as follow:

ρ =
1

N

N∑
i=1

|(PSDp
xy(f))i| =

1

N

N∑
i=1

√
a2
i (f) + b2

i (f) (A.6)

φ =
1

N
6 (PSDp

xy(f))i =
1

N

N∑
i=1

arctan(
bi(f)

ai(f)
) (A.7)

It is clear that equations (A.3) and (A.6) and also equations (A.4) and (A.7)
are equal when all ai(f)s are equal and all bi(f)s are equal too. In all any other
conditions the amplitude and phase averaged in Polar coordinates are larger than
the amplitude and phase averaged in Cartesian coordinates. Due to EEG signal non-
stationarity this condition will not occur and thus as reported in [19], the optimum
averaged coherence function performance can be obtained through presentation and
averaging the power spectral density functions in Polar coordinates.
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