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Abstract—Action recognition based on human skeleton struc-
ture represents nowadays a prosper research field. This is mainly
due to the recent advances in terms of capture technologies and
skeleton extraction algorithms. In this context, we observed that
3D skeleton-based actions share several properties with handwrit-
ten symbols since they both result from a human performance.
We accordingly hypothesize that the action recognition problem
can take advantage of trial and error already carried out on
handwritten patterns. Therefore, inspired by one of the most
efficient and compact handwriting feature-set, we propose in this
paper a skeleton descriptor referred to as Handwriting-Inspired
Features (HIF3D). First of all a data preprocessing is applied
to joint trajectories in order to handle the variabilities among
actor’s morphologies. Then we extract the HIF3D features from
the processed joint locations according to a time partitioning
scheme so as to additionally encode the temporal information
over the sequence. Finally, we selected the Support Vector
Machine (SVM) to achieve the classification step. Evaluations
conducted on two challenging datasets, namely HDM05 and
UTKinect, testify the soundness of our approach as the obtained
results outperform the state-of-the-art algorithms that rely on
skeleton data.

Index Terms—Human action recognition, Skeleton-based fea-
tures, HIF3D, RGB-D data, Handwriting-Inspired Features, Joint
trajectory modelling.

I. INTRODUCTION

Recognizing human actions is an active area of research
in computer vision and pattern recognition. It has great po-
tential in applications such as surveillance, sport analysis,
human-computer interaction and entertainment. Despite the
large amount of studies that has been conducted and many
promising advances, it is far from being a solved problem.

Technically, an action is a sequence generated by a human
subject during the performance of a task. Action recognition
deals with the process of labelling such motion sequence with
respect to the depicted motions. The often cited experiment of
Johansson [1] showed that humans can recognize actions by
observing only the main joints of a human body. This observa-
tion motivated the emergence of a plethora of skeleton-based
approaches which initially used as inputs 2D images captured
by a single RGB camera from which it was needed to extract
the skeleton structure. Unfortunately, such 3D extraction from
2D video sensors was difficult since the monocular RGB data
is highly sensitive to various factors like illumination changes,
variations in view-point, occlusions and background clutter.
As an alternative line of work numerous researchers have

started using motion capture (MoCap) systems to extract 3D
joint positions by using markers and high precision camera
array. While these marker-based equipments provide accurate
measurements of body poses and joint locations, they are often
tedious and very expensive.

More recently, the release of the Microsoft Kinect sensor
and the seminal algorithm of Shotton et al. [2] largely eases
the task of extracting 3D joint positions. This advance resulted
in a renewed interest towards skeleton-based human action
recognition. Particularly, there has been since then a prolifer-
ation of works which propose new set of features to represent
action relying on skeleton information.

In this context, we observed that skeleton-based human
actions share several properties with handwritten symbols
since they both result from a human performance. For instance,
in both cases one needs to model the progress of body part
trajectories and to handle the intra-class variability. Such an
observation suggests that 3D action difficulties may be tackled
by adapting solutions already proposed for handwriting recog-
nition. Despite the evident similarity between those two prob-
lems and the abundance of solutions in handwriting literature,
no previous work considered the transposal of handwriting
recognition achievements to the recognition of 3D actions.

We therefore intend in this paper to explore the validity of
such transposal by conceiving a new set of features, referred
here to as Handwriting-Inspired Features (HIF3D), which are
based on one of the most efficient and recent handwriting
feature-set introduced by Delaye and Anquetil [3]. To that end,
we first apply for joint input data the preprocessing suggested
by [4] in order to tackle morphological variabilities. After that
we build our action representation by extracting the HIF3D
features according to a temporal partitioning scheme so as to
integrate the performing order of subactions. Finally a Support
Vector Machine (SVM) is trained on the output representations
to achieve the classification step.

The rest of the paper is organized as follows. In Section II,
we provide the background supporting the proposed represen-
tation. In Section III, we introduce our set of Handwriting-
Inspired Features (HIF3D) to model human skeletal motion.
In Section IV we test the proposed representation on two
datasets, namely HDM05 [5] and UTKinect [6], and conclude
in Section V.
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Fig. 1. (a) Selected joints with the associated normalized vectors (collored arrows) and (b) illustration of the four morphology-independent trajectories and
(c) the 3D multistroke pattern resulting from the trajectories assembling.

II. PRELIMINARIES

In this section we first provide a short overview of the
previous skeleton-based representations. Then we introduce
the handwriting features proposed by [3], namely HBF49.
Last we briefly outline the preprocessing setup suggested by
[4] which we apply for raw data to tackle morphological
variabilities.

A. Action recognition approaches

Human action recognition approaches can be broadly
grouped into three categories namely: template matching,
statistical, and structural methods [7]. Approaches of the first
category measure the similarity between the action to be
recognized and a stored template while taking into account
all allowable distortions. Several works followed this trend
among which we can find the Spatio Temporal Feature Chain
(STFC) [8] and the Linear Dynamical Systems (LDS) [9]. In
the statistical approaches, each action is represented in terms
of d features or measurements and is viewed as a point in a
d-dimensional space. One such method is the Skeletal Quad
proposed by Evangelidis et al. [10] which locally encodes
the relation of joint quadruples leading to a vector of 1560
dimensions per level. Last, in the structural recognition ap-
proaches an action is decomposed in primitive elements and
then a formal analogy is drawn between the structure of that
action and the syntax of a language. For instance the SMIJ
representation of Ofli et al. [11] first determines the subsets of
joints activated when performing an action and then expresses
the whole action in terms of the mined joints.

As for other pattern recognition domains, this categorisation
is also found for handwriting approaches. We particularly
follow in this paper a statistical approach. However the trans-
posal from handwriting to action recognition can similarly be
explored by following approaches of the other categories.

B. Handwritten symbol encoding: HBF49

Handwriting recognition is a widely established research
field. It attracted great attention since the early 1950s which
resulted in a great variety of approaches. Globally, those
approaches either dealt with single stroke or multi-stroke

handwritten symbols. A stroke is the writing from pen down to
pen up. The HBF49 features proposed by Delaye and Anquetil
[3] are aimed to be a generic representation of multistroke
symbols, without consideration of drawing constraints or do-
main specificities. HBF49 is a very compact representation that
includes only 49 features which belong to different families so
as to exhaustively cover the aspects of handwritten symbols
encountered in the literature. They can be roughly grouped into
two categories: dynamic and visual features. Dynamic features
were used to model the writing process, while the visual ones
focused on the appearance of the writing result. After extensive
evaluations on many (eight) benchmarking datasets, authors
affirmed that the HBF49 feature-set is able to deal with several
application contexts and is robust with respect to patterns of
diverse nature. For more details about the features and the
statistical validation of the authors we refer the reader to [3].

C. Morphology-independent preprocessing

Data variations induced by different morphologies is one
of the specific problem found in action recognition and not in
handwriting area. To increase the robustness of our representa-
tion to such variations, we adopt the morphology-independent
preprocessing of Kulpa et al. [4]. Globally, authors proposed to
only consider twelve main joints to compute four trajectories
corresponding to each body part, namely LeftArm, RightArm,
LeftLeg and RightLeg. Next, these trajectories are normalized
by the total-length of the related body part in order to make
them independent from the subject’s morphology which results
in four morphology independent trajectories (Figure 1-b). The
twelve joints to be considered are shoulders, elbows, wrists,
hips, knees and ankles (Figure 1-a).

After this preprocessing, we further noted that an action
and a handwritten symbol are structured the same. In fact
a handwritten symbol is composed of strokes (or segments)
which are the 2D trajectories drawn to build the desired
symbol. The processed action can then also be considered
as a 3D multistroke pattern by assuming that each of the
four processed trajectories is a 3D stroke (Figure 1-c) . This
similarity is adopted in this paper and the four trajectories
previously obtained are assembled to get one single pattern.
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III. HANDWRITING-INSPIRED HUMAN ACTION
REPRESENTATION

In the following, we present in detail our proposed HIF3D
representation. A first section introduces a series of useful
notations. Next we present the first subset of features, named
extended features, since they are a 3D adaptation of the
descriptors contained in HBF49. Then we formulate the newly
features which are specific to the 3D human action but still
encode the same information as the one carried by equivalent
features in handwriting area. Last we explain the temporal
partitioning construction that we adopted to extract the HIF3D
features on different time windows.

A. Notations

• A pattern S is a sequence of 3D points re-
sulting from the assembling of four morphology-
independent trajectories. S = {s1, ..., sT , sT+1, ...,
s2T , s2T+1, ..., s3T , s3T+1, ..., sn}, where T is the length
of each single trajectory (or stroke) and n = 4 × T is
the number of points in S. Each point si = (xi, yi, zi) is
located in the three-dimensional space,

• ||.|| denotes the Euclidean distance between points,
• L = L1,n is the total length of S,
• sm is the middle-path point,
• xmax is the abscissa of the rightmost point of S, xmin,
ymax, ymin, zmax and zmin are the other extreme coor-
dinates,

• B is the bounding box of S, it is the cuboid parallel to the
axis, defined by xmin, xmax, ymin, ymax, zmin, zmax,

• w = xmax − xmin is the width of B, h = ymax − ymin
is the height of B, and d = zmax − zmin is the depth of
B, (if w, h or d are null, their value is set to 1),

• l = max(w,h,d),
• cx, cy and cz are the coordinates of the center of B,
• µ(µx, µy, µz) = (1/n)

∑n
i=1 si is the center of gravity

of the pattern S.

B. Set 1: Extended features

They represent the features which can directly be extended
from 2D trajectory to 3D one. We retain in HIF3D a total of
41 extended features which are described as follows.

Starting and ending points: The first three features are

f1 =
x1 − cx

l
+

1

2
, f2 =

y1 − cy
l

+
1

2
,

f3 =
z1 − cz

l
+

1

2

(1)

Similarly we obtain f4, f5 and f6 by replacing in formula (1)
x1, y1 and z1 with the ending point coordinates xn, yn and
zn respectively.

First point to last point vector: In the 3D case we compute
the length of the vector ~v = −−→s1sn and its directional cosines.

f7 = ||~v||, f8 =
~v. ~ux
||~v||

, f9 =
~v. ~uy
||~v||

, f10 =
~v. ~uz
||~v|| (2)

Closure: It permits to highlight differences between closed and
elongated patterns. It is defined as:

f11 =
||~v||
L

(3)

Angle of initial vector: The initial vector relates the first and
the third points: ~w = −−→s1s3. We retained the directional cosines:

f12 =
~w. ~ux
||~w||

, f13 =
~w. ~uy
||~w||

, f14 =
~w. ~uz
||~w|| (4)

Inflections: They relate the positioning of the middle-path
point sm to that of the middle point of segment s1sn

f15 =
1

w
(xm −

x1 + xn
2

), f16 =
1

h
(ym −

y1 + yn
2

),

f17 =
1

d
(zm −

z1 + yn
2

)
(5)

Proportion of downstrokes trajectory: In handwriting recog-
nition downstrokes are the portions of drawing trajectories
oriented towards the bottom of the writing surface. Following
[3] we extended this concept for 3D trajectories:

f18 =

px∑
k=1

LXk, f19 =

py∑
k=1

LYk, f20 =

pz∑
k=1

LZk (6)

with px, py, pz the number of downstrokes and
LXk, LYk, LZk their length along the X, Y and Z axes.

Bounding box diagonal angles: We measure the three ratios
of the box sides:

f21 = arctan

(
h
w

)
, f22 = arctan

(
d
h

)
,

f23 = arctan
(w

d

) (7)

Trajectory length: These features carry an orientation-
independent information:

f24 = L, f25 =
w + h + d

L
(8)

Deviation: This is an other orientation-independent feature
which evaluates the average distance from points of S to the
center of gravity µ:

f26 =
1

n

n∑
i=1

||−→siµ|| (9)

Average direction: These features compute a directional infor-
mation by averaging pairwise directions of segments defined
in the trajectory of S:

f27 =
1

n− 1

n−1∑
i=1

arctan

(
xi+1 − xi
zi+1 − zi

)
(10)

The two other features f28 and f29 are computed by substituting
in formula (10) the couples (xi, zi) with respectively (yi, xi)
and (zi, yi) .

Absolute angle histogram: These features are based on eight
angle histograms (h1-h8) that accounts for the number of
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segments oriented in eight directions. For each segment the
orientation is given by:

αi = arccos

(
xi+1 − xi√

(xi+1 − xi)2 + (yi+1 − yi)2

)
(11)

The first four features f30 - f33 are computed as the sum of
contributions from all angles αi to opposite directional bins.

f30 =
h1 + h5

n
, .. f33 =

h4 + h8
n

(12)

We obtain eight other features namely f34 - f37 and f38 - f41 by
following the previous procedure and substituting the couples
(xi, yi) with respectively (yi, zi) and (zi, xi) in formula (11).

C. Set 2: Newly features

The second subset of features still carry the characteristic
information identified for handwritten pattern but have differ-
ent formulations since the original 2D formulas can not be
directly applied for the 3D case.

Curvature and perpendicularity: We denote θi the angle
defined by consecutive segments within the same stroke:

θi = arccos

( −−−→si−1si.
−−−→sisi+1

||−−−→si−1si||||−−−→sisi+1||

)
(13)

The curvature and perpendicularity are defined as:

f42 =

n−1∑
i=2

θi, f43 =

n−1∑
i=2

sin2(θi) (14)

We obtain two other features f44 and f45 by substituting θi in
formula (14) with φi which is the angle defined by consecutive
planes π within the same stroke (formula 15).

φi = 6 (πi−1,i,i+1, πi,i+1,i+2) (15)

k-perpendicularity and k-angle: By introducing a parameter k,
the previous angle θi is extended to θki as :

θki = arccos

( −−−−→si−ksi.
−−−→sisi+k

||−−−−→si−ksi||||−−−→sisi+k||

)
(16)

This determines another measure of local angles:

f46 =

n−k∑
i=k+1

sin2(θki ), f47 =
n−k
max
i=k+1

θki (17)

And similarly we obtain features f48 and f49 by extending the
φi angle to φki and substitute it in formula (17):

φki = 6 (πi−k,i,i+k, πi,i+k,i+2k) (18)

For our experiments, we fixed the k to 2 similarly to [3].
Relative angle histogram: First, the relative local angles are

computed from smoothing by linear combination θi and θki :

ψki = γθi + (1− γ)θki (19)

where we retain the same empirical values of γ = 0.25 and
k = 2 as fixed by [3]. Next the contributions of ψki angles
are cumulated in four histogram bins uniformly distributed

in [0, π]. Last, four features f50 - f53 are obtained from the
histogram divided by n. We identically compute four other
features f54 - f57 by considering the angles χki obtained from
φi and φki :

χki = γφi + (1− γ)φki (20)

3D zoning histogram: We define a regular 3D partition of the
bounding box B into 3 × 3 × 3 voxels resulting in twenty-
seven zoning features. Similar to [3], histograms are built by
computing a fuzzy weighted contribution from each point to its
eight neighbouring voxels, where the weights are proportional
to the distance from the point to the voxels center cj,k,l.

f58 =
1

n

n∑
i=1

µ111(si), .. f84 =
1

n

n∑
i=1

µ333(si) (21)

with 0 ≤ µjkl(si) ≤ 1 is the contribution of point si to the
voxel with center cj,k,l for each 1 ≤ j, k, l ≤ 3

3D moments invariants: Instead of Hu moments used in
2D, we adopted common 3D invariants [12]. To do so we first
compute inertia central moments in 3D:

mpqr =

n∑
i=1

(xi − µx)p(yi − µy)q(zi − µz)r (22)

The moments are then normalized, for guaranteeing scale
independence:

νpqr =
mpqr

mγ
000

, γ = 1 +
p+ q + r

3
(23)

The three invariant features are computed as reported in [12]:

f85 = ν200 + ν020 + ν002,

f86 = ν200ν020 + ν200ν002 + ν020ν002 − ν2110 − ν2101 − ν2011,
f87 = ν200ν020ν002 + 2ν110ν101ν011

− ν002ν2110 − ν020ν2101 − ν200ν2011
(24)

Convex Hull features: The last two features capture the 3D
shape of the resulting pattern by considering its convex hull.
The convex hull H of S is first computed by means of the
quickhull algorithm [13] and then we deduce its volume
VH . The two related features are the convex hull volume
normalized by the bounding box volume, and the compactness:

f88 =
VH

w ∗ h ∗ d
, f89 =

L3

VH
(25)

D. Temporal partitioning construction
As introduced previously, the proposed HIF3D features do

not capture the temporal dependence inside an action se-
quence. Therefore, and similar to spatial partitioning in scene
recognition [14], we extract the HIF3Ds features according
to a multilevel split of the sequence. The top level HIF3D
is computed over the entire sequence. The lower levels are
computed over smaller overlapping windows of the entire
sequence. The final representation is the concatenation of the
computed HIF3Ds over all considered levels. Two levels are
used in this paper as shown in Figure 2. Similar temporal
construction is commonly adopted for action recognition as in
the works of [10, 15].
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t = 1 t = T

Fig. 2. Illustration of the Temporal partitioning construction adopted in our
representation. The features extraction at the lth level covers T

3l
frames of

the sequence, where T is the length of the entire sequence.

IV. EXPERIMENTATION

In this section we compare the proposed HIF3D features
to state-of-the-art skeletal representations on two publicly
available datasets including HDM05 [5] and UTKinect [6].

Since the aim is to measure the effectiveness of the proposed
representation, we deliberately retained a popular algorithm
for the classification step, namely Support Vector Machines
(SVM). We use for all the experiments a temporal partitioning
of two levels (Level = 2). In the following we first consider
the HDM05 and then the UTKinect datasets.

A. Mocap Database HDM05

HDM05 is an optical marker-based dataset [5] which con-
tains around one hundred motion classes including various
walking and kicking motions, cartwheels, jumping jacks,
grabbing and depositing motions, squatting motions and so
on. Each motion class contains 10 to 50 different instances
of the same type of motion, covering a broad spectrum of
semantically meaningful variations.

Several studies have already been conducted on the HDM05
dataset. For our evaluation we adopt the experimental setup
of [11] that suggests a set of 11 actions. The actions are
performed by 5 subjects, while each subject performs each
action a couple of times ; this suggests a set of 249 sequences.
As with [11], we use a cross-subject splitting with 3 (the
actors bd, mm and tr) and 2 subjects (the actors bk and dg) in
training and testing sets respectively, thus having 139 training
and 110 testing examples at our disposal. Table I reports

TABLE I
COMPARISON OF THE HIF3D PERFORMANCE WITH THE

STATE-OF-THE-ART RESULTS ON HDM05 DATASET.

Method & Year Recognition rate (%)

SMIJ + SVM, 2014 [11] 84.47
MIJA/MIRM + LCSS, 2015 [16] 85.23
LDS + SVM, 2013 [9] 91.74
Skeletal Quads + SVM, 2014 [10] 93.89
Cov3DJ + SVM, 2013 [15] 95.41
BIPOD + SVM, 2015 [17] 96.70

HIF3D + SVM + Level = 2 98.17

the quantitative results of the proposed HIF3D representation
over the HDM05 dataset. Our approach achieves an average
accuracy of 98.17% with a temporal hierarchy of two levels
only, bringing the representation length to a total of 4 ∗ 89 =
356 features. Furthermore, Table I shows that the proposed
approach outperforms existing skeleton-based representations
and obtains a state-of-the-art score over this dataset. Besides,

our representation is far simpler than all previous approaches
since firstly it does not require all joints data and mostly it is
size reduced. While one of the best result previously reported
[15] was achieved by means of a three level hierarchy with
1830 features for each time partition, our representation is
composed instead of two levels with 89 features per partition.
Therefore, the effectiveness of our approach is fostered by its
simplicity compared to other propositions.

B. UTKinect-Action Dataset

To validate the applicability of our HIF3D representation on
marker-free dataset, we conduct another set of experiments on
the UTKinect-Action which was captured using a stationary
Kinect sensor [6]. It consists of 10 actions performed by 10
different subjects. Each subject performed all actions twice.
Altogether, there are 199 action sequences. The 3D locations
of 20 joints are provided with the dataset. This is a challenging
dataset due to high intra-class variations.

On this second dataset we first evaluated our representation
according to the Leave-One-Sequence-Out (LOSeqO) protocol
proposed by [6]. It consists in testing one single sequence
while the other sequences are used for learning. The results
of the experiment are presented in Table II. According to
this protocol we attain an average recognition accuracy of
94%. Table II also shows that our approach improves over
the current state-of-the art. This second experiment confirms
the effectiveness of the proposed HIF3D representation when
operating with marker-free capture systems.

TABLE II
COMPARISON OF THE HIF3D PERFORMANCE WITH PREVIOUS

APPROACHES ON UTKINECT DATASET ACCORDING TO THE
LEAVE-ONE-SEQUENCE-OUT PROTOCOL.

Method & Year Recognition rate (%)

LTI + HMM, 2014 [18] 86.76
Grassmann + SVM, 2015 [19] 88.5
HOJ3D + HMM, 2012 [6] 90.95
STFC + SVM, 2015 [8] 91.5

HIF3D + SVM + Level = 2 94

We carried a further evaluation on this dataset according to
the cross-subjects scheme where we used all possible combina-
tions of five subjects out of ten as different sets of training and
unseen test datasets respectively (C5

10 = 252 rounds). Results
reported in Table III show that we reach an average recognition
accuracy of 90.96%. The proposed handwriting-inspired repre-
sentation is accordingly able to efficiently recognize actions in
real conditions where tested sequences belong to different sub-
jects than those used for training, hence the great inter-subject
discrimination power of the features. Moreover, the obtained
score outperforms state-of-the-art results and thus testify the
soundness of the inspiration from previous handwriting work
to represent skeleton-based actions.

V. CONCLUSION

We introduced in this paper a novel skeleton-based represen-
tation of 3D human action. Motivated by the recent advances
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TABLE III
COMPARISON OF THE HIF3D PERFORMANCE WITH PREVIOUS

APPROACHES ON UTKINECT DATASET, ACCORDING TO A
CROSS-SUBJECT VALIDATION PROTOCOL.

Method & Year Recognition rate (%)

STFC + SVM, 2015 [8] 85
Fusing features + Random Forests, 2013 [20] 87.90

HIF3D + SVM + Level = 2 90.96

in handwriting recognition and the several similarities shared
with human action recognition, the proposed Handwriting-
Inspired Features (HIF3D) aim to extract from skeleton tra-
jectories the same characteristic information as the one mined
from handwritten patterns. To that end, first we preprocess
twelve joint positions among the skeleton input data in order to
get a morphology-independent 3D multistroke symbol. After
that, we extract the HIF3D features from the obtained 3D
pattern according to a two-level time partitioning of the actions
in order to encode both their spatial and temporal aspects. Last
we build a multi-class classifier based on linear SVMs. Exper-
iments conducted on two challenging benchmarks have shown
very promising results. In particular we outperform state-of-
the-art approaches according to different testing schemes while
operating with a much more compact set of features. This
provides strong evidence in favour of the HIF3D soundness.
The future work will focus on extending this representation
for early gestures recognition by considering handwriting
temporal segmentation methods.
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