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Conditioned on the generating functions of offspring distribution, we study the asymptotic behaviour of the probability of non-extinction of a critical multi-type Galton-Watson process in i.i.d. random environments by using limits theorems for products of positive random matrices. Under some certain assumptions, the survival probability is proportional to 1/ √ n.

Introduction and main results

Many researchers study the behaviour of critical branching processes in random environment. In 1999, under some strongly restricted conditions, Dyakonova [START_REF] Dyakonova | Asymptotic behaviour of the probability of non-extinction for a multi-type branching process in a random environment[END_REF] studied the multi-type case using the similar tools of one-type case. In 2002, Geiger achieved an important result for critical one-type case in random i.i.d. environment, see [START_REF] Geiger | Elementary new proofs of classical limit theorems for Galton-Watson processes[END_REF]. In the present work, we propose a variation of Dyakonova's result by imitating the approach of Geiger and Kersting [START_REF] Geiger | The survival probability of a critical branching process in random environment[END_REF].

Fix an integer p ≥ 2 and denote R p the set of p-dimensional column vectors with real coordinates ; for any column vector x = (x i ) 1≤i≤p ∈ R p , we denote x the row vector x := (x 1 , . . . , x p ). Let 1 be the column vector of R p where all coordinates equal 1. We fix a basis {e i , 1 ≤ i ≤ p} in R p and denote |.| the corresponding L 1 norm. Denote N p the set of all p-dimensional column vectors whose components are non-negative integers. We also consider the general linear semi -group S + of p × p matrices with non-negative coefficients. We endow S + with the L 1 -norm denoted also by |.|.

The multi-type Galton-Watson process is a temporally homogeneous vector Markov process Z 0 , Z 1 , Z n ,. . ., whose states are column vectors in N p . We always assume that Z 0 is non-random. For any 1 ≤ i ≤ p, the i-th component Z n (i) of Z n may be interpreted as the number of objects of type i in the n-th generation.

We consider a family {f ξ : ξ ∈ R} of multi-variate probability generating functions f ξ (s) = (f

(i) ξ (s)) 1≤i≤p where f (i) ξ (s) = α∈N p p (i)
ξ (α)s α with 1. α = (α i ) i ∈ N p , s = (s i ) i , 0 ≤ s i ≤ 1 for i = 1, . . . , p and s α = s α 1 1 . . . s αp p ;

2. p (i)

ξ (α) = p (i)
ξ (α 1 , . . . , α p ) is the probability that an object of type i in environment ξ has α 1 children of type 1, . . . , α p children of type p.

Let ξ = {ξ n , n = 0, 1, . . .} be a sequence of real valued i.i.d. random variables defined on a probability space (Ω, F, P). The Galton-Watson process with p types of particles in a random environment ξ describes the evolution of a particle population Z n = (Z n (1), . . . , Z n (p)) for n = 0, 1, . . .. We assume that for ξ ∈ R and i = 1, . . . , p, if ξ n = ξ, then each of the Z i (n) particles of type i, existing at time n produces offspring in accordance with the p-dimensional generating function f If Z 0 = e i then Z 1 has the generating function:

f (i) ξ 0 (s) = +∞ α∈N p p (i) ξ 0 (α)s α .
In general, if Z n = (α 1 , . . . , α p ), then Z n+1 is the sum of α 1 + . . . + α p independent random vectors where α i particles of type i have the generating function f (i) ξn for i = 1, . . . , p. It is obvious that if Z n = 0, then Z n+1 = 0. Denote f n = f ξn . By the above descriptions, (written in equation 2.1 in [START_REF] Kaplan | Some results about multidimensional branching processes with random environments[END_REF]) for any s = (s i ) i , 0 ≤ s i ≤ 1 E s Zn |Z 0 , ..., Z n-1 , f 0 , ..., f n-1 = f n-1 (s) Z n-1 which yields (lemma 2.1 in [START_REF] Kaplan | Some results about multidimensional branching processes with random environments[END_REF]) E s Zn |f (i) 0 , ..., f n-1 := E s Zn |Z 0 = e i , f 0 , ..., f n-1 = f (i) 0 (f 1 (...f n-1 (s)...)).

In particular, the probability of non-extinction q (i) n at generation n given the environment f

(i) 0 , f 1 , ...f n-1 is q (i) n := P(Z n = 0|f (i) 0 , ..., f n-1 ) = 1 -f (i) 0 (f 1 (...f n-1 (0)...)) = ẽi (1 -f 0 (f 1 (...f n-1 (0)...))), (1) 
so that

E[q (i) n ] = E[P(Z n = 0|f (i) 0 , ..., f n-1 )] = P(Z n = 0|Z 0 = e i ).
As in the classical one-type case, the asymptotic behaviour of the quantity above is controled by the mean of the offspring distributions. From now on, we assume that the offspring distributions have finite first and second moments; the generating functions f 

M ξn =         ∂f (1) ξn (1) ∂s 1 . . . ∂f (1) 
ξn (1) ∂s p . . .

∂f (p) ξn (1) ∂s 1 . . . ∂f (p) ξn (1) ∂s p        
, where 1 = (1, ...1) T .

the random Hessian matrices

B (i) ξn = (B (i) ξn (k, l)) 1≤k,l≤p = ∂ 2 f (i) ξn ∂s k ∂s l (1) k,l , 1 ≤ i ≤ p,
of the real-valued random generating function f

(i) ξn (s) at s = 1.
The random variables M ξn and B (i) ξn are i.i.d.. The common law of the M ξn is denoted by µ and for the sake of brevity, we write M n instead of M ξn .

Let R n and L n denote the right and the left product of random matrices

M k , k ≥ 0, respectively R n = M 0 M 1 ...M n-1 and L n = M n-1 ...M 1 M 0 . By [3], if E(max(0, ln |M 0 |)) < +∞, then the sequence 1 n ln |R n | n converges P- almost surely to some constant limit π := lim n→+∞ 1 n E[ln |R n |]
. Furthermore, by [START_REF] Kaplan | Some results about multidimensional branching processes with random environments[END_REF], if there exists a constant A > 0 such that 1 A ≤ M ξn (i, j) ≤ A and 0 ≤ B (i) ξn (k, l) ≤ A P-almost surely for any 1 ≤ i, j, k, l ≤ p, then the process (Z n ) n extincts P-almost surely if and only if π ≤ 0.

In the present work, we will focus our attention on the so-called critical case, that is π = 0, and precise the speed of extinction of the Galton-Watson process.

We define the cone C, the sphere S p-1 and the space X respectively as follows:

C = {x = (x 1 , ..., x p ) ∈ R p : ∀i = 1, ..., p, x i ≥ 0} , S p-1 = {x : x ∈ R p , |x| = 1}, and X = C ∩ S p-1 .
The semi-group S + acts on X by the projective action defined by: x • g = xg |xg| for

x ∈ X and g ∈ S + . On the product space X × S + we define the function ρ by setting ρ(x, g) := log | xg| for (g, x) ∈ X × S + . This function satisfies the cocycle property, namely for any g, h ∈ S + and x ∈ X,

ρ(x, gh) = ρ( x • g, h) + ρ(x, g). (2) 
Under conditions H1-H3 which are introduced below, there exists a unique µ-invariant measure ν on X such that, for any continuous function ϕ on X,

(µ * ν)(ϕ) = S + X ϕ(x • g)ν(dx)µ(dg) = X ϕ(x)ν(dx) = ν(ϕ).
Moreover, the upper Lyapunov exponent π defined above coincides with the quantity X×S + ρ(x, g)µ(dg)ν(dx) and is finite [START_REF] Ph | Products of Random Matrices with Applications to Schrödinger Operators[END_REF].

In the sequel, we first focus our attention to the class H of linear-fractional multidimensional generating functions f ξ which contains functions of the form

f ξ (s) = 1 - 1 1 + γξ (1 -s) M ξ (1 -s),
where γξ = (γ ξ , ..., γ ξ ) ∈ R p with γ ξ > 0.

Hypotheses H: the variables f ξ are H-valued and γ ξ (resp. the distribution µ of the M ξ ) satisfies hypothesis H0 (resp. H1-H5), with H0. There exists a real positive number A such that 1 A ≤ γ ξ ≤ A P-almost surely. H1. There exists ǫ 0 > 0 such that S + |g| ǫ 0 µ(dg) < ∞. H2. (Strong irreducibility). The support of µ acts strongly irreducibly on R p , i.e. no proper finite union of subspaces of R p is invariant with respect to all elements of the semi-group it generates.

H3. There exists a real positive number B such that, µ-almost surely, for any and i, j, k, l ∈ {1, ..., p}:

1 B ≤ M (i, j) M (k, l) ≤ B.
H4. The upper Lyapunov exponent of the distribution µ is equal to 0. H5. There exists

δ > 0 such that µ{g ∈ G | ∀x ∈ C, |x| = 1, ln |xg| ≥ δ} > 0.
We now state the main result of this paper.

Theorem 1.1 Under hypotheses H, for any i ∈ {1, ..., p}, there exists a real number

β i ∈ (0, +∞) such that lim n→+∞ √ nP(Z n = 0|Z 0 = e i ) = β i .
When the f ξ are not assumed to be linear fractional generating functions, we have the following weaker result:

Theorem 1.2 Assume that the f ξ are C 2 -functions on [0, 1] p such that 1. there exists A > 0 such that, for any i, k, l ∈ {1, . . . , p}

∂ 2 f (i) ξ ∂s k ∂s l (1) ≤ A ∂f (i) ξ ∂s k (1), 2. the distribution µ of the M ξ = ∂f (i) ξ ∂s j (1)
1≤i,j≤p satisfies hypotheses H1-H5.

Then, there exist real constants 0 < c 1 < c 2 < +∞ such that, for any i ∈ {1, . . . , p}, and n ≥ 1

c 1 √ n ≤ P(Z n = 0|Z 0 = e i ) ≤ c 2 √ n . (3) 
In particular, under weaker assumptions than Kaplan [START_REF] Kaplan | Some results about multidimensional branching processes with random environments[END_REF], this theorem states that the process (Z n ) n≥0 extincts P-a.s. in the critical case.

Notations. Let c > 0; we shall write f 

Preliminary concepts

From now on, we fix B ≥ 1 and denote S = S(B) the semi-group generated by matrices g = (g i,j ) i,j in S + satisfying the condition

g i,j B ≍ g k,l
for all 1 ≤ i, j, k, l ≤ p.

Product of matrices with non-negative coefficients

We describe in this section some properties of the set S + . We first endow X with a distance d which is a variant of the Hilbert metric; it is bounded on X and any element g ∈ S + acts on (X, d) as a contraction; we summarise here its construction and its major properties.

For any x, y ∈ X, we write m(x, y) = min x i y i i = 1, . . . , p such that y i > 0 and we set d(x, y) := ϕ m(x, y)m(y, x)

where ϕ is the one-to-one function on [0, 1] defiend by ϕ(s)

:= 1 -s 1 + s . For g ∈ S + , set c(g) := sup{d(g • x, g • y) | x, y ∈ X}.
We now present some crucial properties of d.

Proposition 2.1 The function d is a distance on X wich satisfies the following properties:

1. sup{d(x, y) | x, y ∈ X} = 1.

2. for any g = (g ij ) i,j ∈ S + c(g) = max i,j,k,l∈{1,...,p} |g ij g kl -g il g kj | g ij g kl + g il g kj .

In particular, there exists κ ∈ [0, 1) which depends on B such that c(g) ≤ κ < 1 for any g ∈ S(B).

3. d(g • x, g • y) ≤ c(g)d(x, y) ≤ c(g) for any x, y ∈ X and g ∈ S(B).

c(gg

′ ) ≤ c(g)c(g ′ ) for any g, g ′ ∈ S(B).
The following lemma is crucial in the sequel to control the asymptotic behaviour of the norm of products of matrices of S(B). Lemma 2.2 Under hypothesis H3, for any g, h ∈ S(B), and 1 ≤ i, j, k, l ≤ p g(i, j)

B 2
≍ g(k, l), obtained from [START_REF] Furstenberg | Product of random matrices[END_REF].

(4)

In particular, there exist c > 1 such that for any g ∈ S(B) and for any x, ỹ ∈ X, 

Conditioned product of random matrices

Recall that (M n ) n≥0 is a sequence of i.i.d. matrices whose law µ satisfies hypothese H and R n = M 0 ...M n-1 for n ≥ 1. Consider the homogenous Markov chain (X n ) n on X, with initial value X 0 = x ∈ X, defined by

X n = x • R n , n ≥ 1.
Its transition probability P is given by: for any x ∈ X and any bounded Borel function ϕ : X → R,

P ϕ(x) := S + ϕ(x • g)µ(dg).
The chain (X n ) n≥0 has been the object of many studies, in particular there exists on X a unique P -invariant probability measure ν. Indeed, by Proposition 2.1, for any x, ỹ ∈ X, one gets

d(x • L n , ỹ • L n ) ≤ κ n (5) 
so that sup

k≥0 d(x • L n+k , x • L n ) → 0 a.s. as n → +∞; the sequence (x• L n ) n≥0 thus converges
a.s. to some X-valued random variable Z. It follows that the Markov chain (x • R n ) n≥0 converges in distribution to the law ν of Z, which is the unique P -invariant probability measure on X. Property 5 allows to prove that the restriction of P to some suitable space of continuous functions from X to C is quasi-compact, which is a crucial ingredient to study the asymptotic behavior of (x • R n ) n≥0 ( [8], [START_REF] Ph | Products of Random Matrices with Applications to Schrödinger Operators[END_REF], [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]).

In the sequel, we deal with the random process (S n ) n defined by S 0 = S 0 (x, a) := a, S n = S n (x, a) := a + ln | xR n |, where x ∈ X and a ∈ R. Iterating the cocycle property (2),the basic representation of S n (x, a) arrives:

S n (x, a) = a + ln |xR n | = a + n-1 k=0 ρ(X k , M k ). ( 6 
)
Let m n = m n (x) := min(S 0 (x), ..., S n (x)) be the successive minima of the sequence (S n (x)) n and for a ≥ 0 denote m n (x, a) := P x,a [m n > 0]. Let us emphasize that for any a ∈ R the sequence (X n , S n ) n is a Markov chain on X × R whose transition probability P is defined by: for any (x, a) ∈ X × R and any bounded Borel function ψ :

X × R → C P ψ(x, a) = S + ψ(x • g, a + ρ(x, g))µ(dg).
We denote P + the restriction of P to X × R + * defined by: for a > 0 and any x ∈ X •). From now on, fix a > 0 and denote by τ the first time the random process (S n ) n becomes non-positive:

P + ((x, a), •) = 1 X×R + * (•) P ((x, a),
τ := min{n ≥ 1 : S n ≤ 0}.
For any x ∈ X and a > 0, let us denote P x,a the probability measure on (Ω, F, P) conditioned to the event [X 0 = x, S 0 = a] and E x,a the corresponding expectation; we omit the index a when a = 0 and denote P x the corresponding probability.

We now present a general result concerning the behavior of the tail distribution of the random variable τ ; we refer to [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF] in the case of product of random invertible matrices and under general suitable conditions we do not present here. The statement below is given in the case of products of matrices with non-negative coefficients, it is not a direct consequence of [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF] but the proof is the same, we postpone the sketch of its main steps in the Appendix.

Under hypotheses H1-H5, the function h :

X × R + * → R + * defined by h(x, a) = lim n→+∞ E x,a [S n ; τ > n] (7) 
is P + -Harmonic, namely E x,a [h(X 1 , S 1 ); τ > 1] = h(x, a) for any x ∈ X and a > 0. Furthermore, there exists c > 0 such that

∀x ∈ X, ∀a > 0 h(x, a) ≤ c(1 + a) (8) 
and the function a → h(x, a) is increasing on R + * .

The tail of the distribution of τ is given by the following theorem; the relation

u n ∼ v n defines lim n→+∞ u n v n = 1.
Theorem 2.3 Assume hypotheses H1-H5. For any x ∈ X and a > 0,

P x,a (τ > n) ∼ 2 σ √ 2πn h(x, a) as n → ∞, (9) 
where σ 2 > 0 is the variance of the Markov walk (S n ) n , given in [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF]. Moreover, there exists a constant c > 0 such that for any x ∈ X, a > 0 and n ≥ 0

√ nP x,a (τ > n) ≤ c(1 + a). (10) 
Remark. The fact that σ 2 > 0 is a direct consequence of hypotheses H2 and H5 (which implies in particular that the semi-group generated by the support of µ is unbounded); see [START_REF] Ph | Products of Random Matrices with Applications to Schrödinger Operators[END_REF], chap 6, Lemmas 5.2 and 5.3 and section 8 for the details.

3 Proof of Theorem 1.1

Expression of non-extinction probability

For any 0

≤ k < n and x ∈ X, set R k,n := M k ...M n-1 and R k,n := I otherwise. Let Y k,n (x) := R k,n • x; the sequence (Y k,n (x)
) n converges P-almost surely to some limit Y k,∞ which does not depend on x, see [START_REF] Furstenberg | Product of random matrices[END_REF]. Hypothesis H and (1) yield

(q (i) n ) -1 = 1 + γ0 M 1 . . . M n-1 1 + γ1 M 2 . . . M n-1 1 + . . . + γn-1 1 ẽi R n 1 .
Indeed, recall that f ξ (s) are linear-fractional generating functions, it is obvious that

1 -f 0 (f 1 (...f n-1 (s)...)) = M 0 (1 -f 1 (...f n-1 (s)...)) 1 + γ0 (1 -f 1 (...f n-1 (s)...)) = M 0 M 1 (1 -f 2 (...f n-1 (s)...)) 1 + γ0 M 0 (1 -f 2 (...f n-1 (s)...)) + γ1 (1 -f 2 (...f n-1 (s)...)) = . . . = M 0 ...M n-1 (1 -s) 1 + γ0 M 1 ...M n-1 (1 -s) + γ1 M 2 ...M n-1 (1 -s) + ... + γn-1 (1 -s)
Substituting s = 0, the expression of q (i) n arrives. In other words, since we have ẽi

R k R k,n 1 = ẽi M 0 . . . M n-1 1 for any 1 ≤ k ≤ n, we may write (q (i) n ) -1 = 1 ẽi R n 1 + n-1 k=0 γk Y k+1,n ẽi R k Y k+1,n = 1 ẽi R n 1 + n-1 k=0 γ k ẽi R k Y k+1,n . (11) 
In the sequel, we prove that the sequence (q

(i) n ) n≥1 converges almost surely to a finite quantity q (i) ∞ given by (q (i) ∞ ) -1 = +∞ k=0 γ k ẽi R k Y k+1,∞ , (12) 
with respect to a new probability measure P x,a introduced in the following subsection (Lemma 3.2).

Construction of a new probability measure P x,a conditioned to the environment

Since the function

h is P + -Harmonic on X × R + * , it gives rise to a Markov kernel P h + on X × R + * defined by P h + φ = 1 h P + (hφ)
for any bounded measurable function φ on X × R + * . The kernels P + and P h + are related to the stopping times τ by the following identity: for any x ∈ X, a > 0 and n ≥ 1,

( P h + ) n φ(x, a) = 1 h(x, a) P n + (hφ)(x, a) = 1 h(x, a) E x,a [hφ(X n , S n ); τ > n] = 1 h(x, a) E x,a [hφ(X n , S n ); m n > 0] .
This new Markov chain with kernel P h + allows us to change the measure on the canonical path space (( 4) from P to the measure P x,a characterized by the property that

X × R) ⊗N , σ(X n , S n : n ≥ 0), θ) of the Markov chain (X n , S n ) n≥0 ( 
E x,a [ϕ(X 0 , S 0 , ..., X k , S k )] = 1 h(x, a) E x,a [ϕ(X 0 , S 0 , ..., X k , S k )h(X k , S k ); m k > 0] (13)
for any positive Borel function ϕ on (X × R) k+1 that depends on X 0 , S 0 , ..., X k , S k .

4 θ denotes here the shift operator on (X×R) ⊗N defined by θ

(x k , s k ) k = (x k+1 , s k+1 ) k for any (x k , s k ) k in (X × R) ⊗N For any 0 ≤ k ≤ n, E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )|m n > 0] = 1 P x,a (m n > 0) E x,a [ϕ(X 0 , S 0 , . . . , X k , S k ); S 0 > 0, S 1 > 0, . . . , S n > 0] = 1 P x,a (m n > 0) E x,a [ϕ(X 0 , S 0 , . . . , X k , S k ); S 0 > 0, a + ρ(X 0 , M 0 ) > 0, . . . , a + k-1 i=0 ρ(X i , M i ) + n-1 i=k ρ(X i , M i ) > 0] = 1 P x,a (m n > 0) E x,a [E[ϕ(X 0 , S 0 , . . . , X k , S k ); S 0 > 0, . . . , S k > 0, S 0 • θ k > 0, . . . , S k + S n-k • θ k > 0|σ(M 0 , ..., M k-1 )]] = 1 P x,a (m n > 0) E x,a ϕ(X 0 , S 0 , . . . , X k , S k ) E[S k > 0, . . . , S k + S n-k • θ k > 0|σ(M 0 , .., M k-1 )]; m k > 0 = 1 P x,a (m n > 0) E x,a ϕ(X 0 , S 0 , . . . , X k , S k ) P X k ,S k (S 0 • θ k > 0, . . . , S n-k • θ k > 0); m k > 0 = 1 P x,a (τ > n) E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )P X k ,S k (τ > n -k); m k > 0].
Hence,

E x,a [ϕ(X 0 , S 0 , . . . , X k , S k ); m n > 0] = E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )m n-k (X k , S k ); m k > 0].(14)
Moreover, in view of Theorem 2.3, the dominated convergence theorem and (14), we obtain for any bounded function ϕ with compact support,

lim n→+∞ E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )|m n > 0] = 1 h(x, a) E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )h(X k , S k ); m k > 0] = E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )], (15) 
which clarifies the interpretation of P x,a . Using [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF], it follows that

E x,a [ϕ(X 0 , S 0 , . . . , X k , S k )|m n > 0] ∼ √ n √ n -k E x,a [ϕ(X 0 , S 0 , ..., X k , S k )h(X k , S k ); m k > 0] h(x, a) .
Hence when n tends to +∞, (15) arrives. Now we formalize in three steps the construction of a new probability measure, denoted again P x,a , for each x ∈ X and a > 0, but defined this time on the bigger σ-algebra σ(f n , Z n : n ≥ 0). Retaining the notations from the previous parts, the measure P x,a is characterized by properties (13), ( 16) and (17).

Step 1. The marginal distribution of P x,a on σ(X n , S n : n ≥ 0) is P x,a characterized by the property (13).

Step 2. The conditional distribution of (f n ) n≥0 under P x,a given

X 0 = x0 = x, X i = xi , S 0 = s 0 = a, S i = s i , ... is P x,a (f k ∈ A k , 0 ≤ k ≤ n|X i = xi , S i = s i , i ≥ 0) = P(f k ∈ A k , 0 ≤ k ≤ n|X i = xi , S i (x) = s i , i ≥ 0), (16) 
defined for almost all (x i ) i and (s i ) i with respect to the law of ((X n ) n , (S n ) n ) under P ( and also under P x,a since P x,a is absolutely continuous with respect to P on σ((X n ) n≥0 , (S n ) n≥0 )), for any measurable set A k .

Step 3. The conditional distribution of (Z n ) n≥0 under P x,a given f

(i) 0 , f 1 , .
.. is the same as under P, namely

E x,a s Zn |Z 0 , ..., Z n-1 , f (i) 0 , ..., f n-1 = f n-1 (s) Z n-1 = E s Zn |Z 0 , ..., Z n-1 , f (i) 0 , ..., f n-1 . (17)

Proof of Theorem 1.1

For any x ∈ X, a > 0 and i ∈ {1, . . . , p} let us denote

P (i)
x,a the probability measure on (Ω, F, P) conditioned to the event [X 0 = x, S 0 = a, Z 0 = i] and

E (i)
x,a the corresponding expectation.

We separate the proof in 4 steps.

1. Fix ρ > 1, x ∈ X and a > 0, we prove that the sequence (P

(i) x,a (Z n = 0|m ρn > 0)) n≥0 converges as n → +∞ to lim m→+∞ P (i)
x,a (Z m = 0). 2. We identify the limit of the sequence ( P

(i)
x,a (Z m = 0)) m≥0 and prove that it belongs to R + * .

3. We get rid of ρ and prove the sequence (

√ n P (i)
x,a (Z n = 0, m n > 0)) n≥0 converges in R + * as n → +∞, for any a > 0.

4. We achieve the assertion by letting a → +∞.

Step 1. Fix 0 ≤ m ≤ n. Using (14), then conditioned on σ(f

(i) 0 , ..., f m-1 ), finally 1 [mm>0]
and m ρn-m (X m , S m ) are measurable with respect to σ(f (i) 0 , ..., f m-1 ), we may write

P (i) x,a (Z m = 0, m ρn > 0) = P (i) x,a [Z m = 0, m m > 0, m ρn-m (X m , S m )] = E x,a E(1 [Zm =0] 1 [mm>0] m ρn-m (X m , S m ) | f (i) 0 , ..., f m-1 ) = E x,a P(Z m = 0|f (i) 0 , ..., f m-1 )1 [mm>0] m ρn-m (X m , S m ) = E x,a q (i)
m , m ρn > 0 (18) so that, by (15), since 0 ≤ m ≤ n is fixed

lim n→+∞ P (i) x,a (Z m = 0|m ρn > 0) = lim n→+∞ E x,a q (i) m |m ρn > 0 = E x,a q (i) m = P (i) x,a (Z m = 0). ( 19 
)
To get the similar result with n instead of m, we write, for 0 ≤ m ≤ n

P (i) x,a (Z n = 0|m ρn > 0) = P (i) x,a (Z n = 0, Z m = 0|m ρn > 0) = P (i) x,a (Z m = 0|m ρn > 0) -P (i) x,a (Z m = 0, Z n = 0|m ρn > 0). ( 20 
)
The first term of the right side of (20) is controled by (19); for the the second term, we use the following Lemma.

Lemma 3.1 For any ρ > 1, x ∈ X and a > 0, lim sup

m→+∞ lim sup n→+∞ P (i) x,a (Z m = 0, Z n = 0|m ρn > 0) = 0.
Therefore, by taking limits over n and then m in (20), it follows that lim sup n→+∞

P (i) x,a (Z n = 0|m ρn > 0) = lim sup m→+∞ lim sup n→+∞ P (i) x,a (Z m = 0|m ρn > 0) -lim sup m→+∞ lim sup n→+∞ P (i) x,a (Z m = 0, Z n = 0|m ρn > 0) = lim sup m→+∞ lim sup n→+∞ P (i) x,a (Z m = 0|m ρn > 0) = lim sup m→+∞ P (i) x,a (Z m = 0). ( 21 
)
Step 2. By (15), we know that the sequence ( P

x,a (Z m = 0)) m≥0 converges; its limit is given by the Lemma 3.2 below. Lemma 3.2 For any x ∈ X and a > 0,

lim m→+∞ P (i) x,a (Z m = 0) = E x,a q (i) ∞ . (22) 
Moreover, the following lemma deduces that the quantity v(x, a) := E x,a q (i)

∞ does not vanish as m tends to ∞. Lemma 3.3 For any x ∈ X and a > 0, E x,a +∞ n=0 e -Sn < +∞.

Since γk are bounded and Y k+1,∞ ∈ C ∩ S p-1 , by using Lemma 2.2 property 2), that is

to say |xR n | ≍ ẽi R n Y n+1,∞ , Lemma 3.3 implies E x,a q (i) ∞ < +∞ and E x,a ( +∞ n=0 e -Sn ) -1 > 0,
which yields 0 < v(x, a) < +∞ for any a > 0.

Step 3. For ρ > 1 fixed, we decompose P

(i) x,a (Z n = 0, m n > 0) as P 1 (ρ, n) + P 2 (ρ, n) with P 1 (ρ, n) := P (i) x,a (Z n = 0, m n > 0) -P (i) x,a (Z n = 0, m ρn > 0) and P 2 (ρ, n) := P (i)
x,a (Z n = 0, m ρn > 0).

Next, we get rid of ρ. Theorem 2.3 states that, as n → +∞ P x,a (m ρn > 0) = P x,a (τ > ρn) = m ρn (x, a) ∼ c 1 h(x, a) 1 √ ρn so that on one hand

P 1 (ρ, n) = P (i) x,a (Z n = 0, τ > n) -P (i) x,a (Z n = 0, τ > ρn) = P (i) x,a (Z n = 0, n < τ ≤ ρn) ≤ P x,a (n < τ ≤ ρn) = P x,a (τ > n) -P x(τ > ρn) ∼ c 1 h(x, a) √ n (1 - 1 √ ρ ) as n → +∞ (23)
and on the other hand, from ( 21) and ( 22),

P 2 (ρ, n) = P (i) x,a (Z n = 0|τ > ρn)P x,a (τ > ρn) ∼ c 1 h(x, a)v(x, a) 1 √ ρn as n → +∞.
(24) Hence, ( 23) and (24) yields lim n→+∞ √ nP

(i) x,a (Z n = 0, m n > 0) = lim n→+∞ √ nP 1 (ρ, n) + lim n→+∞ √ nP 2 (ρ, n) = c 1 h(x, a)(1 - 1 √ ρ ) + c 1 √ ρ h(x, a)v(x, a).
The factor (1 - 23) can be made arbitrary small by choosing ρ sufficiently closed to 1. Thus

1 √ ρ ) in (
lim n→+∞ √ nP (i) x,a (Z n = 0, m n > 0) = c 1 h(x, a)v(x, a). (25) 
Step 4. For any a > 0, we may decompose P (i) (Z n = 0) as

P (i) (Z n = 0) = P (i)
x,a (Z n = 0, m n > 0) + P

(i) x,a (Z n = 0, m n ≤ 0). ( 26 
)
The first term of the right side of (26) is controled by (25). For the second term, we write

P (i) x,a (Z n = 0, m n ≤ 0) = E x,a E Z n = 0|f (i) 0 , ..., f n-1 ; m n ≤ 0 = E x,a q (i) n ; m n ≤ 0 .
Now, it is reasonable to control the quantity q (i) n ; using Lemma 2.2, one gets

(q (i) n ) -1 = 1 ẽi R n 1 + n-1 k=0 γ k ẽi R k Y k+1,n ≥ max 0≤k≤n-1 γ k e i R k Y k+1,n ≍ max 0≤k≤n-1 1 |xR k | ≥ 1 exp min 0≤k≤n-1 (a + ln |xR k |)
.

Hence q (i) n exp(m n (x, a)) and by applying Theorem 2.3 equation ( 10), the second term of the right side of (26) becomes:

P (i) x,a (Z n = 0, m n ≤ 0) = P (i) x (Z n = 0, m n ≤ -a) E x[exp(m n ); m n ≤ -a] ≤ +∞ k=a e -k P x(-k < m n ≤ -k + 1) ≤ +∞ k=a e -k P x,k (τ > n) 1 √ n +∞ k=a (k + 1)e -k . (27) 
Notice that the sum +∞ k=a (k + 1)e -k becomes arbitrarily small for sufficiently great a. Hence the quantity lim sup n→+∞ √ nP

(i)
x,a (Z n = 0, m n ≤ 0) is over approximated by the same manner. On one hand,

c 1 h(x, a)v(x, a) = lim n→+∞ √ nP (i) x,a (Z n = 0, m n > 0) ≤ lim n→+∞ √ nP (i) (Z n = 0).
On the other hand, by ( 25), ( 26) and ( 27), we have for some constant c > 0,

c 1 h(x, a)v(x, a) = lim n→+∞ √ nP (i) x,a (Z n = 0, m n > 0) = lim n→+∞ [ √ nP (i) (Z n = 0) - √ nP (i) x,a (Z n = 0, m n ≤ 0)] ≥ lim sup n→+∞ [ √ nP (i) (Z n = 0) -c +∞ k=a (k + 1)e -k ],
which implies

c 1 h(x, a)v(x, a) + c +∞ k=a (k + 1)e -k ] ≥ lim sup n→+∞ √ nP (i) (Z n = 0). Since +∞ k=0
(k + 1)e -k < +∞, for any ε > 0, we can always choose a to be great enough so that c +∞ k=a (k + 1)e -k < ε. Hence, for any ε > 0,

c 1 h(x, a)v(x, a) ≤ lim inf n→+∞ √ nP(Z n = 0) ≤ lim sup n→+∞ √ nP(Z n = 0) ≤ c 1 h(x, a)v(x, a) + ε (28)
if only a is chosen great enough. Remind that v(x, a) > 0 for any a > 0 and h(x, a) > 0 for a large enough; by (25) the quantity h(x, a)v(x, a) is increasing in a, hence β := x,a (Z n = 0, m n > 0)

≤ lim a→+∞ lim sup n→+∞ √ nP (i) (Z n = 0) ≤ lim sup n→+∞ √ nP (i) (Z n = 0) ≤ c 1 h(x, a)v(x, a) + ε < +∞. ( 29 
)
Therefore, from ( 28) and ( 29), the assertion of the theorem arrives.

Proof of Theorem 1.2

First, for any n ≥ 1 and s = (s 1 , . . . , s p ), we denote F n (s) = f 0 (f 1 (. . . (f n-1 (s)) . . .)). By definition of q (i) n , we have for any 0 ≤ m < n,

q (i) n = ẽi (F m (1) -F m (z)), where z = z(m, n) = f m (. . . (f n-1 (0)) . . .). The Mean Value Theorem yields ẽi (F m (1) -F m (z)) ≤ p j=1 1 0 ∂F m ∂s j (z + (1 -z)t)dt (1 -z j ) ≤ p j=1 ∂F m ∂s j (1) 
= ẽi M 0 . . . M m-1 1.

Therefore, using Lemma 2.2, we have for any 0 ≤ m ≤ n and x ∈ X,

q (i) n ≤ ẽi M 0 . . . M m-1 1 ≍ |xR m | = exp(S m (x, 0)), which yields q (i) n
exp(m n (x, 0)) and

E[q (i) n ] E[e mn(x,0) ] = E x[e mn ].
Using the same trick like in (27), we can deduce that there exists a constant c 2 such that

E x[e mn ] = E x[e mn ; m n ≤ 0] ∼ c 2 √ n ,
and thus the upper estimate in equation ( 3) arrives.

To obtain the lower estimate in (3), for any R-valued multi-dimensional generating function f (s) , s = (s 1 , . . . , s p ) T , we obtain (see for instance formulas (64) and (65) in [START_REF] Zubkov | Inequalities for the distribution of the numbers of simultaneous events[END_REF])

f (s) ≤ 1 - p i=1 ∂f ∂s i (1)(1 -s i )        1 + p i,j=1 ∂ 2 f ∂s i ∂s j (1)(1 -s j )(1 -s i ) p l=1 ∂f ∂s l (1)(1 -s l )        -1 . ( 30 
)
We set g ξ (s) = 1 -

M ξ (1 -s) 1 + Γ ξ (1 -s)
, where M ξ is the mean matrix of f ξ (s) and Γ ξ = (A, . . . , A). Denote g ξn (s) = g n (s). Applying inequality (30) with f = f (i) ξ , we may write

f (i) ξ (s) ≤ g (i) ξ (s), i = 1, . . . , p,
which yields

E[1 -g 0 (g 1 (. . . (g n-1 (0)) . . .))] ≤ E[1 -f 0 (f 1 (. . . (f n-1 (0)) . . .))]. (31) 
The lower estimate in equation ( 1.2) appears by applying Theorem 1.1 to the left side of equation (31). Therefore, the assertion of the Theorem 1.2 arrives.

Proof of facts

We first give some hints for the proof of Lemma 2.2. Lemmas 3.1, 3.2 and 3.3 are listed in the order of our use; since they are dependent, we first prove Lemma 3.3, then Lemma 3.2 and at last Lemma 3.1.

Proof of Lemma 2.2

First, we obtain (32) by formally using ( 4)

|g| = p i,j=1
g(i, j)

p 2 B 2 ≍ g(k, l). (32) 
Further properties can be easily deduced from (32). Indeed, the assertions we need are obvious by noticing that

|gx| = p i,j=1 g(i, j)x j p 3 B 2 ≍ |g|, ỹgx = p i,j=1 y i g(i, j)x j p 2 B 2 ≍ |g|, |gh| = p i,j,k=1
g(i, j)h(j, k)

p 7 B 4 ≍ |g||h|.

Proof of Lemma 3.3

Before going into the proof, we first claim that in the critical case, for any δ > 0 and c given from Lemma 2.2, there exists κ = κ(δ, c) ≥ 1 such that

µ * κ (E δ ) := µ * κ {g : ∀x ∈ X, ln |xg| ≥ δ} > 0. ( 33 
)
Indeed, let τ ′ := inf{n ≥ 1 : ln |R n | ≥ ln c + δ}; the random variable τ ′ is a stopping time with respect to the natural filtration (σ(M 0 , . . . , M k )) k≥0 and P-a.s. finite since lim sup

n→+∞ ln |R n | = +∞.
Therefore, for any δ > 0 and c given from Lemma 2.2, there exists κ ≥ 1 such that P(τ ′ = κ) = p > 0. Moreover, we also have

P(ln |R κ | ≥ ln c + δ) ≥ P(ln |R κ | ≥ ln c + δ, τ ′ = κ) = P(ln |R τ ′ | ≥ ln c + δ, τ ′ = κ) = P(τ ′ = κ) = p > 0.
Since for any x ∈ X, g ∈ G, |gx| ≥ |g| c , it follows that {g : ln |g| ≥ ln c + δ} ⊂ {g : ∀x ∈ X, ln |xg| ≥ δ}.

Thus,

0 < P(ln |R κ | ≥ ln c + δ) = µ * κ {g : ln |g| ≥ ln c + δ} ≤ µ * κ {g : ∀x ∈ X, ln |xg| ≥ δ},
which is the assertion of the claim (33). Now, let us go into the proof of Lemma 3.3. For any x ∈ X, a > 0 and λ ∈ (0, 1), there exists some constant C(λ) > 0 such that (t + 1)e -t ≤ C(λ)e -λt for any t > 0 and c is introduced in equation ( 8). Hence Notice that S 0 := a with respect to E x,a for any x ∈ X, we may skip the event [S 0 > 0] for any positive a. This is a trick to deal with our problem since Φ(x, a) = 0 whenever a ≤ 0 and we can not do anything more. Hence, it suffices to prove for any x ∈ X and a ∈ R,

E x,a +∞ n=0 e -Sn ≤ 1 + 1 h(x, a) +∞ n=1 E x,a e -Sn h(X n , S n ); S 0 > 0, . . . , S n > 0 ≤ 1 + c h(x, a) +∞ n=1 E x,a e -Sn (1 + S n ); S 0 > 0, . . . , S n > 0 ≤ 1 + cC(λ) h(x,
Φ(x, a) < +∞, ( 34 
)
and the assertion of Lemma 3.3 arrives for a > 0.

Notice that for any x ∈ X, the function Φ(x, .) increases on R. We take into account the spirit of the strategy of the proof of Lemma 3.2 in [START_REF] Geiger | The survival probability of a critical branching process in random environment[END_REF]. In the multi-dimensional case, it is more complicated to apply the duality principle, namely L(M 0 , M 1 , ..., M n ) = L(M n , ..., M 1 , M 0 ) , and we can only prove that for some a 0 < 0, the quantity Φ(x, a 0 ) is finite. Unfortunately, Φ(x, a 0 ) may vanish and then we can not say anything else about Φ(x, a) for a > a 0 . To avoid this difficulty, we skip the first κ steps by introducing the functions Φ κ associated with the κ th power of convolution µ * κ of µ. For any x ∈ X, a ∈ R, let

Φ κ (x, a) := +∞ n=1 E x e -λSnκ ; S κ > 0, . . . , S nκ > 0 .
The relation is that Φ(x, a) Φ κ (x, a) for any x ∈ X, a ∈ R. Then, by using the duality principle, we bound from above Φ κ (x, a) by a new quantity Ψ κ (x) defined below for any x ∈ X and a ∈ R. Finally, we prove Ψ κ (x) < +∞ by using the ascending ladder epochs associated to the Markov walk (L n • x, ln |L n x|) n≥0 and the Elementary Renewal Theorem.

We set L 0 = 0 and denote L n := M n-1 . . . M 0 the left product of the matrices M 0 , . . . , M n when n ≥ 1. For any x ∈ X, a ∈ R, let

Ψ κ (x) := +∞ n=1 E |L nκ x| -λ ; |L nκ x| > |L (n-1)κ x|, . . . , |L nκ x| > 1 .
Property (34) is a direct consequence of the four steps following:

1. For any κ ≥ 1, there exists C(κ) > 0 such that, for any x ∈ X and a ∈ R,

Φ(x, a) ≤ C(κ)(1 + Φ κ (x, a)).
2. If there exist some κ ≥ 1, x0 ∈ X and a 0 < 0 such that 0 < Φ κ (x 0 , a 0 ) < +∞, then ∀x ∈ X, ∀a ∈ R Φ κ (x, a) < +∞.

3. There exist C 1 > 0 and a 1 < 0 such that for any κ ≥ 1, x ∈ X and a < a 1

Φ κ (x, a) C 1 Ψ κ (x).
4. For any κ ≥ 1 and x ∈ X Ψ κ (x) < +∞.

Roughly speaking, on one hand, for any a 0 ≤ a 1 < 0, we can always choose some δ 0 such that δ 0 > -a 0 > 0. For each δ 0 , there exists κ 0 ≥ 1 such that P(ln |xR κ 0 | ≥ δ 0 ) > 0 (see (33) above). Since δ 0 > -a 0 , we have P x,a (S κ 0 > 0) > 0, which implies Φ κo (x 0 , a 0 ) > 0. On the other hand, since a 0 ≤ a 1 , step 3 and step 4 yield Φ κo (x 0 , a 0 ) < +∞. Therefore, we can apply step 2 and it yields Φ κ (x, a) < +∞ for any x ∈ X and a ∈ R. Finally, thanks to Step 1, (34) arrives.

Step 1. It is easy to see that Step 2. The inequality Φ κ (x 0 , a 0 ) > 0 implies that P(ln |x 0 R κ | > -a 0 ) > 0; we thus fix δ > -a 0 > 0 and κ ≥ 1 such that µ * κ (E δ ) > 0. Since a 0 < 0, this property may hold only when κ is large enough; this happens for instance when the support of µ is bounded. To simplify the notations, we assume that -a 0 < δ where δ is given by H5. We set κ = 1 and write

Φ(x, a) ≤ κ-1 r=1 E x[e -λSr ] + +∞ n=1 κ-1 r=0 E x,a [e -λS nκ+r ; S κ > 0, . . . , S nκ > 0] ≤ κ-1 r=1 E x e -λSr + +∞ n=1 E x,a e -λSnκ ; S κ > 0, . . . , S nκ > 0 × κ-1 r=0 sup ỹ∈X E ỹ,a e -λSr
Φ(x 0 , a 0 ) = +∞ n=1 E[|x 0 R n | -λ ; |x 0 R 1 | > e -a 0 , . . . , |x 0 R n | > e -a 0 ] ≥ {g∈G:|x 0 g|≥e -a 0 } +∞ n=2 E |x 0 gR 1,n | -λ ; |x 0 g| > e -a 0 , . . . , |x 0 gR 1,n | > e -a 0 µ(dg) ≥ E δ +∞ n=2 E[|x 0 gR 1,n | -λ ; |x 0 g| ≥ e δ > e -a 0 , |x 0 gR 1,2 | > e -a 0 , . . . , |x 0 gR 1,n | > e -a 0 ]µ(dg) = E δ |x 0 g| -λ +∞ m=1 E[|(x 0 • g)R m | -λ ; |(x 0 • g)R 1 | > e -a 0 -ln |x 0 g| , . . . , |(x 0 • g)R m | > e -a 0 -ln |x 0 g| ]µ(dg) = E δ |x 0 g| -λ Φ(x 0 • g, a 0 + ln |x 0 g|)µ(dg) ≥ E δ |x 0 g| -λ Φ(x 0 • g, a 0 + δ)µ(dg).
Consequently, if Φ(x 0 , a 0 ) < +∞ then Φ(x 0 • g, a 0 + δ) < +∞ for µ-almost all g ∈ E δ and by iterating this argument, there thus exists a sequence (g k ) k≥1 of elements of

E δ such that ∀k ≥ 1, Φ(x 0 • g 1 • • • g k , a 0 + kδ) < +∞.
By Lemma 2.2, for any x, ỹ ∈ X and a ∈ R

Φ(x, a -ln c) ≤ c λ +∞ n=1 E[|R n | -λ ; |R 1 | > e -a , . . . , |R n | > e -a ] ≤ c 2λ Φ(ỹ, a + ln c);
it follows that, by choosing k sufficiently great such that a 0 + kδ > a + 2 ln c, we have

Φ(x, a) ≤ Φ(x 0 • g 1 • • • g k , a + 2 ln c) ≤ Φ(x 0 • g 1 • • • g k , a 0 + kδ) < +∞.
Step 3. For any 0 ≤ k < n, denote L n,k := M n-1 . . . M k and L n,k = I otherwise. Let c > 1 be the constant given by Lemma 2.2. For any x ∈ X and a ∈ R, by using Lemma 2.2, we may write

Φ κ (x, a) = +∞ n=1 E |xR nκ | -λ ; |xR κ | > e -a , . . . , |xR nκ | > e -a ≤ c λ +∞ n=1 E |R nκ | -λ ; |R κ | > e -a c , . . . , |R nκ | > e -a c
so that, by duality principle and Lemma 2.2,

Φ κ (x, a) ≤ c λ +∞ n=1 E |L nκ | -λ ; L nκ,(n-1)κ > e -a c , . . . , |L nκ | > e -a c = c λ +∞ n=1 E[|L nκ | -λ ; L nκ,(n-1)κ × L (n-1)κ > L (n-1)κ e -a c , . . . , |L nκ | > e -a c ] ≤ c λ +∞ n=1 E |L nκ | -λ ; |L nκ | > L (n-1)κ e -a c 2 , . . . , |L nκ | > e -a c 2 ≤ c 2λ +∞ n=1 E |L nκ x| -λ ; |L nκ x| > L (n-1)κ x e -a c 4 , . . . , |L nκ x| > e -a c 4 
Consequently, setting a 1 := -4 ln c and using the fact that the map a → Φ κ (x, a) is non decreasing for any a ∈ R, one may write Φ κ (x, a) ≤ Ψ(x) as long as a < a 1 .

Step 4. To simplify the notations, we assume here κ = 1; the proof is the same when κ ≥ 2. For any x ∈ X and n ≥ 0, set

X ′ n := L n • x and S ′ n := ln |L n x|; the random process (X ′ n , S ′ n ) n≥0 is a Markov walk on X × R starting from (x, 0
) and whose transitions are governed by the ones of the Markov chain (X ′ n ) n≥0 on X. To study the quantity Ψ(x), we follow the strategy developed in the case of one dimensional random walks on R with independent increments and we thus introduce the sequence (η j ) j≥0 of ladder epochs of (S ′ n ) n defined by

η 1 = 0, η j+1 = η j+1 (x) := min n > η j : ln |L n x| > ln L η j x , j ≥ 0.
For any x ∈ X, one may write

Ψ(x) = +∞ n=1 E |L n x| -λ ; ∃j ≥ 1 : n = η j = +∞ j=1 E L η j x -λ . ( 35 
) Let Q ′ denote the transition kernel of the Markov walk (X ′ n , S ′ n ) n and G Q ′ := +∞ n=0 Q ′n
its Green kernel. The sub-process (X ′ η j , S ′ η j ) j≤0 is also a Markov chain, its transition kernel Q ′ η is given by: for any bounded Borel function φ : X × R → C and for any x ∈ X, a ∈ R,

Q ′ η φ(x, a) = E φ(X ′ η 1 , a + S ′ η 1 )|X ′ 0 = x = +∞ n=1 E [φ(L n • x, a + ln |L n x|); η 1 = n] = +∞ n=1 E[φ(L n • x, a + ln |L n x|); |L 1 x| ≤ 1, • • • , |L n-1 x| ≤ 1, |L n x| > 1].
Let G ′ η denote the Green kernel associated with the process (X ′ η j , S ′ η j ) j≥0 ; by (35)

1 + Ψ(x) = +∞ j=0 E |L η j x| -λ = +∞ j=0 X R e -λa (Q ′ η ) j ((x, 0), dyda) = X R
e -λa G ′ η ((x, 0), dyda).

The Markov walk (X ′ n , S ′ n ) n≥0 has been studied by many people (see for instance [START_REF] Furstenberg | Product of random matrices[END_REF], [START_REF] Guivarc'h | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF] or [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF]). All the work are based on the fact that the transition kernel of the chain (X ′ n ) n has some "nice" spectral properties, namely its restriction to the space of Lipschitz functions on X is quasi-compact. In particular, it allows these authors to prove that the classical renewal theorem remains valid for this Markov walk on X × R as long as it is not centered,

that is π = lim n→+∞ 1 n E[ln |L n |] = 0
; in this case one may prove in particular that, for any x ∈ X, the quantity G Q ′ ((x, 0), X × [0, a]) is equivalent to a π as a → +∞ [START_REF] Guivarc'h | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF]. For the behavior as a → +∞ of G ′ η ((x, 0), X × [0, a]), the situation is way different. On one hand, it is easier since for any j ≥ 1 the random variables S ′ η j are strictly positive, one might thus expect a similar result; on the other hand, the control of the spectrum of the transition kernel Q ′ η remains unfortunately unknown in this circumstance, in particular the transition kernel Q ′ η does not even act on the space of continuous functions on X ! Nevertheless, we have the following weak result with the postponed proof at the end of this subsection. It follows that

1 + Ψ(x) = X R + * e -λa G ′ η ((x, 0), dyda) ≤ e λ +∞ a=1 e -λa G ′ η ((x, 0), X × [a -1, a]) ≤ e λ +∞ a=1 e -λa G ′ η ((x, 0), X × [0, a]) ≤ Ce λ +∞ a=1 ae -λa < +∞.
To complete the proof of Step 4, it remains to prove Fact 4.1. First, by definition of E δ , for any j ≥ 0 and x ∈ X, we may write

S ′ η j+1 -S ′ η j ≥ δ1 E δ (M η j ); setting ε j := 1 E δ (M η j ),
this yields S ′ η j ≥ δ(ε 0 + . . . + ε j-1 ) so that

G ′ η ((x, 0), X × [0, a]) = +∞ j=0 P(X ′ η j ∈ X, S ′ η j ∈ [0, a]|X ′ 0 = x) ≤ +∞ j=0 E 1 [0,a] (S ′ η j )|X ′ 0 = x ≤ +∞ j=0 E 1 [0,a] (δ(ε 0 + • • • ε j-1 )) .
To conclude, we use the fact that (ε i ) i≥0 is a sequence of i.i.d. random variables; the Elementary Renewal Theorem for the Bernoulli random walk process [(ε 0 + . . . + ε j-1 )] j≥0 implies

G ′ η ((x, 0), X × [0, a]) ≤ E   +∞ j=1 1 [0,a] (δ(ε 0 + . . . + ε j-1 ))   a.
To check that the ε j are i.i.d., we set E 0 = G \ E δ , E 1 = E δ and we fix k ≥ 1 and e 0 , . . . , e k ∈ {0, 1}; since [g 0 ∈ E e 0 , . . . ,

g n k-1 ∈ E e k-1 , η 1 = n 1 , • • • , η k = n k ] belong to σ(g 0 , • • • , g n k-1
), a straightforward computation yields

P(ε 0 = e 0 , . . . , ε k = e k ) = P(g 0 ∈ E e 0 , . . . , g η k ∈ E e k ) = 1≤n 1 <...<n k P(g 0 ∈ E e 0 , g n 1 ∈ E e 1 , . . . , g n k ∈ E e k , η 1 = n 1 , • • • , η k = n k ) = 1≤n 1 <...<n k P(g 0 ∈ E e 0 , g n 1 ∈ E e 1 , . . . , g n k-1 ∈ E e k-1 , η 1 = n 1 , • • • , η k = n k ) × P(g n k ∈ E e k ) = P(g 0 ∈ E e 0 , . . . , g η k-1 ∈ E e k-1 )µ(E e k )
and the assertion arrives by induction.

Proof of Lemma 3.2

We claim that

lim n→+∞ E x,a (q (i) n ) -1 -(q (i) ∞ ) -1 = 0. ( 36 
)
By definition, the quantities q

(i)
n are always less than or equal to 1. Therefore, (36) implies that the same property holds P x,a -almost surely for q (i)

∞ . Hence, q (i) n -q (i) ∞ = q (i) n q (i) ∞ (q (i) n ) -1 -(q (i) ∞ ) -1 ≤ (q (i) n ) -1 -(q (i) ∞ ) -1
. Using (36) again, we find that lim

n→+∞ E x,a q (i) n -q (i) ∞ = 0. In particular, lim n→+∞ P (i) x,a (Z n = 0) = lim n→+∞ E x,a q (i) n = E x,a q (i) ∞ ,
which is the assertion of (22). Finally, it remains to verify (36). From ( 11) and ( 12), for any 0 ≤ l ≤ n, it follows that

(q (i) n ) -1 -(q (i) ∞ ) -1 ≤ 1 ẽi R n 1 + l-1 k=0 γ k ẽi R k Y k+1,n - γ k ẽi R k Y k+1,∞ + +∞ k=l γ k ẽi R k Y k+1,∞ . 
Taking expectations with respect to P x,a , we obtain E x,a (q

(i) n ) -1 -(q (i) ∞ ) -1 ≤ E x,a 1 ẽi R n 1 + l-1 k=0 E x,a γ k ẽi R k Y k+1,n - γ k ẽi R k Y k+1,∞ + +∞ k=l E x,a γ k ẽi R k Y k+1,∞ .
Let us denote A n , B n and C n repectively as below,

A n = E x,a 1 ẽi R n 1 , B n = l-1 k=0 E x,a γ k ẽi R k (Y k+1,n -Y k+1,∞ ) (ẽ i R k Y k+1,n )(ẽ i R k Y k+1,∞ ) , C l = +∞ k=l E x,a γ k ẽi R k Y k+1,∞
.

By using Lemma 2.2, it is obvious that Lemma 3.3 implies

+∞ k=0 E x,a |R k | -1 < +∞. (37) 
Besides, it is also an immediate consequence of Lemma 2.2 that

A n E x,a 1 |R n | , (38) 
γ k ẽi R k (Y k+1,n -Y k+1,∞ ) (ẽ i R k Y k+1,n )(ẽ i R k Y k+1,∞ ) 1 |R k | , (39) 
C n +∞ k=l E x,a 1 |R k | . (40) 
Hence, (37) and (38) implies A n → 0 as n → ∞. For B n , using (37), (39) and the fact that Y k,n → Y k,∞ P-almost surely, we may apply the Dominated Convergence Theorem. Thanks to (37) and (40), C l can be made arbitrarily small by choosing l sufficiently great.

Proof of Lemma 3.1

Assume 0 ≤ m ≤ n. Using first (18), ( 14), and then (9), we find that

P (i) x,a (Z m = 0, Z n = 0|m ρn > 0) = P (i) x,a (Z m = 0|m ρn > 0) -P (i) x,a (Z n = 0|m ρn > 0) = E x,a q (i) m -q (i) n |m ρn > 0 = 1 P x,a (m ρn > 0) E x,a (q (i) m -q (i) n )m (ρ-1)n (X n , S n ); m n > 0 ρ ρ -1 1 h(x, a) E x,a E (q (i) m -q (i) n )h(X n , S n ); m n > 0|S 0 , ..., S n
Since 1 [mn>0] and h(X n , S n ) are σ(S 0 , ..., S n )-measurable, by ( 13) and ( 19), we can observe that P

(i) x,a (Z m = 0, Z n = 0|m ρn > 0) ρ ρ -1 1 h(x, a) E x,a E (q (i) m -q (i) n )|S 0 , . . . , S n h(X n , S n ); m n > 0 = ρ ρ -1 E x,a E q (i) m -q (i) n |S 0 , . . . , S n = ρ ρ -1 E x,a q (i) m -q (i) n = ρ ρ -1 P (i)
x,a (Z m = 0) -P

x,a (Z n = 0) . Now let first n and then m tend to +∞. By applying Lemma 3.2, the assertion arrives.

5 Appendix: sketch of the proof of Theorem 2.3

We adapt here the proof of [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF] in our setting. Identity (6) may be rewritten as

S n (x, a) = a + ln |xR n | = a + n-1 k=0 ρ(Y k ) (41) with Y k = (x • R k , M k ), k ≥ 0.
The process (Y n ) n≥0 is an homogenous Markov chain on (Ω, F, P) with values in the product space X = X × S + , with initial distribution δ x ⊗ µ and transition operator Q defined by: for any (x, g) ∈ X and any bounded Borel function ϕ : X → C, Qϕ(x, g) :=

S + ϕ(x • g, h)µ(dh).
The probability measure λ(dx dg) = ν(dx) µ(dg) on X is stationary for the Markov chain (Y n ) n≥0 .

For any a ∈ R, the sequence (Y n , S n ) n≥0 is a Markov chain on X × R whose transition probability Q is defined by: for any ((x, g), a) ∈ X × R and any bounded Borel function ψ

: X × R → C Qψ((x, g), a) = S + ψ((x • g, h), a + ρ(x, g))µ(dh).
The operator Q + is the restriction of Q to X × R + * and by τ := min{n ≥ 1 : S n ≤ 0}. the first time the random process (S n ) n becomes non-positive.

Denote by P (x,g) the probability measure generated by the finite dimensional distributions of (Y n ) n≥0 starting at Y 0 = (x, g) ∈ X and by E (x,g) the corresponding expectation. Similarly P (x,g),a denotes the probability measure generated by the finite dimensional distributions of ((Y n , S n )) n≥0 starting at (Y 0 , S 0 ) = ((x, g), a) ∈ X and by E (x,g),a the corresponding expectation.

Equality (41) states that S n (x, a) may be decomposed as a sum of the values of ρ along the trajectories of the Markov chain (Y n ) n≥0 . This is in this context that is stated in [START_REF] Grama | On the rate of convergence in the weak invariance principle for dependent random variables with applications to Markov chains[END_REF] a weak invariance principle for a one dimensional Markov walk with a control of the rate of convergence, which is the key ingredient to control the tail of the law of the entrance time in R -of the process (S n (x, a)) n≥0 . We emphasize that the quantity ρ(x, g) cannot be expressed in term of the point x • g, so that S n (x, a) may not be decomposed as a sum along the trajectories of (X n ) n≥0 , this explains why we have to introduce the new process (Y n ) n≥0 .

We follow now step by step the approach developed by these authors in the context of product of invertible matrices.

The operator Q acts on the space C b (X ) of continuous bounded functions f : X → C endowed with the supremum norm |f | ∞ = sup In this Appendix, we verify that the restriction of Q (and also a family of pertubations of Q) to some Banach subspace B ⊂ C b (X ) satisfies some spectral gap properties M1-M3 to be introduced below; for more details we refer to [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]. Under these properties and some additional moment conditions M4-M5 stated below, we have established in [START_REF] Grama | On the rate of convergence in the weak invariance principle for dependent random variables with applications to Markov chains[END_REF] a Komlos-Major-Tusnady type strong approximation result for Markov chains (see Proposition 3.3) which is one of the crucial points in our proof and the one of the main results in [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF]. The conditions M1-M5 also imply the existence of the solution θ of the Poisson equation ρ = θ -Qθ which is used in the next section to construct a martingale approximation of the Markov walk (S n ) n≥0 .

Let us now define the Banach space B. For any fix ǫ > 0 and f ∈ C b (X ) set k ε (f ) = sup Using the techniques of the paper [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], it can be checked that under H1-H3 the condition M1 below is satisfied: M1 (Banach space):

i) The constant functions belongs to B.

ii) For every (x, g) ∈ X , the Dirac measure δ (x,g) belongs to B ′ and its norm is ≤ 1. iii) B ⊆ L 1 (Q((x, g), •) for every (x, g) ∈ X iv) There exists a constant η 0 ∈ (0, 1) such that for any t ∈ [-η 0 , η 0 ] and f ∈ B the function e itρ f belongs to B.

Condition M1 iii) implies that Qf is well defined for any f ∈ B; it follows from M1 iv) that the perturbed operator Q t f = Q(e itρ f ) is also well defined on B for any t ∈ [-η 0 , η 0 ].

Combining techniques from [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] with the contraction property 2 in Proposition 2.1, on can check that the following conditions M2-M3 are satisfied: M2 (Spectral gap): The operator Q on B may be decomposed as Q = Π + R where Π is a one dimensional projector on the constant functions space and R is an operator on B with spectral radius < 1

Notice that Πf = λ(f )1 for any f ∈ B. In summary, under hypotheses H1, H2, H3 and H4, the conditions M1-M5 are satisfied. The proof of Theorem 2.3 is decomposed in several steps.

M3 (Perturbate transition operator

First M1-M3 allows to construct a martingale approximation of the sequence (M n (x, a)) n≥0 base on the existence of a solution in B of the Poisson equation ρ = (I -Q)ϕ (see [START_REF] Grama | Conditional limit theorems for products of random matrices[END_REF] section 4).

Conditions M1-M4 yields to the fact that the function V on X × R * + defined by V ((x, g), a) = lim n→+∞ E ((x,g),a) (S n ; τ > n)

for any (x, g) ∈ X and a > 0, is Q + -Harmonic. Comparing the forms of the operators P and Q implies that V ((x, g), a) = h(x • g, a + ln |xg|). Hypothesis H5 is needed to prove that this function V does not vanish on X × R + .

ξ

  (s) independently of the reproduction of other particles of all types.

ξ

  , ξ ∈ R, 1 ≤ i ≤ p, are thus C 2 -functions on [0, 1] p and we introduce 1. the random mean matrices M ξn = (M ξn (i, j)) 1≤i,j≤p = function f ξn (s) at s = 1, namely

cg

  (or simply f g) when f (x) ≤ cg(x) for any value of x. The notation f c ≍ g (or simply f ≍ g) means f c g c f.

c 1

 1 lim a→+∞ h(x, a)v(x, a) is strictly positive. For any ε > 0, by (25), it follows that 0 < β = lim a→+∞ c 1 h(x, a)v(x, a)

a) +∞ n=1 E

 n=1 x,a e -λSn ; S 0 > 0, . . . , S n > 0≤ 1 + cC(λ) h(x,a) +∞ n=1 E x,a e -λSn ; S 1 > 0, . . . , S n > 0 Now, we define a function Φ for any x ∈ X and a ∈ R as follow: Φ(x, a) := +∞ n=1 E x,a e -λSn ; S 1 > 0, . . . , S n > 0 .

  a e -λSr (1 + Φ κ (x, a)), which yields to the expected result with 0 < C(κ) = κ-1 r=0 sup ỹ∈X E ỹ,a [e -λSr ] < +∞.

Fact 4 . 1

 41 There exists C > 0 such that for any x ∈ X and a > 0G ′ η ((x, 0), X × [0, a]) = +∞ j=0 P([ln |L η j x| ≤ a) ≤ Ca.

  (g,x)∈X |f (g, x)|.

  (g, x) -f (g, ỹ)| d(x, ỹ) ǫ |g| 4ǫ + sup x∈X g =h |f (g, x) -f (h, x)| |g --H| ǫ |g| 3ǫ |h| 3ǫThe spaceB = B ε := {f ∈ C b : k ε (f ) < +∞} endowed with the norm |f | B = |f | ∞ + k ε (f )(42)the space B becomes a Banach space and also a Banach algebra. Denote by B ′ = L(B, C) the topological dual of B equipped with the dual norm | • | B ′ .

  ): There exists a constantC = C Q > 0 such that ∀n ≥ 1, ∀t ∈ [-η 0 , η 0 ] |Q n t | B ≤ C.Using H1, we readily deduce the conditions M4-M5 below: M4 (Moment condition): For any p > 2 sup (x,g)∈X sup n≥1 E 1/p (x,g) |ρ(Y n )| p < +∞. M5: The stationary probability measure λ satisfies sup n≥0 Q n ρ 2 (x, g)λ(dg dx) < +∞.