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Abstract

We propose a generic approach to accelerate gradient-based optimization algorithms with quasi-
Newton principles. The proposed scheme, called QuickeNing, can be applied to incremental first-order
methods such as stochastic variance-reduced gradient (SVRG) or incremental surrogate optimization
(MISO). It is also compatible with composite objectives, meaning that it has the ability to provide ex-
actly sparse solutions when the objective involves a sparsity-inducing regularization. QuickeNing relies on
limited-memory BFGS rules, making it appropriate for solving high-dimensional optimization problems.
Besides, it enjoys a worst-case linear convergence rate for strongly convex problems. We present exper-
imental results where QuickeNing gives significant improvements over competing methods for solving
large-scale high-dimensional machine learning problems.

1 Introduction

Convex composite optimization arises in many scientific fields, such as image and signal processing or machine
learning. It consists of minimizing a real-valued function composed of two convex terms:

min
x∈Rd

{

f(x) , f0(x) + ψ(x)
}

, (1)

where f0 is smooth with Lipschitz continuous derivatives, and ψ is a regularization function which is not
necessarily differentiable. For instance, the ℓ1-norm ψ(x) = ‖x‖1 is popular in image processing [14, 29]
for encouraging sparse solutions; composite minimization also encompasses constrained minimization when
considering extended-valued indicator functions ψ that may take the value +∞ outside of a convex set C
and 0 inside (see [22]). In general, algorithms that are dedicated to composite optimization only require to
be able to compute efficiently the proximal operator of ψ:

pψ(y) , arg min
x∈Rd

{

ψ(x) +
1

2
‖x− y‖2

}

,

where ‖ · ‖ denotes the Euclidean norm. Note that when ψ is an indicator function, the proximal operator
corresponds to the simple Euclidean projection.

To solve (1), significant efforts have been devoted to (i) extending techniques for smooth optimization
to deal with composite terms; (ii) exploiting the underlying structure of the problem—is f a finite sum of
independent terms? Is ψ separable in different blocks of coordinates? (iii) exploiting the local curvature of
the smooth term f to achieve faster convergence than gradient-based approaches when the dimension d is very
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CE23-0003-01), the program “Learning in Machines and Brains” (CIFAR), and the project Titan (CNRS-Mastodons).
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large. Typically, the first point is well understood in the context of optimal first-order methods, see [1, 36],
and the last point is tackled with effective heuristics such as L-BFGS when the problem is smooth [27, 37].
Yet, solving all these problems at the same time is challenging: this is precisely the focus of this paper.

In particular, a problem of interest that has first motivated our work is that of empirical risk minimization
(ERM); the problem arises in machine learning and can be formulated as the minimization of a composite
function f : Rd → R:

min
x∈Rd

{

f(x) ,
1

n

n
∑

i=1

fi(x) + ψ(x)

}

, (2)

where the functions fi are convex and smooth with Lipschitz continuous derivatives, and ψ is a composite
term, possibly non-smooth. The function fi measures the fit of some model parameters x to a specific
data point indexed by i, and ψ is a regularization penalty to prevent over-fitting. To exploit the sum
structure of f , a large number of randomized incremental gradient-based techniques have been proposed,
such as SAG [45], SAGA [10], SDCA [46], SVRG [47], Finito [11], or MISO [28]. These approaches access
a single gradient ∇fi(x) at every iteration instead of the full gradient (1/n)

∑n

i=1 ∇fi(x) and achieve lower
computational complexity in expectation than optimal first-order methods [1, 36] under a few assumptions.
Yet, these methods are unable to exploit the curvature of the objective function; this is indeed also the case
for variants that are accelerated in the sense of Nesterov [16, 26, 46].

To tackle (2), dedicated first-order methods are often the default choice in machine learning, but it is also
known that standard Quasi-Newton approaches can sometimes be surprisingly effective in the smooth case—
that is when ψ = 0, see, e.g., [45] for extensive benchmarks. Since the dimension of the problem d is typically
very large (d ≥ 10 000), “limited memory” variants of these algorithms, such as L-BFGS, are necessary to
achieve the desired scalability [27, 37]. The theoretical guarantees offered by L-BFGS are somewhat weak,
meaning that it does not outperform accelerated first-order methods in terms of worst-case convergence rate,
and also it is not guaranteed to correctly approximate the Hessian of the objective. Yet, it remains one of the
greatest practical success of smooth optimization. Adapting L-BFGS to composite and structured problems,
such as the finite sum of functions (2), is of utmost importance nowadays.

For instance, there have been several attempts to develop a proximal Quasi-Newton method [7, 24, 43, 48].
These algorithms typically require computing many times the proximal operator of ψ with respect to a
variable metric, which may be as computationally demanding as solving the original problem. Quasi-Newton
steps were also incorporated as local search steps into accelerated first-order methods to further enhance
their numerical performance [19]. More related to our work, L-BFGS is combined with SVRG for minimizing
smooth finite sums in [20]. The scope of our approach is broader beyond the case of SVRG. We present a
generic Quasi-Newton scheme, applicable to a large-class of first-order methods for composite optimization,
including other incremental algorithms [10, 11, 28, 45, 46] and block coordinate descent methods [39, 40]

More precisely, our main contribution is a generic meta-algorithm, called QuickeNing (the letters “Q”
and “N” stand for Quasi-Newton), which uses a given optimization method to solve a sequence of auxiliary
problems up to some appropriate accuracy, resulting in faster global convergence in practice. The resulting
scheme admits a simple interpretation: it may be seen as applying the L-BFGS algorithm with inexact (but
accurate enough) gradients to the Moreau-Yosida regularization of the objective. As a result, our approach is
(i) generic, as stated previously; (ii) despite the smoothing of the objective, the sub-problems that we solve
are composite ones, which may lead to exactly sparse iterates when a sparsity-inducing regularization is
involved, e.g., the ℓ1-norm; (iii) it admits a worst-case linear convergence rate for strongly convex problems
similar to that of gradient descent, which is typically the best guarantees obtained for L-BFGS schemes in
the literature; (iv) it is easy to use and does not require using a line search algorithm, which is sometimes
computationally expensive and difficult to calibrate in classical Quasi-Newton methods.

The idea of combining second-order or quasi-Newton methods with Moreau-Yosida regularization is in
fact relatively old. It may be traced back to variable metric proximal bundle methods [9, 18, 30], which use
BFGS updates on the Moreau-Yosida smoothing of the objective and bundle methods to approximately solve
the corresponding sub-problems. Our approach revisits this principle with a limited-memory variant (to deal
with large dimension d), with an alternative strategy to line search schemes—which is useful when f is a
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large sum of n functions as in (2)—and with restart strategies for the sub-problems with a global complexity
analysis that is more relevant than convergence rates that do not take into account the cost per iteration.

To demonstrate the effectiveness of our scheme in practice, we evaluate QuickeNing on regularized logistic
regression and regularized least-squares, which smooth and non smooth regularization penalities such as the
Elastic-Net [49]. We use large-scale machine learning datasets and show that QuickeNing performs at least
as well as the recently proposed Catalyst [26] and as the classical L-BFGS scheme in all experiments, and
significantly outperforms them in many cases.

The paper is organized as follows: Section 2 presents related work on Quasi-Newton methods such as L-
BFGS; we introduce QuickeNing as well as basic properties of the Moreau-Yosida regularization in Section 3,
and we provide a convergence analysis in Section 4; Section 5 is devoted to experiments and Section 6
concludes the paper.

2 Related work and preliminaries

The history of quasi-Newton methods can be traced back to the 1950’s [4, 23, 38]. Quasi-Newton methods
often lead to significantly faster convergence in practice compared to simpler gradient-based methods for
solving smooth optimization problems [44]. Yet, a theoretical analysis of quasi-Newton methods that explains
their impressive empirical behavior on a wide range of problems is still an open topic. Here, we review briefly
the well-known BFGS algorithm in Section 2.1, its limited memory variant [37], and a few recent extensions.
Then, we present earlier works that combine proximal point and Quasi-Newton algorithms in Section 2.2,
which is related to the strategy we use in our paper.

2.1 Quasi-Newton methods for smooth optimization

The most popular Quasi-Newton method is BFGS, named after its inventors (Broyden-Fletcher-Goldfarb-
Shanno), and its limited variant L-BFGS [38]. These approaches will be the workhorses of the QuickeN-
ing meta-algorithm. Consider a smooth convex objective f to be minimized, the BFGS method constructs
at iteration k a couple (xk, Bk) with the following update:

xk+1 = xk − αkB
−1
k ∇f(xk) and Bk+1 = Bk − Bksks

⊤
k Bk

s⊤
k Bksk

+
yky

⊤
k

y⊤
k sk

, (3)

where αk is a suitable stepsize and

sk = xk+1 − xk, yk = ∇f(xk+1) − ∇f(xk).

The condition y⊤
k sk > 0 and the positive definiteness of Bk are guaranteed as soon as f is strongly convex.

To determine the stepsize αk, Wolfe’s line-search is a simple choice which provides linear convergence rate
in the worst case. In addition, if the objective is twice differentiable and the Hessian is Lipschitz continuous,
the convergence is asymptotically superlinear [38].

The limited memory variant L-BFGS [37] overcomes the issue of storing Bk for large d, by replacing it by
another positive definite matrix—say B̄k—which can be built from a “generating list” of at most l pairs of
vectors {(ski , y

k
i )}i=0...j along with an initial diagonal matrix B̄0. Formally, B̄k can be computed by applying

at most l times a recursion similar to (3) involving all pairs of the generating list. Between iteration k
and k + 1, the generating list is incrementally updated, by removing the oldest pair in the list (when j = l)
and adding a new one. What makes the approach appealing is the ability of computing Hkz = B−1

k z for any
vector z with only O(ld) floating point operations instead of O(d3) for a naive implementation with matrix
inversion. The price to pay is that superlinear convergence becomes out of reach in contrast to BFGS.

L-BFGS is thus appropriate for high-dimensional problems (when d is large), but it still requires comput-
ing the full gradient at each iteration, which may be cumbersome in the large sum setting (2). This motivated
stochastic counterparts of the Quasi-Newton method (SQN) [6]. The direct application substituting the full
gradient ∇f(xk) by a stochastic estimate is unfortunately not convergent. Instead, the SQN method [6] uses
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a product of a sub-sampled Hessian and sk to approximate yk. SQN can be complemented by a variance
reduction scheme such as SVRG [20, 31].

2.2 Combining the proximal point algorithm and Quasi-Newton

There are several ways to extend Quasi-Newton methods for nonsmooth optimization. A first approach
consists in minimizing successive quadratic approximations. A major drawback is then the computation of
the proximal operator. Since Bk is dense and changes over the iterations, an exact solution to the proximal
operator is usually not available. An inexact variant has been analyzed in [7], but it is unclear whether or
not the quadratic approximation could be solved inexactly in an efficient manner.

A second approach consists in applying Quasi-Newton methods after Moreau-Yosida smoothing or equiv-
alently a proximal point algorithm on the objective function [5, 9, 17, 18]. The underlying idea is to first
smooth and improve the conditioning of the objective function, then apply a Quasi-Newton method on the
resulting surrogate objective function. This implies minimizing a sequence of sub-problems. Formally, the
Moreau-Yosida regularization of the objective f is defined as the infimal convolution

F (x) , min
z∈Rp

{

f(z) +
κ

2
‖z − x‖2

}

, (4)

where κ is a positive scalar. The image p(x) of x under the proximal mapping is defined as the solution of the
previous problem, which is unique by strong convexity. The Moreau-Yosida regularization admits classical
properties characterizing the smoothness of the Moreau envelope; see [25] for elementary proofs.

Proposition 1 (Basic properties of the Moreau-Yosida regularization). Let us consider the Moreau-
Yosida regularization F of the convex function f defined in (4); Then, the following statements hold

1. Minimizing f and F are equivalent in the sense that

min
x∈Rp

F (x) = min
x∈Rp

f(x),

and the solution set of the two above problems coincide with each other.

2. F is continuously differentiable even when f is not and

∇F (x) = κ(x− p(x)), (5)

where p(x) is the proximal mapping, which we have defined previously as the solution of (4). Moreover
the gradient ∇F is Lipschitz continuous with constant LF = κ.

3. F is convex; moreover, when f is µ-strongly convex with respect to the Euclidean norm, F is µF -strongly
convex with µF = µκ

µ+κ .

Interestingly, F inherits all the convex properties of f and more importantly it is always continuously
differentiable. Moreover, F can be arbitrarily well conditioned by choosing a small value of κ. Naturally, a
naive approach for minimizing a possibly non-smooth function f is to apply a first-order method on F since
both functions admit the same solutions, which yields well-known algorithms.

The proximal point algorithm. Consider gradient descent with step size 1/LF = 1/κ to minimize F :

xk+1 = xk − 1

κ
∇F (xk).

By rewriting the gradient ∇F (xk) as κ(xk − p(xk)), we obtain

xk+1 = p(xk) = arg min
z∈Rp

{

f(z) +
κ

2
‖z − xk‖2

}

. (6)

This is exactly the proximal point algorithm [41].
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Accelerated inexact proximal point algorithm. Since gradient descent on F yields the proximal point
algorithm, it is also natural to apply an accelerated first-order method to get faster convergence. To that
effect, Nesterov’s algorithm [32] uses a two-stage update:

xk+1 = yk − 1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a specific extrapolation parameter (see [33]). We may now rewrite the update using the value
of ∇F given in (5), which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is known as the accelerated proximal point algorithm introduced by Güler [21]. These techniques are
conceptually interesting, but they are not directly applicable in general, since computing the gradient of F
requires the exact solution p(x) of (4), for which no closed-form is typically available. It is thus necessary
to use an approximate solution, which implies defining an inexactness criterion that is easy to check and
to control the accuracy of the gradient approximation to ensure convergence. This is notably the approach
studied in [12, 21, 42, 26].

Quasi-Newton after the Moreau-Yosida regularization. As mentioned previously, Quasi-Newton
approaches have also been applied after Moreau-Yosida smoothing in various ways. For instance, in [9], the
sub-problems are solved inexactly by proximal bundle methods, and in [17] by using a sophisticated sufficient
descent criterion. The proposed QuickeNing algorithm, which will be presented in the next section, follows
this line of research. In contrast to previous works, we propose several restart strategies for solving the sub-
problems and give a convergence analysis taking into account the inner-loop complexity. Furthermore, we
propose a simple strategy to remove the need of a line-search scheme and simple rules to set the parameters.

3 QuickeNing: a Quasi-Newton meta-algorithm

We now present the QuickeNing method in Algorithm 1, which consists of applying L-BFGS rules on the
smoothed objective F with inexact gradients. Each gradient approximation is the result of a minimization
problem tackled with the algorithm M, used as a sub-routine. The outer loop of the algorithm performs L-
BFGS quasi-Newton updates. The method M can be any algorithm of the user’s choice, as long as it enjoys
linear convergence rate for strongly convex problems. More details about the choice of the parameter κ and
about the inexactness criterion to use will be given next.

3.1 The main algorithm

We now discuss the main algorithm components and its main features.

Outer-loop: inexact L-BFGS. The L-BFGS rule is the standard one and consists in updating incremen-
tally a generating list of vectors {(si, yi)}i=1...j , which implicitly defines the L-BFGS matrix. We use here
the two-loop recursion detailed in [38, Algorithm 7.4] and use skipping steps when the condition s⊤

i yi > 0
is not satisfied, in order to ensure the positive-definiteness of the L-BFGS matrix Hk (see [15]). A more
stringent condition for skipping steps may also be used for specific methods M, as discussed in Appendix A.

Inner-loop: approximate Moreau-Yosida envelope. The minimization algorithm M is used to com-
pute an approximate Moreau-Yosida envelope of the objective. The procedure ApproxGradient () calls the
minimization algorithm M to minimize the sub-problem (8). When the problem is solved exactly, the func-
tion returns the exact values g = ∇F (x), Fz = F (x) and z = p(x). Otherwise, a stopping criterion should
be used. In this paper, we consider the three following cases:
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Algorithm 1 QuickeNing

input Initial point x0 in R
p; number of iterations K; parameter κ > 0; minimization algorithm M.

1: Initialization: (g0, F0, z0) = ApproxGradient (x0,M); L-BFGS matrix H0 = (1/κ)I.
2: for k = 0, . . . ,K − 1 do
3: Perform the Quasi-Newton step

xtest = xk −Hkgk.

4: Estimate the new gradient and the Moreau-Yosida function value

(gtest, Ftest, ztest) = ApproxGradient (xtest,M) .

5: if sufficient approximate decrease is obtained

Ftest ≤ Fk − 1

2κ
‖gk‖2, (7)

then
6: Accept the new iterate: (xk+1, gk+1, Fk+1, zk+1) = (xtest, gtest, Ftest, ztest).
7: else
8: Update the current iterate with the proximal mapping: xk+1 = zk.

(gk+1, Fk+1, zk+1) = ApproxGradient (xk+1,M) .

9: end if
10: update Hk+1 = L-BFGS(Hk, xk+1 − xk, gk+1 − gk).
11: end for
output last proximal mapping zK (solution).

Algorithm 2 Generic procedure ApproxGradient

input Current point x in R
p; smoothing parameter κ > 0.

1: Compute the approximate proximal mapping using an optimization method M:

z ≈ arg min
v∈Rd

{

h(v) , f(v) +
κ

2
‖v − x‖2

}

, (8)

using the restart strategies and stopping criterions described later in this section.
2: Estimate the gradient ∇F (x) of the Moreau-Yosida objective function

g = κ(x− z).

output approximate gradient estimate g, objective value Fa , h(z), proximal mapping z.
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(a) defining a pre-defined decreasing sequence (εk)k≥0 and stopping criterion based on function values—
that is, stop the optimization method M when the approximate solution of (8) satisfies h(z)−h∗ ≤ εk,
where where h∗ = minz∈Rd h(z), which may be checked by computing a duality gap. This is the less
practical of the three strategies presented here.

(b) defining an adaptive sequence (εk)k≥0, which depends on quantities that are available at iteration k.

(c) using a pre-defined budget TM in terms of number of iterations of the method M at iteration k.

Section 4 will provide theoretical and practical insight about these parameter choices. Before that, we discuss
the requirements on f and M and restart strategies to solve the sub-problems.

Requirements on f . When f is µ-strongly-convex, we show that the method achieves a linear convergence
rate (which takes into account the complexity of solving the sub-problems with M); to obtain this guarantee,
the accuracy for solving the sub-problems needs to decrease at the same linear rate. In principle, all strategies
(a)-(b)-(c) above may be used to stop M, as discussed in Section 4.

When f is convex but not strongly convex (meaning µ = 0), it is possible to achieve the classical O(1/k)
worst-case convergence rate on function values, by using a particular strategy (b) and by replacing the
approximate descent condition (7) by a slightly stronger one f(xtest) ≤ f(zk), see again details in Section 4.

Requirements on M and restarts. We have mentioned that QuickeNing applies to methods M with
linear convergence rates for strongly-convex problems. More precisely, we consider methods M that are
always able produce a sequence of iterates (wt)t≥0 for solving each sub-problem (8) such that

h(wt) − h∗ ≤ CM(1 − τM)t(h(w0) − h∗) for some constants CM, τM > 0, (9)

where w0 is the initial point given to M. When (9) is satisfied, we call M a primal method. QuickeNing can
also afford non-deterministic methods M that satisfy (9) in expectation; in such a case, our complexity
results also hold in expectation. The condition typically holds for many primal gradient-based optimization
techniques, such as block-coordinate descent algorithms [35, 40], or some incremental algorithms [10, 45].
The restart strategy derived from our convergence analysis in Section 4 is simply w0 = xtest.

Then, we also consider the class of dual methods MISO/Finito [11, 28], which are analyzed in Appendix A,
where the convergence rate of M is stated in terms of dual certificate instead of primal quantities h(wt)−h∗.
For such approaches, we consider at iteration k the restart strategy w0 = zk + κ

κ+µ(xtest − xk), which was

originally used in the accelerated stochastic dual coordinate ascent method [46] and in Catalyst [26]. Finally,
before giving more precise theoretical statements, we discuss briefly two important features of the algorithm.

Handling composite objective functions. In machine learning or signal processing, convex composite
objectives (1) with a non-smooth penalty ψ are typically formulated to encourage solutions with specific
characteristics; in particular, the ℓ1-norm is known to provide sparsity. Smoothing techniques [34] may allow
us to solve the optimization problem up to some chosen accuracy, but they provide solutions that do not
inherit the properties induced by the non-smoothness of the objective. To illustrate what we mean by this
sentence, we may consider smoothing the ℓ1-norm, leading to a solution vector with small coefficients, but
not with exact zeroes. When the goal is to perform model selection—that is, understanding which variables
are important to explain a phenomenon, exact sparsity is seen as an asset, and optimization techniques
dedicated to composite problems such as FISTA [1] are often preferred.

Then, one might be concerned that our scheme operates on the smoothed objective F , leading to iter-
ates (xk)k≥0 that may suffer from the above “non-sparse” issue, assuming that ψ is the ℓ1-norm. Yet, our
approach also provides iterates (zk)k≥0 that are computed using the original optimization method M we wish
to accelerate. When M handles composite problems without smoothing, typically when M is a proximal
block-coordinate, or incremental method, the iterates (zk)k≥0 may be sparse. For this reason, our theoretical
analysis presented in Section 4 studies the convergence of the sequence (f(zk))k≥0 to the solution f∗.
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On the absence of line-search scheme. Another key property of the QuickeNing algorithm is that it
does not require using a line-search scheme to select a step-size, which is typically necessary to ensure the
monotonic descent (and convergence) of classical BFGS and L-BFGS algorithms [37]. In the context of the
Moreau-Yosida regularization, any line-search would be prohibitive, since it would require to evaluate the
function F multiple times, hence solving the sub-problems (8) as many times at every iteration.1 Here, we
choose a simple strategy that selects xk+1 = zk when the sufficient descent condition (7) is not satisfied. zk is
indeed a good candidate since it is obtained by performing one step of the inexact proximal point algorithm,
which we have described above, and whose convergence properties are well understood. In practice, we have
observed that the sufficient decrease condition is almost all the time satisfied, given the choice of parameters
provided in the experimental section.

4 Convergence and complexity analysis

In this section, we study the convergence of the QuickeNing algorithm—that is, the rate of convergence to
zero of the quantities (f(zk)−f∗)k≥0 and (F (xk)−F ∗)k≥0, and also its computational complexity, which takes
into account the cost of solving the sub-problems (8). We consider several cases, leading to different variants
of the parameter choices, restart and approximation strategies. We apply QuickeNing to the MISO/Finito
algorithms and establish the resulting global complexity bounds. We start by stating the main properties of
the gradient approximation in Section 4.1. Then, we analyze the convergence of the outer loop algorithm in
Section 4.2, and then Section 4.3 is devoted to the global complexity analysis.

4.1 Properties of the gradient approximation

The next lemma is classical and provides approximation guarantees about the quantities returned by the
ApproxGradient procedure (Algorithm 2); see [3, 18]. We recall here the proof for completeness.

Lemma 1 (Approximation quality of the gradient approximation). Consider a vector x in R
d, a

positive scalar ε and compute

z ≈ arg min
v∈Rd

{

h(v) , f(v) +
κ

2
‖v − x‖2

}

,

such that h(z) − h∗ ≤ ε, where h∗ = minv∈Rd h(v). As in Algorithm 2, define g = κ(x − z) and Fa = h(z).
Then, the following inequalities hold

F (x) ≤ Fa ≤ F (x) + ε, (10)

‖z − p(x)‖ ≤
√

2ε

κ
, (11)

‖g − ∇F (x)‖ ≤
√

2κε. (12)

Proof. (10) is straightforward by definition of h(z). Since f is convex, the function h is κ-strongly convex,
and (11) follows from

κ

2
‖z − p(x)‖2 ≤ h(z) − h(p(x)) = h(z) − h∗ ≤ ε,

where we recall that p(x) minimizes h. Finally, we obtain (12) from

g − ∇F (x) = κ(x − z) − κ(x− p(x)) = κ(p(x) − z),

by using the definitions of g and the property (5).

1Note that in the context of BFGS applied to F , a heuristic line-search that requires evaluating f instead of F is also
proposed in [9], but this heuristic does not guarantee the algorithm convergence and is still computationally demanding when
f is a large sum of functions as in (2).

8



This lemma allows us to quantify the quality of the gradient and function value approximations in terms
of ε, which is a key to control the error accumulation of our algorithm. Before moving to a first convergence
result, a few additional technical inequalities are needed.

Lemma 2 (Simple inequalities regarding the gradient approximation). Consider the same quantities
introduced in Lemma 1. Then,

f(z) = Fa − 1

2κ
‖g‖2, (13)

1

2
‖∇F (x)‖2 − 2κε ≤ ‖g‖2 ≤ 2(‖∇F (x)‖2 + 2κε). (14)

Proof. Eq. (13) is obtained by using the definitions of g and noticing that Fa = h(z). Eq. (14) follows from

‖∇F (x)‖2 ≤ 2(‖∇F (x) − g‖2 + ‖g‖2)

≤ 2(2κε+ ‖g‖2) (from (12)).

Interchanging ∇F (x) and g gives the right-hand side inequality.

4.2 Convergence analysis of the outer loop

We are now in shape to establish the convergence of the QuickeNing meta-algorithm, without considering
yet the cost of solving the sub-problems (8). We first remark that the following relation always holds

(gk, Fk, zk) = ApproxGradient(xk,M) , (15)

which allows us to apply Lemma 2 for all k ≥ 0. In the following analysis, we will always call εk the precision
(in the sense of Lemma 1) of solving the sub-problem (8) related to the call (15).

Lemma 3 (Approximate descent property). Consider the sequences (xk)k≥0 and (zk)k≥0 generated by
Algorithm 1 where zk is obtained by solving a sub-problem (8) with accuracy εk. Then,

F (xk+1) ≤ f(zk) ≤ F (xk) − 1

4κ
‖∇F (xk)‖2 + 2εk. (16)

Proof. By (13), we have

f(zk) = Fk − 1

2κ
‖gk‖2.

To show the first inequality, we consider two cases:

• When the condition (7) is violated, then we set xk+1 = zk. As a result,

F (xk+1) = min
z∈Rk

{

f(z) +
κ

2
‖z − xk+1‖2

}

≤ f(xk+1) = f(zk).

• Otherwise, we have F (xk+1) ≤ Fk+1 ≤ Fk − 1
2κ‖gk‖2 = f(zk).

Thus, we have F (xk+1) ≤ f(zk) in both cases and we may now prove the second inequality:

f(zk) = Fk − 1

2κ
‖gk‖2

≤ F (xk) + εk −
(

1

4κ
‖∇F (xk)‖2 − εk

)

(from (10) and (14))

= F (xk) − 1

4κ
‖∇F (xk)‖2 + 2εk.

This concludes the proof.
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This lemma gives us a first intuition about the natural choice of the accuracy εk to use, which should be
of the same order as ‖∇F (xk)‖2. Unfortunately, the quantity ‖∇F (xk)‖2 is not known since computing its
value requires solving exactly the subproblem (8). We propose in the next section several practical strategies
to set the sequences (εk)k≥0. Before that, we now use the approximate descent property of the previous
lemma to control the accumulation of errors across iterations.

4.2.1 Strongly-convex objectives.

We start by analyzing the convergence of our algorithm for strongly-convex objectives.

Proposition 2 (Convergence of Algorithm 1 with theoretical sequence (εk)k≥0.). Assume that f
is µ-strongly convex and define ρ = µ

4(µ+κ) . Consider the sequences (xk)k≥0 and (zk)k≥0 generated by

Algorithm 1 where zk is obtained by solving a sub-problem (8) with accuracy εk where

εk ≤ 1

16κ
‖∇F (xk)‖2. (17)

Then,

F (xk+1) − F ∗ ≤ f(zk) − f∗ ≤ (1 − ρ)k+1 (f(x0) − f∗).

Proof. We may apply Lemma 3, and from (16), we obtain

F (xk+1) ≤ f(zk) ≤ F (xk) − 1

8κ
‖∇F (xk)‖2

≤ F (xk) − F ∗ − µF
4κ

(F (xk) − F ∗)

≤ (1 − ρ) (F (xk) − F ∗)

≤ (1 − ρ)
k+1

(f(x0) − f∗),

where the second inequality uses a classical relation [33, Theorem 2.1.10] for strongly-convex functions, and
the third one simply uses the definition of ρ given in Proposition 4.

The previous proposition is interesting from a theoretical point of view, but, as discussed previously, the
quantity ‖∇F (xk)‖2 is unknown in advance. Therefore, the above criterion does not seem practical at first
sight. The next proposition presents one way to use them concretely.

Proposition 3 (On using Proposition 2 in practice). The following condition implies the inequality (17)
in Proposition 2:

εk ≤ 1

36κ
‖gk‖2.

Proof. We may use (14) from Lemma 2, which gives

‖gk‖2 ≤ 2

(

‖∇F (xk)‖2 +
1

18
‖gk‖2

)

,

which implies
4

9
‖gk‖2 ≤ ‖∇F (xk)‖2 and thus εk ≤ 1

36κ
‖gk‖2 ≤ 1

16κ
‖∇F (xk)‖2.

While we do have access to ‖∇F (xk)‖2, we do have access to the estimate gradient gk = κ(xk−zk). This
immediately suggests the following stopping criterion when applying the method M to (8)

h(wt) − h∗ ≤ κ

36
‖wt − x‖2 (18)
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where (wt)t≥0 is the sequence produced by M to solve the sub-problem (8). Again, such a condition can
often be checked by computing duality gap. This choice ensures the linear convergence of the sequences
(F (xk))k≥0 and (f(zk))k≥0 to f∗. We shall also see in Section 4.3 that the condition may also be enforced
by simply using a constant number of iterations of the method M when the right restart strategy is used.
Another possibility is to use a pre-defined sequence (εk)k≥0, similar to Catalyst [26].

Proposition 4 (Convergence of Algorithm 1 with pre-defined sequence). Assume that f is µ-
strongly convex and define ρ = µ

4(µ+κ) . Consider the sequences (xk)k≥0 and (zk)k≥0 generated by Algorithm 1

where zk is obtained by solving a sub-problem (8) with accuracy εk for all k. Then,

F (xk+1) − F ∗ ≤ f(zk) − f∗ ≤ (1 − 2ρ)
k+1

(f(x0) − f∗) + 2

k
∑

i=0

(1 − 2ρ)
k−i

εi.

Proof. First, we recall from Proposition 1 that F is µF -strongly convex with parameter µF = µκ
µ+κ and that

the optimal value of the objectives f and F coincide—in other words, and F ∗ = f∗. We may then apply
Lemma 3 and

F (xk+1) − F ∗ ≤ f(zk) − f∗ ≤ F (xk) − F ∗ − 1

4κ
‖∇F (xk)‖2 + 2εk,

≤ F (xk) − F ∗ − µF
2κ

(F (xk) − F ∗) + 2εk,

≤ (1 − 2ρ) (F (xk) − F ∗) + 2εk,

≤ (1 − 2ρ)
k+1

(F (x0) − F ∗) + 2

k
∑

i=0

(1 − 2ρ)
k−i

εi,

≤ (1 − 2ρ)
k+1

(f(x0) − f∗) + 2

k
∑

i=0

(1 − 2ρ)
k−i

εi,

where the last inequality simply comes from the upper-bound F ≤ f .

Corrolary 1 (Recommended pre-defined sequence (εk)k≥0). If the sequence (εk)k≥0 in Proposition 4
satisfies

εk =
1

2
C(1 − ρ)k+1 with C ≥ f(x0) − f∗.

then

F (xk+1) − F ∗ ≤ f(zk) − f∗ ≤ C

ρ
(1 − ρ)

k+2
(f(x0) − f∗). (19)

Proof. From Proposition 4, we have

F (xk+1) − F ∗ ≤ f(zk) − f∗ ≤ (1 − 2ρ)
k+1

(f(x0) − f∗) + 2

k
∑

i=0

(1 − 2ρ)
k−i

εi,

≤ (1 − 2ρ)
k+1

C +

k
∑

i=0

(1 − 2ρ)
k−i

(1 − ρ)i+1C,

= C
(1 − ρ)k+2 − (1 − 2ρ)k+2

(1 − ρ) − (1 − 2ρ)
,

≤ C

ρ
(1 − ρ)k+2.

We remark that, of course, the quantity f(x0) − f∗ is unknown in practice, but the proposition only
requires an upper-bound, e.g., a duality gap, or simply f(x0) if the function is non-negative. Next, we
present a similar complexity analysis for convex, but not strongly-convex objectives.
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4.2.2 Convex but not strongly-convex objectives.

The goal of this section is to show that a minor modification of the algorithm yields the classical O(1/k)
convergence rate of the sequences (F (xk))k≥0 and (f(zk))k≥0, which can be shown to be slightly stronger than
the previous one, when the accuracy εk is small enough. Specifically, we replace the descent condition (7) by
f(xtest) ≤ f(zk). We may now use the new descent condition to derive a convergence rate for non-strongly
convex function.

Proposition 5 (Convergence of Algorithm 1 for convex, but not strongly-convex objectives).
Let f be a convex function, which attains its minimum at x∗. Assume that the level sets of f are bounded.
More precisely, assume that there exists R > 0 such that

∀y ∈ R
p s.t. f(y) ≤ f(x0) then ‖y − x∗‖ ≤ R.

Assume that the sub-problems (8) are solved up to accuracy εk ≤ 1
2κ‖gk‖2 for any k, and replace the descent

condition (7) in Algorithm 1 by f(xtest) ≤ f(zk); then, the sequence (xk)k≥0 satisfies

f(xk) − f∗ ≤ 2κR2

k + 3
.

Proof. First, we remark that with the new condition, we always have

f(xk+1) ≤ f(zk),

since xk+1 = zk when the descent condition f(xtest) ≤ f(zk) is not satisfied. Moreover, according to
Lemma 1,

f(zk) +
κ

2
‖zk − xk‖2 = Fk ≤ F (xk) + εk,

and then, by combining the two previous inequalities

f(xk+1) ≤ f(zk) ≤ F (xk) − κ

2
‖zk − xk‖2 + εk = F (xk) − 1

2κ
‖gk‖2 + εk ≤ F (xk).

This relation allows us to use a similar proof technique introduced in [36] in the context of the proximal
gradient descent method

f(xk+1) ≤ F (xk) = min
z∈Rp

{

f(z) +
κ

2
‖z − xk‖2

}

≤ min
α∈[0,1]

{

f(αx∗ + (1 − α)xk) +
κα2

2
‖x∗ − xk‖2

}

≤ min
α∈[0,1]

{

αf(x∗) + (1 − α)f(xk) +
κα2

2
‖x∗ − xk‖2

}

.

Since f(xk) is necessarily decreasing (take α = 0 in the previous relation), we may use the bounded level set
assumption, which leads to

f(xk+1) − f∗ ≤ min
α∈[0,1]

{

(1 − α)(f(xk) − f∗) +
κα2R2

2

}

.

1. If f(xk) − f∗ ≥ κR2, then α∗ = 1 and f(xk+1) − f∗ ≤ κR2

2 .

2. Otherwise, α∗ = f(xk)−f∗

κR2 , which gives

rk+1 ≤ rk(1 − rk
2κR2

) ≤ κR2

2
,

where rk , f(xk) − f∗. Thus

1

rk+1
≥ 1

rk(1 − rk

2κR2 )
≥ 1

rk

(

1 +
rk

2κR2

)

=
1

rk
+

1

2κR2
.

12



In both case, r1 ≤ κR2

2 and there
1

rk+1
≥ 1

r1
+

k

2κR2
≥ k + 4

2κR2
,

which is sufficient to conclude.

4.3 Complexity analysis of the inner loop

In this section, we compute the complexity of solving the sub-problems (8) using the method M, which allows
us to obtain the global complexity of QuickeNing, when using the various approximation strategies described
in the previous section. We analyze here primal approaches M, which achieve the convergence guarantees (9),
and present in Appendix A a similar analysis for the approaches MISO/Finito whose convergence rate does
not satisfy (9). In both cases, our main result is that all sub-problems can be solved with an appropriate
accuracy in a constant number TM of iterations. One of the key is to choose the right restart point, as detailed
next. The first lemma characterizes the quality of the initialization w0 = x for solving the sub-problem (8)
when the objective function is smooth.

Lemma 4 (Restart for primal methods - smooth case). If f differentiable with L-Lipschitz continuous
gradients, we can initialize the method M with w0 = x for solving (8). Then, we have the guarantee that

h(w0) − h∗ ≤ L+ κ

2κ2
‖∇F (x)‖2. (20)

Proof. Denote by w∗ the minimizer of h. Then, we have the optimality condition ∇f(w∗) + κ(w∗ − x) = 0.
As a result,

h(w0) − h∗ = f(x) −
(

f(w∗) +
κ

2
‖w∗ − x‖2

)

≤ f(w∗) + 〈∇f(w∗), x− w∗〉 +
L

2
‖x− w∗‖2 −

(

f(w∗) +
κ

2
‖w∗ − x‖2

)

=
L+ κ

2
‖w∗ − x‖2

=
L+ κ

2κ2
‖∇F (x)‖2.

The inequality in the proof of Lemma 4 relies on the smoothness of f , which does not hold for composite
problems. The next lemma addresses this issue.

Lemma 5 (Restart for primal methods - composite case). Consider the composite optimization
problem (1). We may initialize the method M for solving (8) with

w0 = arg min
w∈Rd

{

f0(x) + 〈∇f0(x), w − x〉 +
L+ κ

2
‖w − x‖2 + ψ(w)

}

. (21)

Then,

h(w0) − h∗ ≤ L

2κ2
‖∇F (x)‖2.

Proof. We use the inequality corresponding to Lemma 2.3 in [1]: for any w,

h(w) − h(w0) ≥ L′

2
‖w0 − x‖2 + L′〈w0 − x, x− w〉, (22)

with L′ = L+ κ. Then, we apply this inequality to w = w∗, and

h(w0) − h∗ ≥ −L′

2
‖w0 − x‖2 − L′〈w0 − x, x− w∗〉 ≤ L′

2
‖x− w∗‖2 =

L+ κ

2κ2
‖∇F (x)‖2.
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The lemmas presented above are important, since they allow us to derive the global complexity of
QuickeNing in the scenarios described in Propositions 2, 3, and 5. Specifically, it shows us that the conditions
in both cases will be satisfied in a constant number of iterations of the method M.

Proposition 6 (Inner-loop complexity for Algorithm 1). Assume that f is differentiable with L-
Lipschitz continuous gradients. Consider Algorithm 1 with the restart strategy described in Lemma 4 or in
Lemma 5. Assume that the primal method M applied in the inner loop produces a sequence (wt)t≥0 for each
sub-problem (8) such that

h(wt) − h∗ ≤ CM(1 − τM)t(h(w0) − h∗) for some constants CM, τM > 0. (23)

Then, the sub-problems are solved with enough accuracy to apply Propositions 2, 3, and 5 in at most TM

iterations with

TM =
1

τM

log

(

19CM

L+ κ

κ

)

.

Proof. The proposition is a direct consequence of the restart strategy in previous lemmas. Consider at
iteration k, we want to approximate the proximal mapping according to xk. With the given TM (which we
abbreviate by T ), we have

h(wT ) − h∗ ≤ CM(1 − τM)T (h(w0) − h∗)

≤ CMe−τMT (h(w0) − h∗)

≤ CMe−τMT L+ κ

2κ2
‖∇F (xk)‖2 (By Lemma 4 and Lemma 5)

=
1

38κ
‖∇F (xk)‖2.

It reamins to show that this accuracy is in fact small enough to apply Propositions 2, 3, and 5. From
Lemma 2, we know that ‖gk‖ and ‖∇F (xk)‖ are related through:

‖∇F (xk)‖2 ≤ ‖gk‖2 + 2κεk ≤ ‖gk‖2 +
1

19
‖∇F (xk)‖2.

Thus

h(wT ) − h∗ ≤ 1

38κ
‖∇F (xk)‖2 ≤ 1

36κ
‖gk‖2.

This is exactly the accuracy required in Proposition 3. From which we easily derived the accuracy in
Propositions 2 and 5.

4.4 Global complexity of QuickeNing

Finally, we can use the previous result to upper-bound the complexity of the QuickeNing algorithm in terms
of iterations of the method M for minimizing f up to ε.

Proposition 7 (Worst-case global complexity for Algorithm 1). Under the setting of Proposition 6,
the number of iterations of the method M (or expected number if M is non-deterministic) to guarantee the
optimality condition f(zk) − f∗ ≤ ε is

• for µ-strongly-convex problems:

2TM × µ+ κ

µ
log

(

f(x0) − f∗

ε

)

= 2
µ+ κ

τMµ
log

(

f(x0) − f∗

ε

)

log

(

19CM

L+ κ

κ

)

.

• for convex but not strongly convex problems:

2TM × 2κR2

ε
=

4κR2

τMε
log

(

19CM

L+ κ

κ

)

.
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Proof. Since in the worst case, there are two proximal problems to be solved at each outer-loop iteration,
the total number of call of method M is at most 2TM times the number of outer-loop iterations. The result
follows immediately from Propositions 2 and 5.

We give below the worst-case global complexity of QuickeNing when applied to two optimization meth-
ods M of interest. As we shall see, in terms of worst-case complexity bounds, QuickeNing does not lead
to an improved convergence rate. It is worthwhile to underline, though, that this result is not surprising
since it is often the case for L-BFGS-type methods, for which an important gap remains between theory and
practice. When comparing the vanilla L-BFGS algorithm with the gradient descent method, one outperforms
the other in many practical cases, but never in theory.

Proposition 7 and its application to the two examples below show that, in terms of worse-case complexity,
the QuickeNing scheme leaves the convergence rate unchanged. Linearly-converging methods remain linear-
converging when used within the QuickeNing scheme.

Example 1. Consider gradient descent with fixed constant step-size 1/L as the optimization method M.
Gradient descent (GD) minimizes f to ε accuracy in L/µ log(1/ε) iterations. Quickening-GD minimizes f
to ε accuracy in 2(L+ κ)/µ log(1/ε) iterations (when ignoring logarithmic terms).

Example 2. Consider the stochastic variance-reduced gradient (SVRG) as the optimization method M.
SVRG minimizes f to ε accuracy in

O

(

max

{

n,
L

µ

}

log

(

1

ε

))

iterations in expectation. QuickeNing-SVRG with minimizes f to ε accuracy in

O

(

max

{

µ+ κ

µ
n,
L+ κ

µ

}

log

(

1

ε

))

iterations in expectation.

Choice of κ. The worst-case complexity theory also does not seem to offer any guidance regarding the
choice of κ for the QuickeNing acceleration to be most effective. We shall experiment with a heuristic,
consisting in choosing the κ that would lead to the most acceleration for the related Catalyst acceleration
scheme [26]. We present empirical evidence in support of this heuristic in Section 5.

5 Experiments and practical details

In this section, we present experimental results obtained by applying QuickeNing on SVRG (Section 5.3) and
on the proximal gradient descent algorithm ISTA (Section 5.4), and we compare the resulting methods to
other acceleration techniques and to the L-BFGS algorithm. We also study the behavior of QuickeNing when
changing the smoothing parameter κ and the limited-memory parameter l (Section 5.5). Before that, we
first present in Section 5.1 the formulations and datasets that we use, and also discuss in Section 5.2 various
experimental and practical choices.

5.1 Formulations and datasets

We consider three common optimization problems in machine learning and signal processing. The problems
may admit a particular structure (large finite sum, composite, strong convexity). For each formulation, we
also consider a training set (bi, ai)

n
i=1 of n data points, where the bi’s are scalars in {−1,+1} and the ai are

feature vectors in R
d. Then, the goal is to fit a linear model x in R

p such that the scalar bi can be well
predicted by the inner-product ≈ a⊤

i x, or by its sign. Specifically, the three formulations we consider are
listed below.
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• ℓ2-regularized Logistic Regression:

min
x∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−bi aTi x)
)

+
µ

2
‖x‖2,

which leads to a µ-strongly convex smooth optimization problem.

• ℓ1-regularized Linear Regression (LASSO):

min
x∈Rd

1

2n

n
∑

i=1

(bi − aTi x)2 + λ‖x‖1,

which is non smooth and convex but not strongly convex.

• ℓ1 − ℓ2
2-regularized Linear Regression (Elastic-Net):

min
x∈Rd

1

2n

n
∑

i=1

(bi − aTi x)2 + λ‖x‖1 +
µ

2
‖x‖2,

which is based on the Elastic-Net regularization [49] leading to strongly-convex optimization problem.

Since we normalize the feature vectors ai, a natural upper-bound on the Lipschitz constant L of the un-
regularized objective can be easily obtained with Llogistic = 1/4, Lelastic-net = 1 and Llasso = 1. In the
experiments, we consider relatively ill-conditioned problems with the regularization parameter µ = 1/(100n).
Experiments with other values of µ are provided in the supplemental material. The ℓ1-regularization param-
eter is set to λ = 1/n for the Elastic-Net formulation; for the Lasso problem, we consider a logarithmic grid
10i/n, with i = −3,−2, . . . , 3, and we select the parameter λ that provides a sparse optimal solution closest
to 10% non-zero coefficients.

Datasets. We consider four standard machine learning datasets with different characteristics in terms of
size and dimension, which are described below:

name covtype alpha real-sim rcv1

n 581 012 250 000 72 309 781 265
d 54 500 20 958 47 152

5.2 Choice of hyper-parameters and variants

Before presenting the numerical results, we discuss the choice of default parameters used in the experiments
as well as different variants.

Choice of method M. We consider the acceleration of the proximal SVRG algorithm [47] since it is able
to adapt to the problem structure we consider: large sum of functions and composite regularization. We
also consider accelerating the ISTA algorithm [1], which allow us to perform a comparison with the natural
baselines FISTA and L-BFGS for smooth problems.

Stopping criteria for the inner loop. The default stopping criteria is to solve the subproblem until
accuracy εk such that εk ≤ 1

36 ‖gk‖2, which reduces to the simple criterion (18). Although we have shown
that such accuracy is attainable in constant TM iteration, the theoretical value of TM could be very large
depending on the conditioning of the problem. A natural heuristic is to always perform exactly one pass
over the data in the inner loop without checking any stopping criteria as proposed in [26].
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When applying QuickeNing to SVRG and ISTA, we call the one-pass variant QuickeNing-SVRG1 and
QuickeNing-ISTA1, respectively, and the one using stopping criterion (18) QuickeNing-SVRG2 and
QuickeNing-ISTA2. Finally, another variant that could be considered is to give a pre-defined sequence of
(εk)k≥0 and stop when the current accuracy is smaller than εk, which is checked by using Fenchel duality;
typically, this variant is less practical and is thus omitted from the experiments.

Choice of regularization parameter κ. As the global complexity is a function of κ, the most intuitive
choice is to choose κ to minimize the complexity. However, such analysis leads to κ = 0, which is not quite
helpful since this suggests directly performing M on the original problem. The reason is that the convergence
of L-BFGS is hard to characterize and theoretical rates of convergence can be pessimistic. Noting that for
smooth functions, L-BFGS often outperforms Nesterov’s accelerated gradient method, it is reasonable to
expect QuickeNing achieves a similar complexity bound as Catalyst. Therefore, we choose κ identical as in
Catalyst algorithm, which is L for gradient descent and L/2n for SVRG. Later in this section, a comparison
of different scaling of κ is performed in order to demonstrate the relevance of this strategy.

Choice of limited memory parameter l. The default setting is l = 100. We show a comparison with
smaller values to study the influence of this parameter.

Sufficient decrease condition. We use the sufficient decrease condition suggested by the theory:

• for strongly convex objectives, we use Ftest ≤ Fk − 1
2κ‖gk‖2;

• for convex, but non-strongly convex objectives, we use f(xk+1) ≤ f(zk). Nevertheless, we will also
evaluate experimentally the strategy for strongly-convex objectives in this context.

Comparison metric. For all experiments, we use the number of gradient evaluations as a natural metric,
assuming this is the computational bottleneck of all methods considered. This is indeed the case here
since the L-BFGS step cost O(dl) floating-point operations [38], whereas evaluating the gradient of the full
objective costs O(nd), with d ≤ n and l ≪ d. A similar choice was made in other works [45].

5.3 QuickeNing-SVRG for minimizing large sums of functions

We now apply QuickeNing to SVRG and compare different variants.

• SVRG: the Prox-SVRG algorithm of [47] with default parameters m = 1 and η = 1/L, where L is the
upper-bound on Lipschitz constant of the gradient, as described in the Section 5.2.

• Catalyst-SVRG: The catalyst meta-algorithm of [26] applied to Prox-SVRG;

• L-BFGS (for smooth objectives): Since implementing effectively L-BFGS with a line-search algorithm
is a bit involved, we use the implementation of Mark Schmidt2, which has been widely used in other
comparisons [45]. The limited memory parameter l is also set to 100. We use it for the logistic
regression experiment since L-BFGS is defined only for smooth objectives.

• QuickeNing-SVRG1 as detailed above. For the Lasso problem, we also evaluate this heuristic with
the sufficient decrease condition used for strongly convex problems. We call this heuristic variant
QuickeNing-SVRG1*.

• QuickeNing-SVRG2, as detailed above.

The result of the comparison is presented in Figure 1 and leads to the conclusions below, showing that
QuickeNing-SVRG1 is a safe heuristic, which never decreases the speed of the method SVRG:

2available here http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Figure 1: Experimental study of the performance of QuickeNing-SVRG for minimizing large sums of functions.
We plot the value F (xk)/F ∗ − 1 as a function of the number of gradient evaluations, on a logarithmic scale;
the optimal value F ∗ is estimated with a duality gap.

• L-BFGS is less competitive than other approaches that exploit the sum structure of the objective,
except on the dataset real-sim; the difference in performance with the SVRG-based approaches can be
very important (see dataset alpha).

• QuickeNing-SVRG1 is significantly faster than or on par with SVRG and QuickeNing-SVRG2.

• QuickeNing-SVRG2 is significantly faster than, or on par with, or only slightly slower than SVRG.

• QuickeNing-SVRG1 is significantly faster, or on par with Catalyst-SVRG except in two cases
where Catalyst-SVRG performs slightly better.

• there is no clear conclusion regarding the performance of QuickeNing-SVRG1* vs QuickeNing-
SVRG1 for the Lasso problem.

5.4 QuickeNing-ISTA and comparison with L-BFGS

The previous experiments have included a comparison between L-BFGS and approaches that are able to
exploit the sum structure of the objective. It is then interesting to study the behavior of QuickeNing when
applied to a basic proximal gradient descent algorithm such as ISTA. Specifically, we now consider
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Figure 2: Experimental study of the performance of QuickeNing-ISTA. We plot the value F (xk)/F ∗ − 1 as
a function of the number of gradient evaluations, on a logarithmic scale; the optimal value F ∗ is estimated
with a duality gap.

• ISTA: the classical proximal gradient descent algorithm ISTA [1] with back-tracking line-search to
automatically adjust the Lipschitz constant of the gradient objective;

• FISTA: the accelerated variant of ISTA from [1].

• L-BFGS, QuickeNing-ISTA1, QuickeNing-ISTA2, and QuickeNing-ISTA1*, as in the previous
section when replacing SVRG by ISTA.

The results are reported in Figure 2 and lead to the following conclusions

• L-BFGS is slightly better on average than QuickeNing-ISTA1 for smooth problems, which is not
surprising since we use a state-of-the-art implementation with a well-calibrated line search.

• QuickeNing-ISTA1 is always significantly faster than, or on par with QuickeNing-ISTA2.

• The QuickeNing-ISTA approaches are significantly faster than FISTA in 15 cases out of 16.

• for Lasso problems, QuickeNing-ISTA1* is sometimes faster than QuickeNing-ISTA1.
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5.5 Experimental study of hyper-parameters l and κ

In this section, we study the influence of the limited memory parameter l and of the regularization parame-
ter κ in QuickeNing. More precisely, we start with the parameter l and try the method QuickeNing-SVRG1
with the values l = 1, 2, 5, 10, 20, 100. Note that all previous experiments were conducted with l = 100, which
is the most expensive in terms of memory and computational cost for the L-BFGS step. The results are
presented in Figure 3. Interestingly, the experiment suggests that having a large value for l is not necessarily
the best choice, especially for composite problems where the solution is sparse, where l = 5 seems to be a
reasonable choice in practice.
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Figure 3: Experimental study of influence of the limited-memory parameter l for QuickeNing-SVRG1. We
plot the value F (xk)/F ∗ − 1 as a function of the number of gradient evaluations, on a logarithmic scale; the
optimal value F ∗ is estimated with a duality gap.

The next experiment consists of studying the robustness of QuickeNing to the smoothing parameter κ.
We present in Figure 4 an experiments by trying the values κ = 10iκ0, for i = −3,−2, . . . , 2, 3, where κ0 is
the default parameter that we used in the previous experiments. The conclusion is clear: QuickeNing clearly
slows down when using a larger smoothing parameter than κ0, but it is very robust to small values of κ (and
in fact it even performs better for smaller values than κ0 in one experiment).
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Figure 4: Experimental study of influence of the smoothing parameter κ for QuickeNing-SVRG1. κ0 denotes
the default choice used in the previous experiments. We plot the value F (xk)/F ∗ − 1 as a function of the
number of gradient evaluations, on a logarithmic scale; the optimal value F ∗ is estimated with a duality gap.

6 Discussions and concluding remarks

A few questions naturally arise regarding the QuickeNing scheme: one may wonder whether or not our
convergence rates may be improved, or if the Moreau-Yosida regularization could be replaced by another
smoothing technique. In this section, we discuss these two points and present concluding remarks.

6.1 Discussion of convergence rates

In this paper, we have established the linear convergence of QuickeNing for strongly convex objectives when
sub-problems are solved with enough accuracy. Since QuickeNing uses Quasi-Newton steps, one might have
expected a superlinear convergence rate as several Quasi-Newton algorithms often enjoy [8]. The situation is
as follows. Consider the BFGS Quasi-Newton algorithm (without limited memory). As shown in [9], if the
sequence (εk)k≥0 decreases super-linearly, then, it is possible to design a scheme similar to QuickeNing that
indeed enjoys a super-linear convergence rate. There are two major downsides though. The scheme of [9]
with such a fast rate requires performing a line-search on F and a super-linearly decreasing sequence (εk)k≥0

implies an exponentially growing number of iterations in the inner-loops. These two issues make this approach
impractical.

Another potential strategy for obtaining a faster convergence rate consists in interleaving a Nesterov-type
extrapolation step in the QuickeNing algorithm. Indeed, the convergence rate of QuickeNing scales linearly
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in the condition number µF /LF , which suggests that a faster convergence rate could be obtained using a
Nesterov-type acceleration scheme. Empirically, we did not observe any benefit of such a strategy, probably
because of the pessimistic nature of the convergence rates that are typically obtained for Quasi-Newton
approaches based on L-BFGS. Obtaining a linear convergence rate for an L-BFGS algorithm is still an
important sanity check, but to the best of our knowledge, the gap in performance between these worst-case
rates and practice has always been huge for this class of algorithms.

6.2 Other types of smoothing

Algorithm 2 (ApproxGradient) corresponds to applying the Moreau-Yosida regularization first before comput-
ing an estimate g of the gradient, which is a particular instance of infimal convolution smoothing [2], whose
family also encompasses the so-called Nesterov smoothing [2]. Other ways to smooth a function include
randomization techniques [13] or specific strategies tailored for the objective at hand.

One of the main purposes of the Moreau-Yosida regularization is to provide a better conditioning. As
recalled in Proposition 1, the gradient of the Moreau-Yosida-smoothed function F is Lipschitz continuous
regardless of whether the original function is continuously differentiable or not. Furthermore, the conditioning
of F is improved with respect to the original function, with a condition number depending on the amount
of smoothing. As highlighted in [2], this property is also shared by other types of infimal convolutions.
Therefore, QuickeNing could potentially be extended to such types of smoothing in place of the Moreau-
Yosida regularization. A major advantage of our approach, though, is its outstanding simplicity.

6.3 Concluding remarks

To conclude, we have proposed a generic mechanism, QuickeNing, to accelerate existing first-order optimiza-
tion algorithms with quasi-Newton-type rules to update a variable metric along the iterations. QuickeNing’s
main features are the compatibility with composite optimization and its practical performance when com-
bined with incremental approaches. The absence of line-search scheme makes it also easy to implement and
use, making it a promising tool for solving large-scale machine learning problems. A few questions remain
however open regarding the use of the method in a pure stochastic optimization setting, and the gap in
performance between worst-case convergence analysis and practice is significant. We are planning to address
the first question about stochastic optimization in future work; the second question is unfortunately difficult
and is probably one of the main open question in the literature about L-BFGS methods.

A Variant for the dual approaches MISO/Finito

We focus here on complexity results for the methods MISO/Finito [11, 26], whose convergence rate is given
in terms of dual certificate. Specifically, for solving a sub-problem (8), these methods M are able to produce
a sequence (wt)t≥0 such that

E[h(wt) − d(wt)] ≤ CM(1 − τM)t(h∗ − d(w0)) for some constants CM, τM > 0. (24)

where the function d satisfies d(wt) ≤ h∗ for all t. For such approaches, we consider the same restart strategy
as in Catalyst [26]—that is, we define

w0 = zk +
κ

κ+ µ
(xtest − xk) (25)

at iteration k, Line 4, of Algorithm 1; If the method is also called at Line 8, we simply replace xtest by xk+1.
The next modification is a variant of the L-BFGS rule, which we present in Section A.1. Then, we present
the inner-loop complexity in Section A.2, which allows us to derive the global complexity analysis of the
corresponding QuickeNing scheme.
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A.1 Modified L-BFGS rule for MISO/Finito

We use classical L-BFGS rules, which maintain a “generating list” of at most l pairs of vectors {(ski , y
k
i )}i=0...j

along with an initial diagonal matrix H0 = B̄−1
0 . Given a new pair (s, y), the list is updated by removing

the oldest pair and replacing it by a new one. With inexact gradients, it is well known that it is sometimes
necessary to skip an L-BFGS update in order to ensure the positive-definiteness of the L-BFGS matrix [15].
Typically, these steps occur whenever the condition s⊤y > 0 is not satisfied. The convergence analysis for
MISO/Finito presented in Section A.2 suggests instead the stronger condition

c1µF ‖s‖2 < yT s and
c2

LF
‖y‖2< yT s. (26)

for 0 < c1, c2 ≤ 1, which represents strong-convexity and Lipschitz gradient inequalities when using exact
gradients with c1 = c2 = 1. Intuitively, they are still valid when the gradient accuracy is good enough
or when c1, c2 are small enough. The role of c1 and c2 is to allow us controlling the eigenvalues of the
L-BFGS matrix, which is a classical step for analyzing the convergence of L-BFGS algorithms [27] [27]. This
is achieved by the next lemma.

Lemma 6 (Largest eigenvalue of the matrix Hk). Let Hk be constructed by the L-BFGS update with
skipping step (26); then,

λmax(Hk) ≤ 1

κcl1

(

1 +
κ

µ

)l (

d+
l

c2

)d+l−1

,

where l is the limited memory parameter and d is the dimension of Hk.

Proof. By construction of the L-BFGS rule, Hk is in fact the inverse of the approximate hessian B̄k, which is
constructed from B̄0 = κI and the generating list {(ski , y

k
i )}i=0...j by performing recursively at most l times

the BFGS update rule:

B′ = B +
yy⊤

y⊤s
− Bss⊤B

s⊤Bs
,

where (s, y) is a pair from the generating list, and B takes the new value B′ after each recursion. After
scanning all elements of the list and performing j ≤ l times the recursion, we obtain B̄k.

We may now proceed and characterize some constants λ1, λ2 > 0 such that

λ1 ≥ λmax(B̄k) ≥ λmin(B̄k) ≥ λ2.

Classical analysis shows that with the BFGS update rule, B′ is positive definite as soon as B is also positive
definite and s⊤y > 0. By construction, sk⊤

i yki > 0 is ensured by (26) for any (ski , y
k
i ) in the generating list.

Consequently, a simple recurrence shows that all matrices B̄k are positive definite and therefore Hk = B̄−1
k

are well defined. To show that the eigenvalues of B̄k are bounded, we follow in part the classical analysis
of [27] by studying the trace and determinants of B̄k. First,

Tr(B′) = Tr(B) − ‖Bs‖2

s⊤Bs
+

‖y‖2

y⊤s
.

Since the pairs (s, y) from the generating list satisfy c2/LF‖y‖2 < y⊤s from (26),

Tr(B′) ≤ Tr(B) +
LF
c2
.

Each B̄k is obtained by performing at most l times BFGS update from B̄0 and LF = κ, which leads to

Tr(B̄k) ≤ Tr(B̄0) +
lLF
c2

= κ

(

d+
l

c2

)

.
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Since B̄k is definite positive, then λmax(B̄k) ≤ Tr(B̄k) ≤ λ1 with λ1 = κ (d+ l/c2). Furthermore, the
determinant of B′ satisfies the following relation:

det(B′) = det(B)
y⊤s

s⊤Bs
= det(B)

y⊤s

s⊤s

s⊤s

s⊤Bs
.

Again, since any pair (s, y) in the generating list satisfies c1µF ‖s‖2 < y⊤s from (26) and λmax(B) is bounded
by λ1, we obtain

det(B′) ≥ det(B) · c1µF · 1

λmax(B)
≥ det(B)

c1µF
λ1

.

As a result, since B̄k is obtained by performing at most l times update, we have

det(B̄k) ≥ det(B̄0)

(

c1µF
λ1

)l

= κd
(

c1µF
λ1

)l

.

Therefore,

λmin(B̄k) ≥ det(B̄k)

λmax(B̄k)d−1
≥ det(B̄k)

λd−1
1

≥ (c1µF )lκd

λd+l−1
1

.

We conclude by remarking that

λmax(Hk) =
1

λmin(B̄k)
≤ λd+l−1

1

(c1µF )lκd
=

(κ(d + l
c2

))d+l−1

(c1
µκ
µ+κ )lκd

=
1

κcl1

(

1 +
κ

µ

)l (

d+
l

c2

)d+l−1

.

A.2 Inner-loop analysis for MISO/Finito

We now discuss the complexity analysis for the dual approaches MISO/Finito, which uses a few results
from [26] such as the following lemma:

Lemma 7 (ε-accuracy by moving the prox-center ([26], Lemma D.5)). Consider Algorithm 1 used
with the method MISO/Finito. Assume that at iteration k − 1, we compute zk by solving a sub-problem (8)
up to accuracy εk in the sense of (24). Then, the restart (25) for sub-problem (8) at iteration k satisfies

h∗ − d(w0) ≤ εk +
κ2

2(κ+ µ)
‖x− xk‖2,

where x = xtest when considering the sub-problem of Line 4 of Algorithm 1 and x = xk+1 otherwise.

Then, we control the deviation ‖x − xk‖2 in the previous lemma and obtain the next relation, which
assumes that the sequence (εk)k≥0 of accuracies is pre-defined.

Lemma 8 (ε-accuracy in QuickeNing with pre-defined sequence (εk)k≥0). Consider the setting of
Corollary 1, where the objective is strongly convex and the predefined sequence εk = 1

2C(1 − ρ)k+1 is used
within Algorithm 1. Under the same assumptions made in Lemma 7, we have

h∗ − d(w0) ≤ εk

(

1 + 2

(

C

ρ
+ 1

)

κ2D

)

,

where D = λmax(Hk)2 when considering the sub-problem of Line 4 of Algorithm 1 and D = 1/κ2 for the
sub-problem of Line 8.
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Proof. We start with the case x = xtest.

‖xtest − xk‖2 = ‖Hkgk‖2 ≤ λmax(Hk)2‖gk‖2

≤ 2λmax(Hk)2(‖∇F (xk)‖2 + 2κεk) ( from (14) )

≤ 2λmax(Hk)2(2κ(F (xk) − F ∗) + 2κεk) (Lipschitz gradient)

≤ 4κλmax(Hk)2

(

C

ρ
(1 − ρ)k+2 + εk

)

(from (19))

= 4κ

(

C

ρ
+ 1

)

λmax(Hk)2εk.

Applying Lemma 7 with x = xtest gives the result. Next, we can replace in the previous proof, xtest by
xk+1 = zk, and by noticing that zk − xk = gk/κ, it is sufficient to replace Hk by 1/κId and to follow exactly
the same analysis to conclude.

By combining the previous lemma with the convergence guarantee (24), we see that we can solve the
sub-problems (8) at iteration k up to accuracy εk+1 = (1 − ρ)εk in a constant number of iterations TM of
the method M. The arguments are in fact exactly the same as in Proposition 3.2 of Catalyst [26]. The only
caveat is that TM increases linearly with the dimension d, which is also a limitation of classical worst-case
convergence analysis of L-BFGS methods. Note that our previous analysis for primal methods, which was
presented in Section 4, does not suffer from this issue.
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