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SUMMARY

In this paper, a new event-switched control method is presented for controlling discrete-time linear
systems subject to bounded disturbances. The main advantage of the proposed method is that the nominal
performance of the controlled system with periodic control updates is kept in a framework that do not require
to periodically update the control law. The feedback control loop can be opened as long a state-dependent
event condition is satisfied. This condition is obtained using set theory approaches. In particular, the concept
of robustly positively invariant sets is used to calculate the nominal performance and the event condition.
The simulation presented in this paper confirms the efficiency of the present approach. A reduction of the
numerical complexity of the approach is also proposed. Copyright c⃝ 0000 John Wiley & Sons, Ltd.
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INTRODUCTION

Classical control theory can be used to design continuous and discrete-time controllers. Nowadays,
discrete controllers are being increasingly used because digital technology is supplanting analog
solutions, apart from a few exceptions involving particularly stringent constraints. Most of these
digital technologies depend on the use of a fixed clock frequency. In this framework, many well-
known methods have been developed for designing controllers (see for instance [1]). Unfortunately,
although periodicity often simplifies the design, it results in a conservative resource management
[2]. This is especially true in the case of continuous time nonlinear systems, where no discretized
model for the system is usually available. Discrete time control therefore often consists in designing
the controller in the continuous time domain and updating the control value with a sufficiently
high sampling rate. However, the hardware used to sample and hold the output of the system
or to compute the feedback control loop is liable to be incompatible with having a sufficiently
small sampling period to obtain acceptable closed-loop performances, as previously reported
in [3]. Solutions such as sampled-data control algorithms have also been developed, based on
an approximation for the discrete time model [4] or a redesigned continuous time controller [5].
However, all these methods are relatively complex and difficult to implement.

The relevance of periodic sampling methods has often been questioned during the last few
decades, and event-based control approaches have been suggested as an alternative solution. With
classical time-triggered approaches, control law is computed and the control signal is updated
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2 B. BOISSEAU ET AL.

at the same rate whether this is really necessary or not, whereas event-based procedures do not
require these periodic computations and updates, but calls for resources only when they are strictly
necessary. When the system variables undergo no significant changes, the sensors’ sampling rate
and control actuation should be kept to a minimum. Event-based control design consists not only in
determining how to actuate the system, but also when to actuate it. An event function is therefore
used to determine the instants, which are called events, when the control law has to be updated (to
ensure satisfactory performances or stability, for instance), and the control signal is otherwise kept
constant between two successive events. In [6] for example, the problem of limiting the number of
control updates was addressed for the first time in the case of a simple PID controller. The idea
consisted here of monitoring the activity of the system in order to compute the control law and
update the control signal only when the dynamics of the system crossed a given threshold (this
is known as level-crossing sampling). Event-based control is clearly an opportunity for enhancing
embedded and networked control systems with limited resources. However, the implementation
of event-based control strategies can result in additional challenges, such as determining how
frequently the control signal has to be updated and applied so as to ensure that the performances
and the stability of the system are not affected.

Although event-based control systems are obviously a great step forward, very few theoretical
studies have dealt with aspects such as the stability, convergence and performances of this approach.
Event-detection processes have been taken to depend on changes in the state (or at least in
the output) of the system, as in [6–14]. It has been established in [10] in particular that the
control law can be updated less frequently than with a periodic scheme, while still giving equally
satisfactory performances. Stabilization of linear and nonlinear and even PDE systems has been
analysed in [15–21], where the events are given by changes in a Lyapunov function or the time
derivative of a Lyapunov function (and consequently also in the state). Event-based scheme has
also been proposed for multi-agents systems to achieve a consensus while avoiding unnecessary
communication and control update, as in [22–26]. Another important issue for event-based control
theory is the Zeno phenomenon (where an infinite number of events occur during a finite length
of time). This behavior has to be avoided in practice, which is generally done by searching for a
guaranteed minimum sampling interval. This is not necessary, however, when implementing event-
based control methods on digital platforms because the control process is updated up to a certain
condition, which is checked periodically: the minimum sampling interval can therefore not be
smaller than the sampling period. This method has been classified as Periodic Event-Triggered
Control in [27], an approach which strikes a balance between conventional periodic sampled-
data control and event-triggered control. Note that this approach is often unsuitable for use with
nonlinear systems, where the appropriate period can sometimes depend on the initial condition [18].
Existing event-based methods often involve making a trade-off between the number of control
updates and the performances of the system. In other words, savings in terms of computational
and/or communication resources can result in less satisfactory closed-loop performances (but not
always, see [18]). Asymptotic stability of an event-triggered system is ensured here by including
the existence of a Lyapunov function.

However, in the case of uncertain linear discrete-time dynamic systems subjected to bounded
disturbances, asymptotic stability cannot be ensured. Practical stability, which has been discussed
by LaSalle and Lefschetz in [28], is the best that can be achieved in this case. Although some
studies have focused on the most suitable sampling schemes for first order stochastic systems
(see for example [2, 10, 29]), very few authors have investigated this topic in the case of higher
order perturbed systems. In this context, the results obtained on ultimate boundedness and invariant
sets are suitable for use in stability analysis. If a time-triggered closed-loop system without any
disturbances is stable, a Robustly Positively Invariant (RPI) set can be taken to exist for the perturbed
system. This set describes a region of the state space where the state of the closed-loop system
subjected to bounded disturbances will continue to stay in this set. In addition, ultimate boundedness
(UB) of the event-switched system to a bounded set can also be assumed to exist, which means that
with any initial condition, the state will reach a set within a finite time and continue to stay in this set.
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EVENT-SWITCHED CONTROL DESIGN WITH GUARANTEED PERFORMANCES 3

These properties are closely related to the topic of practical stability. Readers are referred to [30,31]
for the theory and applications of ultimate bounds and RPI sets.

Very few studies have been published in which event-based control theory has been combined
with set theory. Heemels et al. have introduced an event-triggering process giving bounded ultimate
bounds in the case of perturbed linear systems. In [32] the authors proposed an event-based control
based on set theory where a RPI set in guaranteed for the event-based system. However, with this
approach, the same minimal Robustly Positively Invariant (mRPI) set (the RPI set included in all
possible RPI sets) cannot be guaranteed for both time-triggered and event-triggered systems. In
other words, with the methods mentioned above, a trade-off is necessary between the number of
control updates and the performances of the system.

In the present paper, a systematic method is presented for designing an event-switched
mechanism, which gives the same mRPI set in the case of both time-triggered and event-switched
systems. The other existing methods consist in designing the event mechanism and computing
the performances a posteriori, whereas the present method makes it possible to specify the
performances required (in terms of the RPI set targeted) a priori and to compute the event condition
accordingly. Another difference in comparison with previous studies on event-based control is that
we do not determine when a control law has to be updated, but only when we have to switch from
one control law to another (which may render the system unstable). More specifically, we focus on
switching between a closed-loop control law and a constant control law (and vice versa). For the
sake of simplicity, the closed-loop control is updated periodically in the present paper but it could
also be event-based. The proposed approach is therefore complementary to event-based control. As
event-based control, the event switched control enables to save communication bandwidth in the
context of a networked controlled system, since no communication between the controller and the
actuators is required as long as the control input is kept constant. Another interest of the proposed
approach that event-based control does not provide concerns safe control of system by humans. In
that case, the constant control mode will correspond to the human controlled mode. The action of
the human operator is considered as a perturbation to the system. When his action fails to achieve
a given performance, the system switches to the closed-loop mode to bring the system back into an
acceptable configuration.

The rest of this paper is organized as follows. In Section 1, definitions are presented and the
problems it is proposed to investigate are formulated. Some preliminary considerations about
invariant sets are recalled and the method used to compute the event condition is introduced
in Section 2. A useful means of reducing the complexity of the event-set is also provided for
implementation purposes. The main contributions of this study are then described in detail in
Section 3. In particular, the main results are presented in Section 3.1, the performances of the event-
switching strategy are assessed in Section 3.2, a solution with an observer is suggested in Section 3.3
for use in cases where complete state information is not available, and the resulting algorithm
corresponding to the whole solution proposed is given in Section 3.4. Results of simulations are
presented and discussed in Section 4 in the case of a second order system. Lastly, our conclusions
are presented and possible lines of future research are suggested in Section 5.

1. PROBLEM STATEMENT

Let us take the following discrete-time linear time-invariant system:

xk+1 = Axk +Buk + Ewk (1)

where A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×f , and k ∈ N. xk ∈ Rn denotes the current state of the
system, xk+1 is the successor state, uk ∈ Rm denotes the control input, and wk ∈ W denotes the
unknown bounded disturbances. W is assumed to be a compact convex polytope in Rf defined by p

vertices Wi as follows: W ∆
= conv {Wi} for i = {1, ..., p}. The set W is taken to include the origin,

and rank(E) is assumed to be greater than or equal to n: the set EW therefore also includes the
origin. It is also assumed that the matrix pair (A, B) is stabilizable using the linear discrete-time
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4 B. BOISSEAU ET AL.

state feedback:
uk = −Kxk (2)

where K ∈ Rn×m is the state-feedback matrix. The dynamics of the closed-loop system can
therefore be described by the following equation:

xk+1 = (A−BK)︸ ︷︷ ︸
ACL

xk + Ewk (3)

where all the eigenvalues of the closed-loop matrix ACL are located inside the unit circle. In what
follows, the system dynamics (3) will be referred to as the time-triggered system. Before defining
the event-switched system, which is the most original aspect of the present paper, some additional
definitions will be recalled:

Definition 1 (From [31])
A set S ⊆ Rn is said to be a Robustly Positively Invariant (RPI) set for a system xk+1 = f(xk, wk),
if for any initial conditions x0 in S and any disturbances wk in W , xk will belong to S for all instants
k ∈ N+.

Definition 2 (From [30])
A system xk+1 = f(xk, wk) is said to be Uniformly Ultimately Bounded (UB) to the set S if for all
initial conditions x0 ∈ Rn and any disturbances wk in W , there exists a positive instant T (x0) such
that xk remains in S for all k ≥ T (x0).

Definition 3 (From [33])
A set S is said to be the minimal Robustly Positively Invariant (mRPI) set for a system xk+1 =
f(xk, wk) if S is a RPI set for this system, and if S is included in all possible closed RPI sets for
this system.

Let S2 be some set in Rn. Let us now define the following event-switched control law:

uk =

{
0m if xk ∈ S2

−Kxk otherwise
(4)

where 0m denotes the m-dimensional null vector. In the sequel, an event-switched system will refer
to a system of the form (1) with a control input as in (4). It is given by the following closed-loop
equation:

xk+1 =

{
Axk + Ewk if xk ∈ S2

(A−BK)xk + Ewk otherwise
(5)

Remark 1
For the sake of simplicity, the case of stabilization around the origin will be studied here. In the
general case, the control law will also depend on the a priori control input required ueq and the state
vector required xeq at equilibrium, for instance:

ūk = ueq −K (xk − xeq)

and the event-switched control would be:

ūk =

{
ueq if xk ∈ S2

ueq −K (xk − xeq) otherwise

The signals ueq and xeq can be computed at the plant level at all times. These signals can be desired
path-planning or reference model signals, for example.

Problem statement: Given the plant model (1), a state feedback (2) and a RPI set S1 for the time-
triggered state-feedback loop (3), find an event condition (i.e. a condition based on a set S2) and an
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event-switched mechanism (4) such that the set S1 is a RPI set for both the time-triggered system (3)
and the event-switched system (5).

In this paper, the event-switched mechanism is assumed to be given a priori. The aim is to set the
event condition giving the event-triggered system (5) the same performances as the time-triggered
system (3) (in terms of RPI set). The event condition makes the mechanism switch from the open
loop system to the system controlled by a state feedback law.

In what follows, the performances are given by the following four indicators:

• The bound δx on the 2-norm of the state x;
• The bound δu on the 2-norm of the control input u;
• The bound δd on the 2-norm of the changing rate of the control input: ∆u = uk+1 − uk;
• The number of communications required between the controller and the actuator.

The first index will reflect the ability of the controller to stabilize the system, the second one will
indicate the cost in terms of the control power, the third one will reflect the changes in the control
input, which are usually to the aging of the actuator, and the fourth one will denote the cost in terms
of the communication between the controller block and the actuator.
Notation: Given two sets A ⊂ Rn and B ⊂ Rn, the relative complement of A in B, which will be
denoted B\A, is defined as follows: B\A = {x ∈ B|x /∈ A}. The Minkowski sum of A and B, which
will be denoted A⊕ B, is defined as follows: A⊕ B = {a+ b | a ∈ A, b ∈ B}.

2. NOMINAL MINIMAL RPI SET AND EVENT-SET COMPUTATION

The concept of RPI sets (see [31, 34]) is often used to characterize the nominal performances of
the time-triggered system (3). The problem here is how to find an approximation for the mRPI set
describing all possible trajectories of the system’s state, starting at the origin (in the case of null
stabilization) in the presence of bounded disturbances. S1 will denote the nominal performance set
of system (3). Since no means of computing an exact mRPI have yet been found when the system’s
dynamics are not nilpotent, a polyhedral approximation for the mRPI set will be used to characterize
what has been called the nominal performance of the time-triggered system.

2.1. Polyhedral RPI sets for characterizing nominal performances

Polyhedral RPI sets for linear systems (3) can be computed using methods such as those developed
in [35], [36] and [37]. These methods are very useful for computing RPI sets in polyhedral form,
especially in the case of stable systems where the eigenvalues of the matrix ACL are real values.
A systematic method of obtaining polyhedral approximations for the minimal RPI set is presented
in [33]. Polyhedral invariant set computations have many advantages over traditional ultimate-bound
methods of computation based on the use of quadratic Lyapunov functions, as discussed in [38]
and [39]. In particular, these methods may be less conservative (i.e., they give smaller sets) than
ellipsoids describing quadratic Lyapunov functions.

A refined polyhedral approximation for the mRPI set can be obtained by implementing a sequence
of outer approximations of the mRPI set, as described in [40] and [39]. This method consists in
building a sequence of RPI sets recursively, based on the Minkowski sum between the image of a
RPI set given by the linear transformation ACL and the polyhedral set EW . This gives:

Φ(s+ 1) = ACLΦ(s)⊕ EW, Φ(0) = Ψ (6)

where ACL is a stable matrix (all its eigenvalues are located inside the unit circle) and EW is
a polyhedral set which includes all the disturbance trajectories. Φ(s) is the linear transformation.
Ψ ∈ Rn is a polyhedral describing an initial RPI set estimation of the state trajectories, which can
be computed using the method presented in [39]. Therefore, [40] states that for any δ > 0, there
exists s∗ ∈ N such that the following relation is true:

Ω∞ ⊆ Φ(s∗ + 1) ⊆ Φ(s∗) ⊆ Ψ (7)

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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6 B. BOISSEAU ET AL.

where Ω∞ denotes the exact mRPI set. Then, Φ(s∗) → Ω∞ as s∗ → ∞, that is:

Ω∞ ⊆ Φ(s∗) ⊆ Ω∞ ⊕ Bn
p (ε) (8)

where Bn
p (ε) denotes a n-dimensional ball with the radius ε with respect to the p-norm.

Remark 2
The initial set Ψ in the set recursion (6) can in fact be any RPI set for system (3).

Using these approximations, a nominal set S1 = Φ(s∗) can be obtained by performing a given
number of iterations s∗ ∈ N characterizing the targeted accuracy of the approximation for the mRPI
set.

2.2. Event-set computation

Given a RPI set approximation S1 for system (3), the aim is now to compute a set S such that:

xk ∈ S =⇒ xk+1 ∈ S1, with xk+1 = Axk + Ewk (9)

Definition 4
A set S is said to be an event-set for system (1) if and only if it satisfies condition (9) for a given set
S1.

The following method was developed here for computing the set of maximum volumes
meeting (9), denoted S⋆

2 . That is, S⋆
2 contains all the possible sets which also satisfy the

condition (9).
The set S1 is taken to be a polyhedral set with a given half-space representation, that is:

S1 ≜ {x ∈ Rn : Hx ≤ P} (10)

where H ∈ Rl×n and P ∈ Rl.
Condition (9) can be translated into a family of inequalities which can be used to find all the

possible values of xk, via the matrices H̄ and P̄i, satisfying the following condition:

xk+1 ∈ S1 ⇔ Hxk+1 ≤ P (11)
H (Axk + EWi) ≤ P (12)
HA︸︷︷︸
H̄

xk ≤ P −HEWi︸ ︷︷ ︸
P̄i

(13)

where Wi denotes the ith vertex of the polyhedron W .
Therefore, by defining the set:

S⋆
2 ≜ {x ∈ Rn : H̄x ≤ P̄i, for i = {1, ..., p}} (14)

Then the set S⋆
2 will include all the event-sets.

xk ∈ S⋆
2 =⇒ xk+1 ∈ S1, with xk+1 = Axk + Ewk (15)

This is possible because S1 and W are convex and compact sets including the origin.

Remark 3
Please note that:

• S⋆
2 is a convex set because it can be described by the intersection between a finite number of

hyperplanes in (14).
• S⋆

2 is possibly empty if the inequalities in (14) have no solution.
• S⋆

2 is not necessarily included in S1. In this particular case, S⋆
2\S1 can be reached one time

step before entering S1.
• Any set included in S⋆

2 is an event-set for the system (1) and the set S1.
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2.3. Reducing the complexity of the event-set

In order to apply the event-switched control (4), it is necessary to verify at each sampling time if the
state of the system is inside the set S2. If this set is polyhedral, then the computational complexity
to check the inclusion condition, xk ∈ S2, depends on the order of the system and the number of
hyperplanes describing the set.

An alternative strategy might be to use an ellipsoidal set. This allows to check a simpler inclusion
condition, xk ∈ S2, where:

S2 ≜ {x ∈ Rn : xTMx ≤ c} (16)

where M ∈ Rn×n, and c ∈ R.
The advantage of using an ellipsoidal set is that the complexity of the inclusion condition’s

evaluation only depends on the order n of the system, whereas a polyhedral set can be described by
an arbitrary number of hyperplanes.

3. EVENT-SWITCHED CONTROL DESIGN WITH GUARANTEED PERFORMANCES

3.1. Main results

Since stabilization at a point for the time-triggered system (1) without perturbation is considered,
we assume the very classical property for the pair (A,B):

Assumption 1
The pair (A,B) of system (1) is stabilizable.

Let us state three Assumptions that enable to guaranty that if there is a robustly positively invariant
set for the time-triggered system, it will still be a robustly positively invariant set in the proposed
event-switched framework. In other words, with the proposed event-switched control approach, the
system will remain in the same RPI set as the time-triggered system if it starts in it. In addition
we also want to guaranty that the property of ultimate boundedness is kept for the event-switched
system. This will ensure that for any initial condition, the state of the event-triggered system joins
the RPI set in finite number of time steps. For this, the following assumptions are sufficient:

Assumption 2
The set S2 is an event-set for system (1) and a given set S1.

Assumption 3
S1 is a RPI set for system (1) with the stabilizing control input (2) and unknown bounded
disturbances wk.

Assumption 4
System (1) subjected to the stabilizing control (2) and bounded disturbances wk is UB to the set S1.

With the above assumptions, one can state the main result of this paper:

Theorem 1
Under Assumptions 1, 2 and 3, S1 is a RPI set for system (1) subject to the event-switched control
input (4).

Proof
It must now be proved that the set S1 satisfies Definition 1 for system (1) with the event-switched
control input (4). The dynamics of this system were described in equation (5), which is recalled
here:

xk+1 =

{
Axk + Ewk if xk ∈ S2

(A−BK)xk + Ewk otherwise

Let us assume the existence of an arbitrary state xk in S1. As far as the dynamics of system (5) are
concerned, there are two possible cases:

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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8 B. BOISSEAU ET AL.

• xk ∈ S2, which means that xk+1 will also be in S1 because the set S2 meets the condition (9)
from Assumption 2.

• xk /∈ S2, which means that xk+1 will still be in S1 because it is a RPI set for the associated
dynamics resulting from Assumption 3.

This proves that S1 is a RPI set for system (5), because for any x0 in S1, xk will be in S1 for all
values of k ∈ N.

Theorem 2
Under Assumptions 1, 2, and 4, system (1) with the event-switched control input (4) is UB within
S1.

Proof
It now has to be proved that for any initial state x0, there exists K(x0) ∈ N such that xk will be in
S1 for all k ≥ K(x0). When dealing with system (5), there are two possible cases:

• x0 ∈ S2 means that xk will join S1 in K(x0) = 1 time step resulting from (9).
• x0 /∈ S2, based on Assumption 4, xk will join S1 in a finite number of time steps, namely

K(x0).

Once xk is in S1, i.e. once k is greater than or equal to K(x0), there are again two possibilities:

• xk ∈ S2, which means that xk+1 = Axk + Ewk will be in S1, for all k ≥ K(x0) because the
set S2 satisfies condition (9) based on Assumption 2.

• xk /∈ S2, which means that xk+1 = (A−BK)xk + Ewk will be in S1, for all k ≥ K(x0),
based on Assumption 4.

Therefore, there exists K(x0) such that, for any x0 ∈ Rn, xk will be in S1 for all k ≥ K(x0). This
means that system (5) is UB within S1, based on Definition 2.

Remark 4
These theorems will still hold if S2 is an empty, non-polytopic or non-convex set.

3.2. Analytic discussion of performances

In this section, it is assumed that S1 is a RPI set for system (1), S2 is an event-set for system (1) and
S1. It is also assumed that the initial state x0 of system (1) is in the RPI set S1. In order to assess
the performances of the present strategy and compare them with those obtained with a classical
approach, an upper bound is calculated for the 2-norm of i) the state x, ii) the control input u, and
iii) the changing rate of the control ∆u. In what follows, these indicators will be denoted δx, δu,
and δd, respectively. In addition, the superscripts es and tt will refer to the event-switched and time-
triggered systems, respectively. Variables without any superscript will be taken to refer to both the
time-triggered and the event-switched systems.

3.2.1. Maintaining the state performances Preserving the bound δx on the maximal 2-norm of the
state results directly from Theorem 1: the fact that the systems (1) under time-triggered control (2)
and event-switched control (4) have the same RPI set means that the maximum 2-norm of the state
will be bounded by the radius of the smallest 2-norm ball containing the RPI set.

∥x∥2 ≤ δx, with δx ≜ min{γ | S1 ⊆ Bn
2 (γ)} (17)

3.2.2. Maintaining the control signal performances

Maintaining the amplitude Maintaining the bound δu also results from Theorem 1. In the time-
triggered case, the controller (3) is linear, and the control input u is therefore bounded in a set U
which is the projection of the set S1 in the control space by the linear matrix mapping −K. In
the event-switched case, the non-linear controller (4) can switch between two modes. In one mode,

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



EVENT-SWITCHED CONTROL DESIGN WITH GUARANTEED PERFORMANCES 9

when x /∈ S2, the control input u = −Kx is obviously bounded in the set U . In the other mode,
when x ∈ S2, the control input signal is 0m, which is in U because S1 includes the origin, and the
mapping between S1 and U is linear.

u ∈ U , with U ≜ −K · S1 (18)

It follows directly that:

∥u∥2 ≤ δu, with δu ≜ min{γ | U ⊆ Bn
2 (γ)} (19)

Maintaining the changing rate The changing rate of the control input is:

∆uk = uk+1 − uk (20)

In the case of the time-triggered system, this gives:

∆utt
k = utt

k+1 − utt
k (21)

∆utt
k = −Kxtt

k+1 − (−Kxk) (22)

∆utt
k = −K ((ACL − In)xk + Ewk) (23)

It follows that:

∆utt
k ∈ Dtt, ∀k ∈ N (24)

with Dtt ≜ −K ((ACL − In)S1 ⊕ EW) (25)

The bound of the 2-norm of the changing control input rate in the time-triggered system is therefore:∥∥∆uk
tt
∥∥
2
≤ δd

tt, with δd
tt ≜ min{γ | Dtt ⊆ Bn

2 (γ)} (26)

In the case of the event-switched system, several possibilities have to be considered:

ues
k =

{
0m if xk ∈ S2

−Kxk otherwise
(27)

ues
k+1 =


0m if xes

k+1 ∈ S2

−K (Axk + Ewk) if xes
k+1 /∈ S2 and xk ∈ S2

−K (ACL · xk + Ewk) if xes
k+1 /∈ S2 and xk /∈ S2

(28)

Therefore:

∆ues
k = ues

k+1 − ues
k =


0m if xes

k+1 ∈ S2 and xk ∈ S2

Kxk if xes
k+1 ∈ S2 and xk /∈ S2

−K (Axk + Ewk) if xes
k+1 /∈ S2 and xk ∈ S2

−K ((ACL − In)xk + Ewk) if xes
k+1 /∈ S2 and xk /∈ S2

(29)

It follows that:

∆ues
k ∈ Des, ∀k ∈ N (30)

with Des ≜ 0m ∪K · S1 ∪ −K (A · S2 ⊕ E · W) ∪ Dtt (31)

Note that the expression for Des can be simplified because the origin is included in S1:

Des = K · S1 ∪ −K · (A · S2 ⊕ E · W) ∪ Dtt (32)

and since (A · S2 ⊕ E · W) is included in S1, in view of condition (9), this means that min{γ | −
K · (A · S2 ⊕ E · W) ⊆ Bn

2 (γ)} ≤ min{γ | Dtt ⊆ Bn
2 (γ)}. The bound of the 2-norm of the changing
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10 B. BOISSEAU ET AL.

control input rate in the event-switched system is therefore:

∥∆ues
k ∥2 ≤ δesd , with δesd ≜ max

(
δttd , min{γ |K · S1 ⊆ Bn

2 (γ)}
)

(33)

Therefore, if δttd ≥ ∥K · S1∥2, then δesd = δttd . In other words, the 2-norm of the changing control
input rate has the same least upper bound in both the time-triggered and the event-switched system
if δttd ≥ min{γ |K · S1 ⊆ Bn

2 (γ)}

Remark 5
If S1 is the mRPI set and the event-set S2 is the largest set S⋆

2 satisfying condition (9), then
(A · S2 ⊕ E · W) = S1 and the set Des becomes:

Des = K · S1 ∪ −K · S1 ∪ Des (34)

In addition, if the bound of the disturbance is symmetric, then S1 will also be symmetric, and
therefore:

Des = K · S1 ∪ Dtt (35)

3.3. Observer based approach

The above approach involves checking the value of the state vector at each time step k in order to
check whether or not the state of the system belong to the event-set S2. Depending on the result, it
is then decided whether or not to apply a control signal without detracting from the performances of
the scheme. However, it is assumed throughout this strategy that all the state information is available.
When the state of the system (1) cannot be completely measured and only the output yk is available,
the complete system is modeled as follows :

xk+1 = Axk +Buk + Ewk

yk = Cxk (36)

One possible solution here is to construct a Luenberger observer (assuming that the matrix pair
(A,C) is observable):

x̂k+1 = Ax̂k +Buk + L
[
yk − Cx̂k

]
(37)

where x̂ is the observed state, and L the observer gain. The challenge here is then to find how to
use the event-switched method presented above in the case of system (36)-(37) ensuring accurate
performances.

The observation error ek = xk − x̂k has the following dynamics:

ek+1 = (A− LC) ek + Ewk (38)

Let Se denote a RPI set in the observation error space, it is a set in which the observation error
will be bounded once the observer has converged. The observed state actually has the following
dynamics:

x̂k+1 = (A−BK) x̂k − LCek (39)

where the term ek denotes a disturbance bounded in a RPI set Se. A RPI set for system (39) can
be computed with the method presented in Section 2.1, and will be denoted Ŝ1. Lastly, an event-set
S2 can be found as described in Section 2.2 in the observed state space, where the complete system
with an observer can be in an open-loop configuration when the observed state is in S2, while still
ensuring that Ŝ1 is a RPI set for system (39).

3.4. Proposed algorithm

In the present paper, a new approach to designing event-switched control is presented. With
the present event-switched control approach, the system does not have to be controlled
between events, and efficient performances can still be obtained even in the presence of bounded
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EVENT-SWITCHED CONTROL DESIGN WITH GUARANTEED PERFORMANCES 11

Figure 1. Event-switched control strategy for a plant with an exogenous disturbance w. The switching
condition is used to determine whether an action has to be performed by the controller or not.

disturbances. A switching condition is checked periodically in order to determine whether ot not a
dynamic control input has to be applied. Fig. 1 presents the overall control strategy.

The first step in the present method consists in finding the nominal performances of the controlled
system subjected to bounded disturbances. The nominal performances correspond to a RPI set for
the system. We take S1 to denote this set. Note that as S1 is a RPI set, once the state has entered this
set, it will remain there. In order to be less conservative, S1 can be approximated as the mRPI set.
The second step consists in finding an event-set S2. When the state of the system is located inside S2,
the control input will switch off and the system will run in the (possibly unstable) open-loop mode.
Whenever the state no longer belongs to S2, the control input switches on again. Fig. 2 illustrates the
whole process in the case of a 2-dimensional system (in order to simplify the spatial representation).
It is worth noting that the event-set S2 is not included in S1 in this particular example, S2\S1 can
only be reached one time step before joining S1. Three different cases arise here:

1: When the state does not belong to both the nominal performance set S1 and the event-set S2, the
linear control input is applied to the system and the state will join either S1 or S2 after a finite
number of time steps.

2: When the state belongs to S1 but not to S2, the linear control input is applied. At the next time
step, the state will remain in S1 and can join S2 ∩ S1.

3: When the state belongs to S2, the control input is switched off, and only the equilibrium value
ueq is applied to the control input (or 0m in the null stabilization case). Due to the mathematical
properties of S2, the state will belong to S1 at the next time step (and can also continue to belong
to S2 ∩ S1).

3

2

1

Figure 2. Geometrical interpretation of the event-switched control strategy illustrating three different
possible state trajectories of the event-switched system. S1 is a RPI set and S2 is the event-set. It is worth

noting that S2 is not included in S1.

Lastly, designing an event-switched control strategy with the approach presented here can be done
using a systematic method. Given any stabilizable system (1):
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12 B. BOISSEAU ET AL.

• Find a linear state-feedback K such that the eigenvalues of A−BK are inside the unit circle.
• Compute an approximation for the mRPI set of the system. See [33] for an efficient method.
• Compute the event-set S⋆

2 as explained in Section 2.2.
• Take any set S2 ⊆ S⋆

2 as an event-set.

All these steps are performed to compute an event condition which ensures efficient performances.
This event condition can be checked online as described in the Algorithm 1.

Algorithm 1 Applying the event-switched control ONLINE

Require: event-set S2

At each time step:
if x ∈ S2 then

Apply open-loop control u = 0
else

Apply closed-loop control u = −K · x
end if

We recall that the event-set S2 is computed offline, then the inclusion condition checked at each
sampling time is very simple to implement on practical applications. The computational effort
required for this step depends on the dimension and the topology of the event-set. If the event-
set is a polyhedron, the complexity is related to the number of vertices describing the set. To be
more precise, it will consist in verifying as many inequalities as the polyhedron has faces. If the set
is an ellipsoid, then the complexity is quadratic in the order of the system. The use of an ellipsoidal
event-set is discussed in Section 2.3, the results obtained with an implementation of this method has
been illustrated in Section 4.3.

The cost of the offline computation is highly related to the considered system. The time required
for this computation is given in Section 4 for a given example.

4. SIMULATION

In this last section, the approach presented here is applied to the following academic example:

xk+1 =

[
1 0.65
0 1

]
︸ ︷︷ ︸

A

xk +

[
0.211
0.65

]
︸ ︷︷ ︸

B

(uk + wk) (40)

Note that in this particular case, the disturbance matrix E is taken to be equal to B.
A stabilizing static state-feedback gain was found using the Linear Quadratic (LQ) optimal

control method with identity weighting matrices of suitable dimension.

uk = −
[
0.575 1.217

]︸ ︷︷ ︸
K

xk (41)

The dynamics of the linear discrete time-triggered closed-loop system are therefore:

xk+1 = ACLxk +Bwk (42)

with ACL ≜ A−BK =

[
0.879 0.393
−0.374 0.209

]
It can be noted that the poles (0.54± 0.19 · i) of the closed-loop system are located inside the
unit circle. The system is therefore stable, whereas the open-loop system is unstable. During the
simulation, w will be bounded in the set W = [−1;+1].

Both the classical time-triggered closed-loop system (42) and system (40) subjected to the
switched control input (4) are simulated in parallel, in order to compare the performances of these
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EVENT-SWITCHED CONTROL DESIGN WITH GUARANTEED PERFORMANCES 13

two systems when the same disturbance is applied. The results of the simulation are presented in
Fig. 3 during the first 10 time steps (in order to show the trajectory of the system clearly). The
nominal performance set S1 is an approximation of the mRPI set obtained via the algorithm given
in [34]. The set S⋆

2 is obtained as described in Section 2.1. In our implementation using MATLAB
and the MPT toolbox [41], the time required to compute these two sets was approximately 0.8
seconds. These sets, as well as the system trajectories, are plotted in Fig. 3a. The control inputs are
also presented with respect to the time steps in Fig. 3b. It can be seen from Fig. 3a that the control
signal is 0 when the system trajectory is in the set S⋆

2 at time steps 3, 4, 5, 7 and 8.

−2 −1 0 1 2

−1

0

1

2

x1

x
2

S1

S⋆
2

time-triggered state’s trajectory
event-switched state’s trajectory

(a) State trajectories.
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−2

−1

0

1

2

time instant

co
nt

ro
li

np
ut

time-triggered control
event-switched control

(b) Control input.

Figure 3. Simulation of the time-triggered system (in red) and the event-switched system (in blue) with the
same disturbances and initial condition (x1 = x2 = 2) during 10 time steps. When the state of the event-
switched system is in S⋆

2 (green set), open-loop control is applied. The set S1 (yellow) describes a portion of
the state space in which the state is bounded once it has entered this set in the case of both the time-triggered

and the event-switched system.

In order to test the accuracy of the mRPI set approximation, the discrete time system (42) was
simulated with the disturbance reaching the bounds. The results obtained, which are presented
in Fig. 4, clearly show that the mRPI set approximation is satisfactory, since the state x still belong
to the set S1 with the worst disturbance scenario, and is located very near the vertices.
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(a) State trajectories.
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(b) Worst case disturbance.

Figure 4. Worst disturbance scenario for mRPI approximation (S1) verification.

In the rest of this section, the simulation was run for N = 107 periods of time in order to have a
sufficiently good distribution of the disturbances and reliable performance indexes, as described in
the next section.

4.1. Performance indexes

The following performance indexes were used to compare the efficiency of the process:

• The maximum 2-norm of the state: max (∥x∥2), which is bounded by δx in (17);
• The maximum 2-norm of the control input: max (∥u∥2), which is bounded by δu in (19);
• The maximum 2-norm of the rate of variation of the control input: max (∥∆u∥2), which is

bounded by δd in (24) and (33);
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14 B. BOISSEAU ET AL.

• The percentage time spent in the closed loop: %c (this index also gives the rate of data bus
use between the controller and the actuator in the case of networked control systems). The
maximum value is 100% (in the case of time-triggered control), and the aim is to reduce this
percentage with the event-switched control strategy presented here.

In this particular example, the bound δd on ∥∆u∥2 is the same in the case of both the
time-triggered and the event-switched system because δttd ≥ min{γ |K · S1 ⊆ Bn

2 (γ)}, refer to
Section 3.2.2 for details.

The bound values are given in Table I. The performance indexes obtained in the simulations are
given in Tables II-III and discussed below.

Table I. Theoretical bounds on performance indexes

δx δu δd
1.87 1.57 1.97

Table II. Performance indexes obtained with uniformly distributed disturbances

%c max(∥x∥2) ≤ δx max(∥u∥2) ≤ δu max(∥∆U∥2) ≤ δd
Time-triggered strategy 100 1.69 1.48 1.92
Event-switching strategy with S⋆

2 48.31 1.71 1.57 1.95
Event-switching strategy with E⋆ 49.66 1.70 1.52 1.95

Table III. Performance indexes obtained with truncated normally distributed disturbances

%c max(∥x∥2) ≤ δx max(∥u∥2) ≤ δu max(∥∆U∥2) ≤ δd
Time-triggered strategy 100 1.58 1.42 1.79
Event-switching strategy with S⋆

2 39.62 1.64 1.55 1.90
Event-switching strategy with E⋆ 39.44 1.64 1.52 1.90

4.2. Results

Fig. 5 shows the results of the simulation when a uniformly distributed disturbance has been applied.
The simulated reachable set denoted Sx after 107 time steps starting at the origin in the case of the
time-triggered system can be seen in Fig. 5a, and in the case of the event-switched system, in Fig. 5b.
Sx is the convex hull where the state remains during the simulation. It can also be noted from Fig. 5b
that the state continues to stay in S1 throughout the simulation, as Sx is included in S1. This is the
expected behavior of the present event-switched control method as S1 is a RPI set for both the
time-triggered and the event-switched systems.

The performance indexes introduced in Section 4.1 are presented in Tables II and III in the case
of truncated normal and uniform disturbance distributions, respectively. The results show that the
2-norms of the state are bounded as predicted by δx, as explained in Section 3.2.1. This can also
be seen to occur with a geometrical interpretation, as Sx is included in S1. The control input and
the changing rate of the control input are also bounded by δu and δd, respectively. However, it can
be seen that in the event-switched case, the reachable set Sx is slightly larger than that obtained
using the time-triggered control. This difference may be attributable to the random nature of the
disturbances and their impact on the bound of the reachable set Sx: see for instance probabilistic
invariant sets for linear systems [42]. It is recalled, however, that the state trajectories occurring in
the worst disturbance scenario, which are shown in Fig. 4a, belong to the boundaries of the set S1

in both cases.
It is also worth considering the frequency domain of the state and the control input in the above

simulation. Fig. 6 shows the power spectral density (PSD) of the control input u, and the states
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(a) Time-triggered system’s state.
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(b) Event-switched system’s state.

Figure 5. Comparison between time-triggered and event-switched systems subjected to the same uniformly
distributed disturbances. S1 is an approximation for the mRPI set computed offline, as mentioned

in Section 2.1, and Sx is the reachable set from the origin after 107 periods of time.

x1 and x2 (where xT = [x1 x2]). It can be noted that the magnitude of these values is generally
greater in the case of the event-switched control system than with the classical approach. However,
the overall shape is similar in both cases. It can be seen from Fig. 6a that the magnitude of the control
input is greater at high frequencies in the case of the event-switched method. But in x1 in Fig. 6b
and x2 in Fig. 6c, lower values were obtained at high frequencies in the case of the event-switched
strategy. This is a particularly noteworthy result of the simulation: applying unstable dynamics to
some events can result in less energy in the high frequency domain of the state.
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(a) Power spectral density of the control input.
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(b) Power spectral density of x1.
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(c) Power spectral density of x2.

Figure 6. Power spectral density comparison between time-triggered and event-switched systems.

4.3. Reducing computation complexity

To use the switching mechanism (4), one has to check at each time instant whether the state belongs
to S⋆

2 = {x ∈ Rn : Rx ≤ Q} with R ∈ Rf×n and Q ∈ Rf . For this purpose, one only needs to
check whether the state meets the condition imposed in the set definition: Rx ≤ Q. In the above
example, the set S⋆

2 is a polyhedron defined by the intersection between 20 half-spaces, which
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means calculating 2× 20 = 40 multiplications, 20 additions and checking 20 inequalities at each
time step.

To simplify the control algorithm, another event-set can be defined inside S⋆
2 , such as the largest

ellipse inscribed in S⋆
2 . In the above example, this would reduce the number of operations to 6

multiplications, 3 additions and 1 inequality per time step. However, this would mean that the
resulting event-switched system would switch to open-loop dynamics less frequently as the volume
of the event-set would be smaller.

Computing the largest ellipsoid in a polyhedron is a convex optimization problem, as stated in [43,
Section 8.4.1]. Let us define the ellipse E⋆ as follows:

E⋆ ∆
= {Tx+ d |∥ x ∥≤ 1} , with T a symmetric matrix (43)

In order to maximize the volume of E⋆, the constraint which has to be met is that every element of
E⋆ has to satisfy the inequality defining S⋆

2 . This could be written as follows:

maximize
T,d

log(detT )

subject to ∥ TR ∥ +Rd ≤ Q, and T symmetric
(44)

E⋆ can also be defined in a more popular form than (43), as follows:

E⋆ ∆
= {(x− d)TS(x− d) ≤ 1}, with S = T−2 (45)

The event-set E⋆ thus obtained is presented in Fig. 7. A simulation was run with the event-set
denoted E⋆, and the results obtained are presented in Tables II and III. As was to be expected, the
total amount of time during which the plant was allowed to be in the open-loop mode was shorter
than with the event-set S⋆

2 . However, the difference amounted to only about 1%, which means that
the advantages of the present method were not greatly decreased. The performance indexes obtained
were are almost the same as in Section 4.2. Choosing the set where the system is allowed to be in
the open loop mode therefore amounts to making a trade-off between the complexity of the event
conditions and the performances of the process.
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Figure 7. The set E⋆ is the maximum volume ellipse included in S⋆
2 .

5. CONCLUSIONS AND LINES OF FUTURE RESEARCH

The novel approach to designing event-switched systems presented in this paper is applicable to
discrete linear time-invariant systems subjected to bounded disturbances. The main advantage of
this method is to ensure the existence of the same RPI sets as those occurring in the equivalent
classical time-triggered systems, while allowing the system to use an open-loop controller if the
state belongs to an event-set. A method is described for computing this event-set, assuming that a
RPI set is already known. This method ensures upper bound of the 2-norm of the state, the control
input and the changing control input rate. The main contribution of this paper is to provide an event

Copyright c⃝ 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



EVENT-SWITCHED CONTROL DESIGN WITH GUARANTEED PERFORMANCES 17

mechanism and a systematic method to compute the event condition with specifying the required
performances a priori.

Simulations performed on an example showed that the method presented here makes it possible
to use an open-loop controller more than half of the time, while some performances are maintained.
Although a specific event condition has to be checked at each time step in the original method,
another condition can also be used, which gives almost similar results while simplifying the test
procedure.

It is proposed in future studies to extend this approach to continuous systems by including inter-
sample behavior. Designing an observer with the present approach would also be worth studying in
order to limit the number of communications required between a sensor measuring the output of the
system and the controller.
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