
HAL Id: hal-01376019
https://hal.science/hal-01376019v1

Submitted on 5 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GriMa: a Grid Mining Algorithm for Bag-of-Grid-Based
Classification

Romain Deville, Elisa Fromont, Baptiste Jeudy, Christine Solnon

To cite this version:
Romain Deville, Elisa Fromont, Baptiste Jeudy, Christine Solnon. GriMa: a Grid Mining Algorithm
for Bag-of-Grid-Based Classification. The joint IAPR International Workshops on Structural and
Syntactic Pattern Recognition (SSPR 2016) and Statistical Techniques in Pattern Recognition (SPR
2016), Nov 2016, Merida, Mexico. pp.132-142. �hal-01376019�

https://hal.science/hal-01376019v1
https://hal.archives-ouvertes.fr

GriMa: a Grid Mining Algorithm for
Bag-of-Grid-Based Classification

Romain Deville1,2, Elisa Fromont1, Baptiste Jeudy1, and Christine Solnon2

1 UJM, CNRS, LaHC UMR 5516, F-42000, SAINT-ETIENNE, France
2 Université de Lyon, INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract. General-purpose exhaustive graph mining algorithms have
seldom been used in real life contexts due to the high complexity of the
process that is mostly based on costly isomorphism tests and countless
expansion possibilities. In this paper, we explain how to exploit grid-
based representations of problems to efficiently extract frequent grid
subgraphs and create Bag-of-Grids which can be used as new features
for classification purposes. We provide an efficient grid mining algorithm
called GriMA which is designed to scale to large amount of data. We
apply our algorithm on image classification problems where typical Bag-
of-Visual-Words-based techniques are used. However, those techniques
make use of limited spatial information in the image which could be
beneficial to obtain more discriminative features. Experiments on dif-
ferent datasets show that our algorithm is efficient and that adding the
structure may greatly help the image classification process.

1 Introduction

General-purpose exhaustive graph mining algorithms are seldom used in real-
world applications due to the high complexity of the mining process mostly based
on isomorphism tests and countless expansion possibilities during the search [6].
In this paper we tackle the problem of exhaustive graph mining for grid graphs
which are graphs with fixed topologies and such that each vertex degree is con-
stant, e.g., 4 in a 2D square grid. This grid structure is naturally present in many
boardgames (Checkers, Chess, Go, etc.) or to model ecosystems using cellular
automata [10], for example. In addition, this grid structure may be useful to
capture low-level topological relationships whenever a high-level graph structure
is not obvious to design. In computer vision in particular, it is now widely ac-
knowledged that high-level graph-based image representations (such as region
adjacency graphs or interest point triangulations, for example) are sensitive to
noise so that slightly different images may result in very different graphs [20,19].
However, at a low-level, images basically are grids: 2D grids of pixels for images,
and 3D grids of voxels for tomographic or MRI images modelling 3D objects.
When considering videos, we may add a temporal dimension to obtain 2D+t
grids. We propose to exploit this grid structure and to characterize images by
histograms of frequent subgrid patterns.

Section 2 describes existing works that use pattern mining approaches for
image classification and existing graph mining algorithms related to our proposed
approach. Section 3 introduces grid graphs and our sub-grid mining algorithm
GriMA. Section 4 experimentally compares these algorithms and shows the
relevance of GriMA for image classification.

2 Related Work

Mining for image classification. Pattern mining techniques have recently been
very successfully used in image classification [9,22] as a mean to obtain more dis-
criminative mid-level features. However, those approaches consider the extracted
features used to describe images (e.g., Bags-of-Visual-Words / BoWs) as spa-
tially independent from each other. The problem of using bag-of-graphs instead
of BoWs has already been mentioned in [2,18,21] for satellite image classifica-
tion and biological applications. However, none of these papers provide a general
graph representation nor a graph mining algorithm to extract the patterns. In
[17], authors have already shown that, by combining graph mining and boost-
ing, they can obtain classification rules based on subgraph features that contain
more information than sets of features. The gSpan algorithm [23] is then used
to compute the subgraph patterns but a limited number of features per image
is used to be able to scale on real-life datasets.

Graph Mining. gSpan [23] and all similar general exhaustive graph mining algo-
rithms [11] extract frequent subgraphs from a base of graphs. During the mining
process, gSpan does not consider edge angles so that it considers as isomorphic
two subgraphs that are different in a grid point of view as shown in Fig. 1 (b and
c). Because of this, gSpan may consider as frequent a huge number of patterns
and does not scale well. On the other hand, Plagram [19] has been developed
to mine plane graphs and thus to scale efficiently on these graphs. However, in
Plagram, the extension strategy (which is a necessary step for all exhaustive
graph mining algorithms) is based on the faces of the graph which induces an
important restriction: All patterns should be composed of faces and the smallest
possible subgraph pattern is a single face, i.e, a cycle with 3 nodes. Using Pla-
gram to mine grids is possible but the problem needs to be transformed such
that each grid node becomes a face. This transformation is illustrated in Fig. 1:
The two isomorphic graphs (b) and (c) (which are both subgraphs of (a)) are
transformed into the two non-isomorphic graphs (e) and (f) (so that only (e) is
a subgraph of (d)). However, this artificially increases the number of nodes and
edges which may again cause scalability issues. Grid graphs have already been
introduced in [14], but authors did not take into account the rigid topology of the
grid and, in particular, the angle information that we use to define our grid min-
ing problem. Finally, grid graphs are special cases of geometric graphs, for which
mining algorithms have been proposed in [1]. These algorithms (FreqGeo and
MaxGeo) may be seen as a generalization of our new algorithm GriMA but,
as such, they are not optimized for cases where the graph is known to be a grid

(a)

(f)(e)(d)(c)

(b)

Fig. 1. Examples. (b) and (c) are isomorphic graphs and are both subgraphs of (a).
However, (b) and (c) are not grid isomorphic, and (b) is a subgrid of (a) whereas (c) is
not a subgrid of (a). (d) (resp. (e) and (f)) is obtained from (a) (resp. (b) and (c)) by
replacing each node by a 4-node face (with the same label on the 4 nodes). (e) and (f)
are not isomorphic, and (e) is a subgraph of (d) whereas (f) is not a subgraph of (d).

and we show in Sec. 3 that their complexity is higher than the complexity of our
algorithm. Besides, the authors do not provide any implementation (thus, also
no experiment) of their proposed algorithm which could allow us a comparison
with our method.

3 Grid Mining

Grid Graphs. A grid is a particular case of graph such that edges only connect
nodes which are neighbors on a grid. More formally, a grid is defined by G =
(N,E,L, η) such that N is a set of nodes, E ⊆ N × N is a set of edges, L :
N∪E → N is a labelling function, η : N → Z2 maps nodes to 2D coordinates, and
∀(u, v) ∈ E, the coordinates of u and v are neighbors, i.e., |xu−xv|+|yu−yv| = 1
where η(u) = (xu, yu) and η(v) = (xv, yv). Looking for patterns in a grid amounts
to searching for subgrid isomorphisms. In an image analysis context, patterns
should be invariant to translations and rotations so that grid patterns which
are equivalent up to a translation and/or a rotation should be isomorphic. For
example, graphs (b) and (c) of Fig. 1 are isomorphic. However, (c) cannot be
obtained by translating and/or rotating (b), because the angle between edges of
(c) is different from the angle between edges of (b). Therefore, (b) and (c) are
not grid-isomorphic. Finally, a grid G1 = (N1, E1, L1, η1) is subgrid-isomorphic
to a grid G2 = (N2, E2, L2, η2) if there exists N ′2 ⊆ N2 and E′2 ⊆ E2 ∩N ′2 ×N ′2
such that G1 is grid isomorphic to G′2 = (N ′2, E

′
2, L2, η2).

Frequent Grid Mining Problem. Given a database D of grid graphs and a fre-
quency threshold σ, the goal is to output all frequent subgrid patterns in D,
i.e., all grids G such that there exist at least σ grids in D to which G is subgrid
isomorphic.

Grid Codes. In graph mining algorithms, an important problem is to avoid gen-
erating the same pattern multiple times. One successful way to cope with this is
to use canonical codes [23] to represent graphs and thus explore a canonical code

ab

c

01

11 2
de

Code 1 Code 2 Code 3
edge δ i j a Li LjLij edge δ i j a Li LjLij edge δ i j a Li LjLij

(a, b) 0 0 1 0 0 1 0 (a, b) 0 0 1 0 0 1 0 (d, c) 0 0 1 0 2 1 0
(b, c) 0 1 2 3 1 1 0 (b, c) 0 1 2 3 1 1 0 (c, e) 0 1 2 2 1 1 0
(c, e) 0 2 3 1 1 1 0 (c, d) 0 2 3 3 1 2 0 (c, b) 0 1 3 1 1 1 0
(c, d) 0 2 4 3 1 2 0 (d, a) 1 3 0 3 2 0 0 (b, a) 0 3 4 1 1 0 0
(d, a) 1 4 0 3 2 0 0 (c, e) 0 2 4 1 1 1 0 (a, d) 1 4 0 1 0 2 0

Fig. 2. Examples of grid codes (node labels are displayed in blue; edges all have the
same label 0). Codes 1 and 2 correspond to traversals started from edge (a, b), and
differ on the third edge. Code 3 corresponds to a traversal started from edge (d, c) and
it is canonical.

search space instead of a graph one. In this paragraph, we define the canonical
code used in our algorithm. A code C(G) of a grid G is a sequence of n edge
codes (C(G) = 〈ec0, ..., ecn−1〉) which is associated with a depth-first traversal of
G starting from a given initial node. During this traversal, each edge is traversed
once, and nodes are numbered: The initial node has number 0; Each time a new
node is discovered, it is numbered with the smallest integer not already used in
the traversal. Each edge code corresponds to a different edge of G and the order
of edge codes in C(G) corresponds to the order edges are traversed. Hence, eck
is the code associated with the kth traversed edge. This edge code eck is the
tuple (δ, i, j, a, Li, Lj , L(i,j)) where

– i and j are the numbers associated with the nodes of the kth traversed edge.
– δ ∈ {0, 1} is the direction of the kth traversed edge:
• δ = 0 if it is forward, i.e., i already appears in the prefix 〈ec0, ..., eck−1〉

of the code and j is a new node which is reached for the first time;
• δ = 1 if it is backward, i.e., both i and j already appear in the prefix.

– a ∈ {0, 1, 2, 3} is the angle of the kth traversed edge:
• a = 0 if k = 0 (first edge);
• Otherwise, a = 2A/π where A ∈ {π/2, π, 3π/2} is the angle between the

edge which has been used to reach i for the first time and (i, j).
– Li, Lj , L(i,j) are node and edge labels.

For example, let us consider code 1 in Fig. 2. The fourth traversed edge is (c, d).
It is a forward edge (because d has not been reached before) so that δ = 0. The
angle between (b, c) and (c, d) is 3π/2 so that a = 3. The fifth traversed edge is
(d, a) which is a backward edge (as a has been reached before) so that δ = 1.

Given a code, we can reconstruct the corresponding grid since edges are
listed in the code together with angles and labels. However, there exist different
possible codes for a given grid, as illustrated in Fig. 2: Each code corresponds
to a different traversal (starting from a different initial node and choosing edges
in a different order). We define a total order on the set of all possible codes that
may be associated with a given grid by considering a lexicographic order (all
edge code components have integer values). Among all the possible codes for a
grid, the largest one according to this order is called the canonical code of
this grid and it is unique.

Description of GriMA. Our algorithm, GriMA, follows a standard frequent
subgraph mining procedure as described, e.g., in [19]. It explores the search
space of all canonical codes in a depth-first recursive way. The algorithm first
computes all frequent edges and then calls an Extend function for each of these
frequent extensions. Extend has one input parameter: A pattern code P which
is frequent and canonical. It outputs all frequent canonical codes P ′ such that
P is a prefix of P ′. To this aim, it first computes the set E of all possible valid
extensions of all occurrences of P in the database D of grids: A valid extension
is the code e of an edge such that P.e occurs in D. Finally, Extend is recursively
called for each extension e such that P.e is frequent and canonical. Hence, at
each recursive call, the pattern grows.

Node-induced GriMA. In our application, nodes are labelled but not edges
(all edges have the same label). Thus, we designed a variant of GriMA, called
node-induced-GriMA, which computes node-induced grids, i.e., grids induced
by their node sets. This corresponds to a “node-induced” closure operator on
graphs where, given a pattern P , we add all possible edges to P without adding
new nodes. In the experiments, we show that this optimization decreases the
number of extracted patterns and the extraction time.

Properties of GriMA and Complexity. We can prove (not detailed here for lack
of space) that GriMA is both correct, which means that it only outputs frequent
subgrids and complete, which means that it cannot miss any frequent subgrid.
Let k be the number of grids in the set D of input grids, n the number of edges
in the largest grid Gi ∈ D and |P | the number of edges in a pattern P . GriMA
enumerates all frequent patterns in O(kn2.|P |2) = O(kn4) time per pattern P .
This is a significant improvement over FreqGeo and MaxGeo [1] which have
a time complexity of O(k2n4. lnn) per pattern.

4 Experiments

To assess the relevance of using a grid structure for image classification, we pro-
pose to model images by means of grids of visual words and to extract frequent
subgrids to obtain Bags-of-Grids (BoGs). We compare these BoGs with a stan-
dard classification method which uses simple unstructured Bags-of-Visual-Words
(BoWs). Note that neither BoG nor BoW-based image classification give state-
of-the-art results for these datasets. In particular, [5] reported that the features
discovered using deep learning techniques give much better accuracy results than
BoWs and all their extensions on classification problems. However, our aim is to
compare an unstructured set of descriptors and a set of descriptors structured
by the grid topology. The method presented in this paper is generic and may be
used with any low-level features (e.g. deep-learned features) as labels.

Datasets. We consider three datasets. Flowers [15] contains 17 flower classes
where each class contains 80 images. 15-Scenes [12] contains 4485 images from

15 scene classes (e.g., kitchen, street, forest, etc.) with 210 to 410 images per
class. Caltech-101 [8] contains pictures of objects belonging to 101 classes. There
are 40 to 800 images per class. As it is meaningless to mine frequent patterns in
small datasets of images (when there are not enough images in a dataset, there
may be a huge number of frequent patterns), we consider a subset of Caltech-
101 which is composed of the 26 classes of Caltech-101 that contain at least 80
pictures per class. For each class, we randomly select 80 images. This subset will
be referred to as Caltech-26

BoW design. Given a set of patches (small image regions) extracted from an
image dataset, visual words are created by quantizing the values of patch de-
scriptors [7,4]. The set of computed visual words is called the visual vocabulary.
Each image is then encoded as an histogram of this visual vocabulary, called
a bag-of-visual-words. A decade ago, patches used to create the visual vocab-
ulary were selected by using interest point detectors or segmentation methods.
However, [16] has shown that randomly sampling patches on grids (called dense
sampling) gave as good (and often better) results for image classification than
when using complex detectors. This made this problem a particularly suited
use-case for our algorithm. In our experiments, visual words are based on 16x16
SIFT descriptors [13] which are 128-D vectors describing gradient information
in a patch centered around a given pixel. 16x16 SIFT descriptors are extracted
regularly on a grid and the center of each SIFT descriptor is separated by s = 8
pixels (descriptors are thus overlapping). We use the K-means algorithm to cre-
ate visual word dictionaries for each dataset. The optimal number of words K
is different from one method (BoG) to the other (BoW) so this parameter is
studied in the experiments.

BoG design. The first steps (computation of descriptors densely distributed in
each image and creation of the visual vocabulary) are similar for BoW and BoG-
based methods. For BoG, we create a square grid based on the grid of visual
words by connecting each node to its 4 neighbors (except on the border of the
image). In our experiments, grid nodes are labeled by visual words and edges
remain unlabeled although the algorithm is generic and could include labels
on edges. For efficiency reasons, we preprocess grids before the mining step to
remove all nodes which are surrounded by nodes with identical labels (thus
creating holes in place of regions with uniform labels). Once grids are created
for all images, we mine frequent subgrid patterns with GriMA class by class.
Finally, we consider the union of all frequent patterns and all visual words, and
represent each image by an histogram of frequency of patterns and words. These
histograms are given as input to the classifier.

Efficiency Results. Figure 3 compares scale-up properties of GriMA, node-
induced-GriMA, gSpan and Plagram for the Flowers dataset (average results
on 10 folds for each class, where each fold contains 72 images). We have set
the number K of words to 100, and we have increased the absolute frequency
threshold from 45 (62.5%) to 72 (100%). Note that, as explained in Sect. 2, the

 10

 100

 1000

 10000

 100000

 40 45 50 55 60 65 70 75

N
u
m

b
e
r

o
f

p
a
tt

e
rn

s
fo

u
n
d

Absolute minimum threshold (over 72)

Plagram
gSpan
GriMA

node-induced-GriMA
 0.1

 1

 10

 100

 1000

 40 45 50 55 60 65 70 75

T
im

e
 (

s)

Absolute minimum threshold (over 72)

Plagram
gSpan
GriMA

node-induced-GriMA

Fig. 3. Number of patterns (left) and time needed (right) with respect to different
support thresholds σ to compute all patterns for a grid, on average for all classes of
Oxford-Flowers17 dataset for gSpan, Plagram, GriMA and node-induced-GriMA.
Time is limited to 1 hour per class.

face-based expansion strategy of Plagram does not allow it to find patterns
with no face (such as trees, for example). To allow Plagram to mine the same
patterns as its competitors, each node of the original grid graph is replaced by
a four-node face (as illustrated in Fig. 1). This way, each frequent subgrid in
the original grid is found by Plagram in the expanded grid. However, some
patterns found by Plagram do not correspond to patterns in the original grid
(e.g., faces in the expanded grid which correspond to edges without their end
nodes in the original grid). For this reason, the number of patterns that are mined
by Plagram and its computation time are higher than the ones reported for its
competitors. gSpan does not consider edge angles when mining subgraphs, and
two isomorphic subgraphs may have different edge angles so that they do not
correspond to isomorphic subgrids, as illustrated in Fig. 1. Therefore, gSpan and
GriMA compute different sets of frequent patterns. However, Fig. 3 shows us
that the number of patterns is rather similar (slightly higher for gSpan than for
GriMA). GriMA and node-induced-GriMA scale better than gSpan, and are
able to find all frequent patterns in less than 10s when σ = 60 whereas gSpan
has not completed its execution after 3600s. The number of patterns found by
both Plagram and gSpan for a support lower than 65 are thus not relevant
and are not shown in the Figure. As explained in Sect. 3, node-induced-GriMA
mines less patterns and is more efficient than GriMA, and much more efficient
than gSpan and Plagram.

N -ary classification results. Let us now evaluate the interest of using grids for
image classification on our three datasets. For each dataset we consider different
values for the number K of visual words, with K ∈ {100, 500, 1000, 2000, 4000}.
Note that this corresponds to changing the K of K-means.

GriMA has one parameter, σ, and Fig. 3 shows us that the number of mined
patterns grows exponentially when decreasing σ. CPU time is closely related to
the number of mined patterns, and σ should be set so that we have a good
tradeoff between the time needed to mine patterns and the gain in accuracy.
The number of mined patterns (and the CPU time) depends on σ, but also on

K
15 Scenes Flowers Caltech-26

BoW BoG #pat. σ BoW BoG #pat. σ BoW BoG #pat. σ

100 70.7% 70.0% 4,190 60% 48.0% 63.3% 5,284 80% 71.7% 73.7% 6,473 80%
500 73.7% 72.0% 4,027 40% 59.6% 63.9% 4,377 55% 76.3% 75.4% 4,240 60%
1000 73.8% 73.1% 4,877 30% 63.7% 64.6% 4,545 45% 77.3% 76.9% 6,044 45%
2000 73.2% 73.8% 6,128 20% 67.5% 66.9% 4,640 35% 77.0% 77.2% 4,502 40%
4000 74.2% 75.0% 4,218 20% 66.9% 67.0% 5,822 25% 77.2% 75.7% 16,345 35%

Table 1. Classification results according to the number of visual words K and the
datasets. For BOG, the column #pat displays the number of frequent patterns ex-
tracted by node-induced-GriMA and σ give the frequency freshold (in percentage of
the number of images per class) reached to obtain at least 4000 patterns.

the size K of the vocabulary and on the dataset. Therefore, instead of fixing
σ, we propose to fix the number p of patterns we want to mine: Starting with
σ = 100%, we iteratively decrease σ and run node-induced-GriMA for each
value of σ until the number of mined patterns reaches p. In our experiments, we
have set p to 4, 000 as this value corresponds to a good tradeoff between time
and gain in accuracy.

For the classification task, we use N(N − 1)/2 binary Support Vector Ma-
chines (SVM), where N is the number of classes. Each SVM is trained to dis-
criminate one class against another. The final classification is obtained using a
vote among the classes. SVMs are trained using Libsvm [3] with the intersec-
tion kernel presented in [?]. Inputs of SVMs are either BoW histograms (for
the unstructured visual word-based method) or BoW ∪ BoG histograms (for
the grid-based method). The parameter C of SVM has been optimized by cross
validation on all datasets. We consider 10-fold cross-validation for Flowers and
Caltech-26 since the number of images is the same for each class. For 15-Scenes,
we have created 10 different folds: For each fold, we randomly select 100 images
per class for training and 50 images per class for testing. We provide a Stu-
dent two-tailed t-test to statistically compare both accuracies (BoW and BoW
∪ BoG) for each dataset (the results in green are statistically better, in red
statistically worse at p = 0.05 level).

We report in Table 1 accuracy results obtained for all datasets. As expected,
we need to lower the support threshold σ to obtain at least 4000 patterns when
the number of visual words increases (since there are more different labels in
the grid, the patterns are less frequent). On 15-Scenes, the use of structural
information becomes important only for K = 4000 (but this also gives the best
accuracy results). On Flowers on the contrary, BOG greatly improves the results
for low number of visual words ([100,1000]) but it is not statistically better
(nor worse) for higher numbers ([2000,4000]) where the accuracy is the best
(K = 2000). For Caltech-26, BOG slightly improves the results when K = 100,
and it is not significantly different for higher values of K. Overall, those results
show that adding structural information does not harm and sometimes improve
the representation of images and that our grid mining algorithm can be used in
a real-life context.

BOW
BOG

75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20%
suburb 99.1 99.1 99.1 99.1 99.1 99.2 99.2 99.2 99.2 99.3 99.3 99.3 99.3

coast 97.4 97.4 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.2 97.1 97.2

forest 98.8 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.8 98.7

highway 97.5 97.7 97.7 97.6 97.7 97.6 97.5 97.5 97.4 97.3 97.3 97.2 97.1

moutain 97.7 97.6 97.6 97.6 97.7 97.6 97.6 97.5 97.5 97.5 97.5 97.4 97.3

street 97.8 97.9 97.8 97.8 97.7 97.7 97.8 97.7 97.7 97.5 97.3 97.1 96.8

industrial 94.6 94.7 94.9 94.8 95.0 95.1 95.1 95.1 95.2 95.3 95.6 95.4 95.4
Table 2. Accuracy of each binary SVM for 7 classes of the 15-scenes dataset with a
vocabulary of K = 1000 visual words and a threshold σ ∈ [75%, 20%]. For each class,
we highlight in bold BOG results that are better than BOW, and in green (resp. red)
BOG results that are significantly better (resp. worse) than BOW. For the other 8
classes, BOW and BOG are never significantly different.

Binary classification results. Finally, we evaluate the interest of using grids for
a binary classification task on the 15-scenes dataset (similar results were ob-
served for the two other datasets). The goal is to provide an insight into each
class separately, to see if all classes benefit from the use of grids in a same way.
Table 2 reports binary classification results: For each class C, we train a binary
SVM to recognize images of C, against images of all other classes. We consider
the same parameter settings as for the N -ary classification task described pre-
viously, except that we train N binary SVMs (instead of N(N − 1)/2). Only
the 7 classes with statistically significant differences are shown in the table. We
can see that some classes really benefit from the use of structured patterns for
almost all frequency tresholds (e.g., industrial, coast, suburb, forest) whereas for
some classes, using unstructured information gives better results (e.g., street or
moutain). This is due to the fact that for some classes, the structure is too
similar from this class to another to use it to discriminate classes.

5 Conclusion

We have presented GriMA, a grid mining algorithm for Bag-of-Grid-based clas-
sification. GriMA takes into account relative angle information between nodes
in the grid graph (as well as possible labels on the nodes and the edges) and
is designed to scale to large amount of data. We believe that the grid structure
can not only be useful for directly modeling some real life problems but can also
be used when an underlying high level structure is not obvious to define as it is
the case for image classification problems. Experiments show that our algorithm
is necessary (compared to existing ones) to efficiently tackle real life problems.
They also show on three image datasets that patterns extracted on this grid
structure can improve the classification accuracies. However, to further increase
the discriminative power of the grid-patterns for image classification we would
need to combine at the same time state-of-the-art deep-learned descriptors and
design smart post-processing steps as the ones developed in [9] for unstructured

models. Besides, we plan to upgrade the GriMA algorithm to mine 2D+t grids
which is necessary to tackle different real-life applications such as the analysis
of ecosystems.

Acknowledgement

This work has been supported by the ANR project SoLStiCe (ANR-13-BS02-
0002-01).

References

1. Hiroki Arimura, Takeaki Uno, and Shinichi Shimozono. Time and space efficient
discovery of maximal geometric graphs. In International Conference on Discovery
Science, pages 42–55, 2007.

2. F. Brandao Da Silva, S. Goldenstein, S. Tabbone, and R. Da Silva Torres. Image
classification based on bag of visual graphs. In IEEE SPS, pages 4312–4316, 2013.

3. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

4. K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the
details: an evaluation of recent feature encoding methods. In BMVC, pages 76.1–
76.12, 2011.

5. K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in
the details: Delving deep into convolutional nets. In BMVC, 2014.

6. Diane Cook and Lawrence Holder. Mining Graph Data. J. Wiley & Sons, 2006.
7. G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization

with bags of keypoints. In ECCV, pages 1–22, 2004.
8. L. Fei-Fei, R. Fergus, and Pietro Perona. Learning generative visual models from

few training examples: An incremental bayesian approach tested on 101 object
categories. In IEEE CVPR Workshop of Generative Model Based Vision, 2004.

9. B. Fernando, É. Fromont, and T. Tuytelaars. Mining mid-level features for image
classification. IJCV, 108(3):186–203, 2014.

10. P. Hogeweg. Cellular automata as a paradigm for ecological modelling. Applied
Mathematics and Computation, 27:81–100, 1988.

11. C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algo-
rithms. KER, 28:75–105, 2013.

12. S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, pages 2169–2178,
2006.

13. D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004.

14. R. Marinescu-Ghemeci. Maximum induced matchings in grids. In Optimization
Theory, Decision Making, and Operations Research Applications, pages 177–187.
Springer, 2013.

15. M.-E. Nilsback and A. Zisserman. Automated flower classification over a large
number of classes. In ICVGIP, pages 722 –729, 2008.

16. E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for bag-of-features image
classification. In ECCV, volume 3954, pages 490–503, 2006.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

17. S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir. Weighted substructure
mining for image analysis. In IEEE CVPR, pages 1–8, 2007.

18. F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for image
matching. IEEE Transactions on Image Processing, 14(2):169–180, 2005.

19. B. Ozdemir and S. Aksoy. Image classification using subgraph histogram represen-
tation. In ICPR, pages 1112–1115, 2010.

20. A. Prado, B. Jeudy, E. Fromont, and F. Diot. Mining spatiotemporal patterns in
dynamic plane graphs. IDA, 17:71–92, 2013.

21. É. Samuel, C. de la Higuera, and J.-C. Janodet. Extracting plane graphs from
images. In SSPR, pages 233–243, 2010.

22. F. Brandão Silva, S. Tabbone, and R. Torres. Bog: A new approach for graph
matching. In ICPR, pages 82–87, 2014.

23. W. Voravuthikunchai, B. Crémilleux, and F. Jurie. Histograms of Pattern Sets for
Image Classification and Object Recognition. In CVPR, pages 1–8, 2014.

24. X. Yan and J. Han. gSpan: graph-based substructure pattern mining. In ICDM,
pages 721–724, 2002.

	GriMa: a Grid Mining Algorithm for Bag-of-Grid-Based Classification

