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Introduction

With the approach of constructing an exponential model that covers the observed mass scales of the universe, the proton, neutron and tau masses were calculated with a precision of up to 8 decimal digits [START_REF] Paasch | On the Calculation of Elementary Particle Masses[END_REF]. The results for the neutron and tau masses are within the estimated standard deviation of the experimental values. As a premise the gravitational constant G is assumed to be a function of time G(t) proportional to 1/t and a set of mass dependend integers were observed and introduced. The calculation of the proton mass includes a mass contribution that enables the derivation of α without the elementary charge e, Planck´s constant ħ and the speed of light c by introducing a logarithmic potential for elementary particle´s confined constituent masses. In the following the basic approaches and results of [START_REF] Paasch | On the Calculation of Elementary Particle Masses[END_REF] needed to derive α are presented.

Within a space of a given radius the smallest rest mass greater zero that can be observed corresponds to a compton wavelength that is of the order of that radius. In this model the observable mass of the universe m U and the such defined smallest mass m γ inside are fitted by an exponential approach. The largest possible wavelenght of a particle with mass m γ thus is of the order of the radius of the universe, which is proportional to m U . Assuming that the reduced compton wavelenght r C is equal to the gravitational radius r G of the universe, then

= ℏ 𝛾 = 𝑢 = 𝐺 , 𝑝 = √ ℏc → 𝛾 • 𝑢 = 𝑝 (1.0)
where G is the gravitational constant and m pl is the Planck mass. The observable horizon of the universe then is the Schwarzschild radius r S =2r G . The results for m γ and m U are:

𝛾 = 𝑝 𝑝 ( ) (1.1a) 𝑢 = 𝑝 ( ) 𝑝 (1.1b)
where the gravitational constant G is a time dependent parameter that was larger in the past and m e , m p are the electron and proton masses. Inserting the present value for G [START_REF]CODATA Recommended Values[END_REF] in Eq. (1.1b) results in accurate values based on latest measurements of the mass and age of the observable universe [START_REF] Paasch | On the Calculation of Elementary Particle Masses[END_REF]. Since m U is supposed to fulfil Eq. (1.0), the model universe evolves as a black hole. When m U is reduced, presenting earlier stages of the universe, there is eventually a condition reached defined by m γ =m U , which is referred to as the state of equilibrium. Since the smallest observable mass m γ cannot exceed the mass of the universe m U , it is the initial state of the model. At equilibrium the gravitational and electromagnetic interaction converge to unification [START_REF] Paasch | On the Calculation of Elementary Particle Masses[END_REF]. This state is given by:
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The equilibrium mass m E is smaller than the muon, between the electron and proton masses. To calculate elementary particle masses the equilibrium mass i.e. Planck mass m E at equilibrium is generalized:
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(1.3)
where every particle combination i, j is assigned a mass m´(i,j). Then in the probed mass range, from electron to proton and the tau, particle masses are a combination of other particle masses, for example:

𝐾 = 𝜋+ = , • - , • -
with the measured value for the kaon K 0 in brackets and i=π + (pion), j=n (neutron). Thus they are generalized Planck masses. For particular equilibrium masses which are a function of the electron mass, quantum structures i.e. integer mass numbers can be observed which allow to describe particle masses and mass relations between particles. For example:
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where the equilibrium mass is expressed in units of the electron mass. The proton, neutron and tau masses then can be derived as a function of α and the electron mass m e . Thus they are also a function of α and m´(i,j) since m e =m´(e,e). The formular derived and solved for the proton mass then is:
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where ξ´ is a constant and m b is a constituent mass of the equilibrium mass m E in Eq. (1.2) with
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where the measured value is in brackets [START_REF]CODATA Recommended Values[END_REF]. Thus m b and m c both are a function of the equilibrium mass m E and therefore of a mass m´(i,j) and α, since the proton mass is a function of α. The last term for m b in Eq. (1.4) can be written as

𝜉´ 𝛼 = (1.6) with 𝜉´= , , 𝛼 = 𝜋𝜀 ℏ
where ε 0 is the electric constant, e the elementary charge, ħ Planck´s constant and c the speed of light.

The terms in Eq. (1.6) are a second order mass contribution to m b and the clue for deriving α.

Derivation of the Fine Structure Constant

From Eq. (1.6) it follows

= 𝜉´ 𝛼 (2.0a)
Since the proton, neutron and tau masses resp. are a function of the smaller mass m e , it could be considered as a constituent mass itsself. This is generalized by assuming that Eq. (2.0a) in principle is true for any mass contribution of a constituent mass m 0 that like m b and m c in Eqs. (1.4) and (1.5a) resp. can be expressed as a function F 1 of α and m´(i 1 ,j 1 ) as defined in Eq. (1.3). Then Eq. (2.0a) can be written as

= 𝛼 → = (𝛼, ´ , ) (2.0b) 
were b is a constant. With Eq. (1.5a) and since the proton mass is a function of α it is assumed that m c is a function F 2 of α and m´(i 2 ,j 2 ):
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Inserting this into Eq. (2.0b) yields
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But the constituent mass m 0 can be expressed as a Planck mass for a specific G(t):

= 𝑝 ( ) = √ ℏc
Then inserting m 0 from Eq. (2.1) as m pl (G) into Eq. (1.1a) results in the smallest possible rest mass greater zero that can be observed inside the universe, which here corresponds to an early stage where it´s mass m U was in the mass range of elementary particles, yielding

𝛾 = 𝑝 𝛼 (2.2)
where the factor 2 is applied because two charged particles with masses m γ each have to be considered to enable electromagnetic interaction. The particle with mass m γ is assumed to have an internal structure itsself consisting of a two dimensional harmonic oscillator i.e. confined constituent with zero rest mass moving with constant energy pc and angular frequency ω in the plane of motion within a sphere of radius R. The force F needed to counteract the centrifugal force F c c 2 /R on the constituent is assumed to act in the plane of motion only and to be proportional or equal to pc/R, then

= = 𝑅
where s 1 is a parameter independent of R. The energy needed to confine the constituent is

= ∫ 𝑅 𝑅 = ln 𝑅 𝑅 (2.3)
where R a is the integration constant. With a ground state of radius R 0 and

𝜔 ∝ 𝑅
then for the energy of an harmonic oscillator it follows
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where s 2 is the proportional constant and independent of R. Choosing the integration constant by setting Eq. ( 2.3) equal to Eq. ( 2.4) results in 

where the measured value is in brackets [START_REF]CODATA Recommended Values[END_REF]. This derivation with an accuracy of nine decimal digits is based on exponential scaling and generalized equilibrium masses introduced in [START_REF] Paasch | On the Calculation of Elementary Particle Masses[END_REF]. The result is independent of the fundamental physical constants ε 0 , e, ħ and c.

Conclusion

A model assuming the observable universe is an evolving black hole with a gravitational constant G(t) inverse proportional to it´s age enables the calculation of particle masses and the derivation of the fine structure constant α. It also provides a unification approach for gravitational and electromagnetic interaction. The significantly larger G(t) in the early universe supports the assumption that in the evolution of galaxies black holes formed before stars. The fine structure constant α can be derived with an exponential approach for the mass scales of the observable universe and a logarithmic potential for elementary particle´s constituent masses. The result depends solely on an integer from the proton mass derivation´s quantization approach and on the solution of the equation lnx=-x. Since it is independent of the constants ε 0 , e, ħ and c, supposably at least one of these parameters is not a fundamental physical constant and depends on the other three.

  value for R(n) is set to R 0 , allowing to determine the ratio Thus successive R(n) are seperated by a factor f. R(n) is assumed to be proportional or inverse proportional to it´s mass content m(n) as in Eq. (1.0), thus successive m(n) are seperated by a factor f resp. 1/f. Now Eq. (2.2) can be solved for α /m γ corresponding to the ratio of two successive masses m(n) seperated by a factor f it follows